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The small-scale motions relevant to the collision of heavy particles represent a general challenge to
the conventional large-eddy simulation (LES) of turbulent particle-laden flows. As a first step
toward addressing this challenge, we examine the capability of the LES method with an eddy
viscosity subgrid scale (SGS) model to predict the collision-related statistics such as the particle
radial distribution function at contact, the radial relative velocity at contact, and the collision rate for
a wide range of particle Stokes numbers. Data from direct numerical simulation (DNS) are used as
a benchmark to evaluate the LES using both a priori and a posteriori tests. It is shown that, without
the SGS motions, LES cannot accurately predict the particle-pair statistics for heavy particles with
small and intermediate Stokes numbers, and a large relative error in collision rate (up to 60%) may
arise when the particle Stokes number is near Sty=0.5. The errors from the filtering operation and
the SGS model are evaluated separately using the filtered-DNS (FDNS) and LES flow fields. The
errors increase with the filter width and have nonmonotonic variations with the particle Stokes
numbers. It is concluded that the error due to filtering dominates the overall error in LES for most
particle Stokes numbers. It is found that the overall collision rate can be reasonably predicted by
both FDNS and LES for Stg> 3. Our analysis suggests that, for Sty <3, a particle SGS model must
include the effects of SGS motions on the turbulent collision of heavy particles. The spectral
analysis of the concentration fields of the particles with different Stokes numbers further
demonstrates the important effects of the small-scale motions on the preferential concentration of

the particles with small Stokes numbers. © 2010 American Institute of Physics.

[doi:10.1063/1.3425627]

I. INTRODUCTION

Particle-laden turbulent flows are encountered in a wide
range of engineering and environmental p1r0blems;1’2 for ex-
ample, pollutant or aerosol particle dispersion, warm rain
droplet formation in the atmosphere, and fluidization and tur-
bulent mixing in combustion processes.3’4 Understanding the
hydrodynamics of such flows is the basis for many applica-
tions in engineering design, environmental protection, and
weather forecasting. Particularly, turbulence-mediated colli-
sion of heavy particles is vital to efficiency and conversion
rates in these processes.5

Large-eddy simulation (LES) has emerged as a promis-
ing tool for simulating turbulent flows in general and, in
recent years, has also been applied to particle-laden turbu-
lence with some successes.’ The motion of heavy particles is
much more complicated than fluid elements, and therefore,
LES of turbulent flow laden with heavy particles encounters
new challenges. In LES, only large-scale eddies are explic-
itly resolved and the effects of unresolved, small-scale or
subgrid scale (SGS) eddies on the large-scale eddies are pa-
rametrized. The SGS turbulent velocity field is not available.
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The effects of SGS turbulent velocity fields on particle mo-
tions have been studied in channel flows or isotropic turbu-
lent flows by Yeh and Lei,7 Wang and Squires,8 Armenio,
Piomelli, and Fiorotto,9 Yamamoto et al.,10 Kuer‘[en,]l Sho-
torban and Mashayek,lz’13 Fede and Simonin,14 Berrouk
et al.,15 Bini and Jones,16 Pozorski and Apte,17 among others.
The Eulerian deconvolution method'"'? or Lagrangian sto-
chastic approach13’15’17 is usually used to model the effects of
SGS motions on particle dispersion. The missing of SGS
turbulent velocity does not pose a serious problem for quan-
tifying the properties that are mainly governed by large-scale
turbulent eddies, i.e., single-particle statistics such as one-
particle dispersion coefficient.”” However, the turbulent col-
lision of heavy particles is a small-scale process, where the
small-scale velocity field plays an important role. The
collision-related relative motions and pair distribution of
heavy particles with the Stokes numbers (Sty=17,/7, i.e.,
the ratio of heavy particle response time to flow Kolmogorov
time) on the order of 1 is mainly determined by the small-
scale eddies.'® " These particle-pair statistics and thus colli-
sion rate of heavy particles are unlikely to be properly simu-
lated in LES. This is one of the main challenges in LES of
particle-laden turbulent flows. Another issue is that the flow
field in LES is more coherent in space and more correlated in
time than either the fully resolved flow field or direct nu-
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merical simulation (DNS) one due to the filtering operation
and overdissipation of the commonly used eddy viscosity
SGS model.”"™ The flow field from the LES with an eddy
viscosity SGS model may not recover the properties espe-
cially needed for collision-rated statistics of heavy particles.

Fede and Simonin'* studied the effects of SGS turbulent
motions on particle-pair statistics of nonsettling, monodis-
persed heavy particles in an isotropic turbulent flow field.
DNS was used to generate a turbulent flow at Taylor micro-
scale Reynolds number Re), =34.1. The filtered-DNS (simply
denoted as FDNS hereafter) flow field was obtained from the
DNS one by filtering the small-scale fluid motions at differ-
ent cutoff scales. One-way coupling was assumed and par-
ticles were treated as perfect-elastic hard spheres. They fo-
cused on the effects of SGS motions on both one- and two-
particle statistics of heavy particles. They concluded that the
effects of SGS motions must be included when the SGS
Stokes number 7,/ 674, is less than 5.0, where 674q), is the
SGS Lagrangian integral time scale seen by heavy particles.
A very interesting result is that the effect of filtering leads to
a reduction in preferential concentration if 7,<<0.567/¢,, but
an increase in the preferential concentration if 7,
>0.5674@)- For the case of 7,<0.507q,, the eddies at the
dissipation scales play an important role in particle cluster-
ing. Filtering reduces the intensity of the dissipation-scale
eddies and thus reduces the level of preferential concentra-
tion. For the case of 567q¢,>7,>0.507q,, the particles
respond to the eddies ranging from the dissipation-scale ed-
dies to the larger-scale ones. By removing the dissipation-
scale eddies, the larger-scale eddies may actually become
more coherent in space and better correlated in time, al-
though the maximum vorticity intensity is reduced. This im-
plies that the actual level of preferential concentration is gov-
erned not only by the vorticity intensity but also by the
vorticity distribution. Fede et al** then developed a one-
point stochastic Lagrangian model to recover the SGS mo-
tions seen by heavy particles. The model predicts a good
match to DNS data for the particle kinetic energy.

The collision-related statistics has not been quantita-
tively compared and assessed simultaneously using DNS,
FDNS, and LES in previous studies. The aim of this paper is
to investigate the effects of the spectral eddy viscosity SGS
model and the SGS fluid motions on particle-pair statistics
such as radial distribution function at contact, radial relative
velocity at contact, and collision rate. By understanding
these effects, we hope to develop some insights into the dy-
namic interaction of heavy particles with SGS flow fields, as
well as a guidance on a better particle SGS model aimed at
improving particle-pair statistics in LES. This paper is orga-
nized as follows. An overview of the governing equations
and simulation methods is given in Sec. II The numerical
results about the effects of SGS motions on collision-related
statistics of heavy particles are presented in Sec. III. Conclu-
sions on LES of turbulent collision of heavy particles can be
found in Sec. IV.
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Il. GOVERNING EQUATIONS
AND SIMULATION METHODS

The equations governing fluid flow and motion of heavy
particles are described in this section, along with our numeri-
cal methods.

A. DNS method

The Navier—Stokes equations for isotropic turbulence are

p 1
-+

1%
[?_L:=u Xw_v(p 5u2>+vV2u +f(x,1), (1)

V-u=0, (2)

where u denotes the velocity, @=V Xu is the vorticity, p is
the pressure, p is the fluid density, and v is the fluid kine-
matical viscosity. The flow is driven and maintained by a
random forcing f(x,#), which is nonzero only at low wave-
numbers in Fourier space [k|<18.2%

The DNS of isotropic turbulence is performed using a
standard pseudospectral method on N° grids covering a peri-
odic box of side L=2. Here, N=256. In Fourier space, Egs.
(1) and (2) can be represented as (k= k),

(a% + vk2>12(k,t) =P(k)F(u X o) +f(k.1), (3)

where @i (k1) is the Fourier coefficient or the fluid velocity in
Fourier space, F' denotes a Fourier transformation, the pro-
jection tensor P={P;,}=05,,,~kk,/k* (j,m=1,2,3) projects
F(u X @) onto the plane normal to k and eliminates the pres-
sure term in Eq. (1) with the aid of the continuity equation
(2), and k,,y is the maximum wavenumber.

The wavenumber components in Fourier space are k;
=n;2m/L), where n;=-N/2,...,-1,0,1,...,N/2-1 for j
=1,2,3. Aliasing errors are removed using the two-thirds
truncation method. The spatial resolution is monitored by the
value of k.7, where 7 is the Kolmogorov length scale. The
value of k.7 is typically larger than 1.1 in the present
simulation. The Fourier coefficients are advanced in time
using a second-order Adams—Bashforth method for the non-
linear term and an exact integration for the linear viscous
term. The time step is chosen to ensure that the Courant—
Friedrichs—Lewy number is less than 0.5 for numerical sta-
bility and 21(:(:ur21(:y.26’27

B. FDNS velocity fields

The FDNS velocity field is obtained from the DNS ve-
locity field by truncating the Fourier coefficients larger than
the cutoff wavenumber kg,

keg

i, = >, dk,)e™, (4)
lk|=ko

where @(x, 1) is the filtered velocity in physical space and kg
is the cutoff wavenumber in FDNS. ky=1 is the lowest wave-
number. FDNS can be regarded as an ideal LES to study the
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effects of SGS eddies on the statistics of particle motions

since FDNS does not contain any eddy viscosity SGS model
14

errors.

C. LES method

The LES of isotropic turbulence is performed on the
coarser grids using the same pseudospectral method and
large-scale forcing scheme as DNS. The governing equation
in LES is given by (|k| <k,, where k, is the maximum wave-
number in LES)

{% +[v+ ve(k|kc)]k2}ﬁ(k,t) =P(k)F(u X @) +f(k.1),

()

where u and ® are the resolved velocity and vorticity in
physical space, respectively. The term v,(k|k.)k*u(k,7) on
the left-hand side models the net effects of SGS motions on
the resolved motions. The spectral eddy viscosity SGS

model*? is used in this paper, given by
E(k,
wll) = w2k 2, ©
with
vt (klk,) = C¢"*[0.441 + 15.2 exp(- 3.03k./k)]. (7)

The spectral viscosity v,(k|k.) depends on the wavenumber
k, the maximum wavenumber k, as well as E(k.), the value
of the energy spectrum function at k.. Here, E(k,) in Eq. (6)
is dynamically evaluated from the LES fluid field. Cx=2.5 is
taken in this paper.

D. Motion of inertial particles

The dispersed phase is composed of N, spherical heavy
particles with a diameter smaller than the Kolmogorov
length scale 7, d,=0.57. In general, there are several differ-
ent forces acting on a heavy particle suspended in a nonuni-
form and unsteady turbulent flow field.”™® When the ratio of
particle density to fluid density is much larger than 1
(p,/ ps>1), the equation of motion for a heavy particle can
be approximated as”

dx (1) B

_c]l)t_ =v,(1), (8)

dvp(t) _ u[xp(t)7t] - vp(t) +Wwy (9)
dr 7, ’

where x,(r) and v,,(¢) are the particle position and velocity at
time #, w is the particle terminal or settling velocity under
gravity in otherwise quiescent fluid, wy=g7,, 7, is the par-
ticle Stokes response time, and g is the gravitational
acceleration. The particle terminal velocity is set to
wo=(-vg,0,0) in this study, where vk is the Kolmogorov
velocity obtained from DNS. The linear Stokes drag force is
assumed due to the low particle Reynolds number, u[x, ()]
is the fluid velocity seen by a heavy particle which is ob-
tained from the DNS, FDNS, and LES flow fields, respec-
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TABLE I. The parameters in DNS and LES.

Method DNS (256%) LES (64%)
Reynolds number 102.05

rms fluid velocity u’ 19.34 18.52
(Effective) dissipation rate 3771.4 3434.8
Minimum length scale 0.0135 0.0238
Minimum time scale 0.0037 0.0055
Minimum velocity scale 3.6272 4.327
Eulerian integral time scale 0.050 0.056
Molecular viscosity 0.0488 0.0488

tively, by a six-point Lagrangian interpolation scheme in
each direction.”” The equation of motion [Eq. (9)] is inte-
grated with a fourth-order Adams—Bashforth method for the
particle velocity and then a fourth-order Adams—Moulton
method for the particle location in Eq. (8). The particles are
assumed to have identical size and density, and each moves
independent of others (i.e., the so-called ghost particle
model). This is appropriate for turbulent geometric
collision.”*" All particle pairs and collision search are con-
ducted using the efficient cell-index method and the concept
of linked lists.'>”"

lll. NUMERICAL RESULTS
A. Statistics of DNS and LES flow fields

Table I lists Eulerian statistics of the DNS and LES flow
fields in this study. The root mean square (rms) of turbulent
fluctuation velocity u’ and the average dissipation rate & are
computed from the three dimensional turbulent energy spec-
trum function shown in Fig. 1,

, 1 2 Kiax
u = \/§<Mib{i>= \/gjko E(k)dk, (10)

40 DNS 256° i
10 — = LES64 E
_____ kriﬂ
10"k E
10"k . E
10° 10' 10°

FIG. 1. The energy spectra of the simulated flows in 256> DNS and 64°
LES.
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kmax
e= f 2vk*E(k)dk. (11)
ko

In LES, the molecular viscosity coefficient v in Eq. (11) is
replaced by the effective viscosity v+uv,(k|k,) to calculate
the effective dissipation rate,

kL‘
€, = J 2[v+v,(klk,)KE(k)dk, (12)
ko

which represents the sum of the molecular dissipation rate of
large-scale modes and the dissipation rate of the SGS eddies.
The dissipation rate in LES (64%) listed in Table I is the
effective one. The actual or molecular dissipation rate of the
large-scale motion is 1626.6.

As the spectral eddy viscosity coefficient v,(k|k,) varies
with the wavenumber, an average SGS viscosity coefficient
can be estimated using the enstrophy spectrum 2k’E(k) as
weight factors,

fﬁ;zue(k/kc)sz(k)dk
f’;gzsz(k)dk

Vsgs = (13)

This average eddy viscosity coefficient in LES, vgygg
=0.0543, is only slightly larger than the molecular viscosity
coefficient used in DNS, v=0.0488. This could be due to the
moderate flow Reynolds number realized in DNS, given that
the same large-scale flow forcing and flow domain size are
applied in LES and DNS. The smallest (Kolmogorov) length,
time, and velocity scales in DNS are

7=Ye)"%, =), vi=(ev)". (14)

In order to obtain the minimum characteristic scales in LES
flow field, the effective viscosity (v+ vggs) and effective dis-
sipation rate g, are used to replace the molecular viscosity v
and molecular dissipation rate &, respectively, in Eq. (14) to
represent the smallest characteristic length, time, and veloc-
ity scales as

(v + Dggs)® |*7 (v+ Uggs) |
Ne = > TK,e = ’

88 88
(15)
V.o =[e v+ Tsgs) 2.

Ideally, e,=¢ if there was no SGS model error in LES.
Figure 1 plots the resulting energy spectra of DNS and LES
flow fields in log-log coordinates. It is shown that the energy
spectrum of LES flow field decays faster than that of DNS
flow field at high wavenumbers. This is due to the overdis-
sipation in the spectral eddy viscosity SGS model. In this
study, the cutoff wavenumber in FDNS is taken as k=21,
corresponding to the LES at the grid resolution of 64°.

B. Preferential concentration of heavy particles

It is well known that, unlike passive tracers, heavy par-
ticles are distributed nonuniformly in a turbulent flow field
due to their interaction with vortical and straining motions of
local flows. Maxey32 developed an asymptotic analysis of the
preferential concentration of particles with weak inertia. If

Phys. Fluids 22, 055106 (2010)

we consider the particle distribution from an Eulerian view-
point and the particle velocity field is then defined as v(x,1),
its divergence field is

ou; du; 1
ki Skt S I s 2), 16
7 ox, %, Tp< i 2w (16)

V.v=
where w=|V Xu| and s,-j=%((9u,»/r9xj+r9uj/(7x,-) are the local
fluid vorticity and strain rate tensor, respectively. Equation
(16) indicates that particle velocity field is compressible even
in an incompressible fluid velocity field and particles accu-
mulate in regions of low vorticity and high strain rate.

Figure 2 shows the preferential concentration of heavy
particles at different particle Stokes numbers in a DNS flow
field. N,=1.2X 10° heavy particles are randomly released
into a statistically stationary flow field. The spatial distribu-
tion of particles evolves with time and particle preferential
concentration develops in the flow field. After about four
times of the Eulerian integral time scale, the accumulation is
balanced by randomly turbulent mixing and the preferential
concentration reaches its quasiequilibrium state. The particle
terminal velocity is wy=(-vg,0,0) for all kinds of particles,
where vy is the Kolmogorov velocity. The background
shows the contour of local flow vorticity at z=7 obtained
from DNS (256, Re,=102.05). The locations of all par-
ticles in a slice with a thickness of 27/256 centered at z
= are projected onto the x-y plane. Three Stokes numbers
are considered: Stg=0.1,1.0,10.0. The degree of nonunifor-
mity depends on the particle Stokes numbers. For the Stokes
number Stx=0.1, the heavy particle response time is much
shorter than the Kolmogorov time scale; therefore, particles
respond quickly to the changes of the flow field and nearly
follow the fluid motion. In this case, large-scale fluid motion
serves to efficiently disperse the particles. However, even at
Stg=0.1, the inertial bias is noticeable and more particles are
found in the regions of low flow vorticity [see the dark re-
gions in Fig. 2(a)]. For Stg=1, particle motion is strongly
affected by small-scale eddies and particles are centrifuged
out of the vortical structures, leading to a strong nonunifor-
mity [see Fig. 2(b)]. As heavy particle response time in-
creases, particles respond to the eddies with larger time
scales relative to the Kolmogorov eddies. The level of accu-
mulation starts to drop when Stx>1. At Stg=10, particles
accumulate into large-scale structures and are mixed by
small eddies. Therefore, particles return back to a more uni-
form distribution [see Fig. 2(c)]. Since the particles have a
fixed terminal velocity of vy in the negative x direction,
patches of particles aligned in the vertical direction are vis-
ible in Figs. 2(b) and 2(c) as a result of the preferential
sweeping.

In general, the particle concentration field contains more
large-scale structures as the Stokes number increases. This is
demonstrated in Fig. 3, which plots the energy spectra of
concentration fluctuations at the Stokes numbers Stx=0.1,
0.5, 1.0, 3.0, 5.0, and 10.0, ranging from small to large iner-
tial particles. The particle concentration C(x,¢) is defined as
the number of particles in a local cell of center x. In the
present calculations, 1283 coarse grids are used to smooth the
particle concentration field, although 256° fine grids are used
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() St = 10.0

FIG. 2. (Color) The preferential concentration of particles with different Stokes numbers in a slice centered at z= with a thickness of 27/256. The
background is the vorticity contour at z= of DNS flow field, which is normalized by the average vorticity. The arrow below the legend represents the
direction of gravity and the particle terminal velocity is set to wy=(-vg,0,0), where vy is the Kolmogorov velocity. For a small Stokes number in (a), the
particles almost follow the trajectories of fluid particles and uniformly distribute in the flow field. For a large Stokes number in (c), the particles are too heavy
to respond to the eddies and also uniformly distribute in the flow field. For an intermediate Stokes number in (b), the preferential concentration is most

obvious.

for the flow field in DNS. The difference between the particle
concentration C(x,?) at time ¢ and the initial concentration
C(x,0) is defined as the concentration fluctuations, which
largely remove the statistical noises in practical computa-
tions. Since the probability distribution function (PDF) of the
initial concentration C(x,0) is set to be a Poisson distribu-
tion, the difference C(x,t)—C(x,0) measures the fluctuations
of concentration C(x,?) relative to the uniform concentration
C(x,0). When the particle concentration field becomes sta-
tistically stationary, the concentration fluctuations are trans-

formed into the Fourier space and the squared magnitudes of
the modes in each wavenumber shell within the two radii
between k—0.5 and k+0.5 are summed to yield the concen-
tration energy spectrum E,.(k), where k=1,2,3,.... Ten time
frames with a time interval equal to 0.27 are used to obtain
an average energy spectrum for each Stokes number, where
Ty, is the Eulerian integral time. The area under each curve is
equal to (C?—(C*(0))=[TE.(k)dk, where (C*(0)) denotes
the concentration variance of heavy particles at initial time.
It measures the degree of nonuniformity of the particle con-
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0.015

(S}

St,=0.1

FIG. 3. (Color online) Wavenumber spectra of particle
concentration fields of heavy particles with different
Stokes numbers. (a) Logarithmic scales; (b) linear
scales.
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centration for a given Stokes number. This area increases
with St;, reaches a maximum at St,=O(1), and then de-
creases with St;. It is observed from Fig. 3(a) that as the
Stokes numbers increase, the peaks of concentration spectra
move from larger wavenumbers to smaller ones with more
concentration energy contained at small wavenumbers. The
peak wavenumber gives an indication of the length scale at
which these eddies contribute most significantly to the con-
centration field. Figure 3(b) shows that the small scales con-
tain more concentration energy than the large ones for Sty
=3, while the small scales contain less concentration energy
than the large ones for St > 3. Therefore, Fig. 3 implies that
the small-scale eddies are important to the particle concen-
tration for Sty =3, and simply neglecting small-scale eddies
in the conventional LES may lead to incorrect predictions. A
particle SGS model to account for the effects of fluid mo-
tions at small scales on particle motions is needed in LES.
In order to study the effects of average particle number
concentration on the energy spectrum of particle concentra-
tion field, we doubled the number of particles to N,=2.4
X 10% while keeping the same mesh resolution, i.e., 128
when defining the local number concentration. The energy
spectra of nondimensional particle concentration fields,
E,(k), are plotted in Fig. 4, where the nondimensional par-
ticle concentration field is defined as C(x,7)/(C) and (C)
=N,/ (27)3 is the volume-averaged particle concentration. In
Fig. 4, the thin solid lines with symbols are the results ob-
tained with N,=1.2X 10° and the thick dashed lines are the

0.04F
0.03Hj

(m°0.02 I

0.01f

FIG. 4. (Color online) Wavenumber spectra of nondimensional particle con-
centration. The thin solid lines with symbols are the results obtained with
N,=12X 10° and the thick dashed lines are the results with N,=2.4X 10°.
The wavenumber spectra for the two particle numbers almost collapse for
each Stokes number considered.

results obtained with N,=2.4X 10%. We observe that the
wavenumber spectra of the nondimensional particle concen-
tration are not sensitive to N, for all Stokes numbers consid-
ered, although the curves obtained with the larger N, are
smoother as expected.

C. Radial distribution function

The nonuniformity of particle concentration shown in
Fig. 2 has an important consequence on turbulent collision
rates, which can be quantified in terms of the radial distribu-
tion function.'®** For monodispersed particle system in a
statistically isotropic flow field, the radial distribution func-
tion g(r) is defined as the ratio of the number density of
particle pairs with interparticle distance from r to r+dr,
Nyir(r)/ Vy, to the average number density of particle pairs in
the flow domain,

_ N, air(r) %Np(Np_ 1)
g(r) = pvs o (17)

where Vsziw[(r+dr)3—r3] is the volume of the spherical
shell, Ny (r) is the number of particles in the shell, and
N,(N,—1)/2 is the total possible particle pairs for N, mono-
dispersed particles.18

For a uniformly distributed system, the radial distribu-
tion function approaches 1. Figure 5 shows the transient
variation of the radial distribution function of particles with
Stg=1.0 in the 256> DNS flow field. At beginning, the par-
ticles are uniformly distributed so that g(r/R)=1, where R is

t=0.0

t=0.025
t=0.05
1=0.1
t=0.2
t=0.25
T
7 9

-1 . P |
1074 3 5

r/R

FIG. 5. Variation in the radial distribution function g(r/R) with the separa-
tion distance at different times in flow field of 256 DNS, where the particle
Stokes number Stg=1.0. g(r/R) exhibits a power-law scaling with r.

Downloaded 20 May 2010 to 159.226.230.152. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



055106-7 Large-eddy simulation of turbulent collision

FIG. 6. Variation in the radial distribution function at contact g(R) with time
in flow field of 256° DNS and the particle Stokes number Stg=1.0. The flow
reaches a statistically steady state with fluctuations after about four times of
the Eulerian integral time scale, 7;=0.05. The fluctuation is related to the
finite numbers of particles, which is shown in Fig. 7.

the geometric collision radius, R=d,, for monodispersed par-
ticles, and d, is the particle diameter. As time increases, par-
ticle concentration deviates from the initially uniform distri-
bution and g(r/R) increases monotonically with time.
Finally, the concentration field approaches a statistically sta-
tionary state after about four times of the Eulerian integral
time scale Tg. At the quasiequilibrium, we found that g(r/R)
follows a power-law scaling with /R, consistent with previ-
ous results.”” It is also observed in Fig. 5 that g(r/R) still
follows the power-law scaling even in the case of sedimen-
tation.

For geometric collision rate, the radial distribution func-
tion at contact, i.e., g(r/R=1), is of interest. Figure 6
shows the variation in g(r/R=1) with time. At long times,
g(r/R) fluctuates with time due to the finite number of par-
ticles and turbulent mixing. The magnitude of fluctuation
decreases as the particle number increases. Figure 7 shows
that the magnitude of fluctuation for 10° particles is smaller
than that of 4 X 103 particles in the 64 LES flow field where
the particle Stokes number Stg=1.3. Some of the fluctuations

10—

sl b

- 6 Y o N B 4x10° particles t
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FIG. 7. The effect of particle numbers on the magnitude of fluctuation of
g(R) in the flow of 64° LES, Stg=1.3. The fluctuation magnitude of g(R) for
10° particles is much smaller than that for 4 X 10°. The Eulerian integral
time scale of LES flow field 7;=0.056.
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result from the random large-scale forcing. The time aver-
aged value of g(R) does not depend on the used particle
number. The results reported in the following are based on
4% 10° particles and are averaged over time after the quasi-
equilibrium state is obtained.

D. Effects of filter width
on the collision-related statistics

The collision rate of monodispersed particles is formu-
lated as'®

2
(V) = 2R, (R e (R)) . (18)

where ny=N,/(2m)? is the average particle number density,
N, is the total particle number in the flow domain, {|w,(R)|)
is the averaged radial relative velocity of collision pairs at

contact,
<|w,(R)|>=<‘@ > (19)

where r is the vector connecting the centers of the collision
pair, r=|r|, and W(R)=v,;—V,, is the relative velocity be-
tween the two particles. The angle brackets denote an en-
semble average over all collision pairs.

In order to study the effects of different filter widths on

particle collision-related statistics, we calculate (g(R)),

{w,(R)]), and {N.,) of particles with different Stokes numbers
Stg=0.5, 1, and 5 in different FDNS flow fields with the
cutoff wavenumbers k=64, k=42, and k=21, respec-
tively. The statistics of the energy, enstrophy, and energy
dissipation rate in 256> DNS, FDNS, and 64° LES flow fields
are given in Table II. As the energy spectrum of FDNS for
k=k is the same as that of the DNS, typically very little
turbulent kinetic energy is contained within high wavenum-
bers (k>k.). The percentage of energy filtered out in the
FDNS is negligible except that the cutoff wavenumber is
sufficiently low. For the largest filter width at k=21 in the
present study, only 3% of the kinetic energy is filtered out, so
the rms turbulent velocity in the FDNS flow field differs very
little from that of the DNS flow field. However, as enstrophy
is defined as [ ’,ﬁngsz(k)dk, a large portion of enstrophy is
distributed at high wavenumbers, thus a large percentage of
enstrophy is filtered out in FDNS. For the case of k=21,
about 45.7% of enstrophy is filtered out. With the same spa-
tial resolution in the FDNS (k=21) and 64° LES, the total
turbulent energy of LES is lower than that of FDNS, and the
enstrophy is even lower due to the overdissipation of the
eddy viscosity SGS model. The relative errors in (g(R)),
{w,(R)]), and (N,), using DNS results as a benchmark, are
shown in Fig. 8. For a given Stokes number, the relative
errors of these statistics increase with increasing filter width,
and the relative errors for (g(R)), {|w,(R)|), and (N.) are not
the same. For example, when k=21 and Stx=0.5, the rela-
tive errors for (g(R)), {|w,(R)|), and (N.) are —0.37, —0.29,
and —0.57, respectively. For a given filter width, the filter
operation has different effects on the motion of particles with
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TABLE II. Kinetic energy, enstrophy in DNS (256%), FDNS, and LES (64°).

Phys. Fluids 22, 055106 (2010)

Method DNS (256°) k=64 k=42 k=21 LES (64%)
ke 1.15 0.864 0.567 0.285

Energy 561.3 561.0 559.5 544.2 514.5
Enstrophy 77 290.6 74 409.8 66 833.7 41 994.6 33330.6
Actual dissipation rate 3771.4 3631 3261 2049 1626.6
Energy filtered out (%) 0.05 0.32 3.04 8.3
Enstrophy filtered out (%) 3.72 135 45.7 56.9

different Stokes numbers. The reason is that particles with
different inertia are related to different length scales of
eddies.™ 1t implies that filtering operation can result in a
higher or lower prediction of (g(R)) for different Stokes

numbers and always lower prediction of (|w,(R)|) and (N.). It
is important to note that, for small Stokes numbers, the rela-
tive error on the relative velocity is much larger than the
relative amount of turbulent kinetic energy removed, since
the main contribution to the particle relative motion comes
from small-scale fluid motion. Our simulation results about
the effects of filtering on particle collision rate are consistent
with those of Fede and Simonin.'* We have included the data
in Fig. 28 of Fede and Simonin'* in Fig. 8(c) for comparison.
Some of the quantitative difference between their data and
ours could be due to the fact that Fede and Simonin'* as-
sumed zero settling and the Stokes numbers are not the same.
The effects of inertia on particle-pair statistics will be dis-
cussed in detail later.

E. Effects of eddy viscosity SGS model
on collision-related statistics

A spectral eddy viscosity SGS model [see Egs. (6) and
(7)] is used to close the filtered Navier—Stokes equations in
LES. From Fig. 1, one can see that the spectral eddy viscos-
ity SGS model overdissipates the turbulent kinetic energy,
especially near the cutoff wavenumbers, making the vorticity
field in LES more coherent than that in FDNS with the same
spatial resolution. As particle turbulent collision rate is re-
lated to the particle preferential concentration and the aver-
aged radial relative velocity, we will first study the influences
of SGS motions and the spectral eddy viscosity SGS model
on the two aforementioned quantities and then the collision
rates using both a priori and a posteriori tests, i.e., we will
compare the results from the DNS and the ones from the
FDNS and the LES flow fields, respectively. This study will
be carried out over a wide range of the Stokes numbers.

rErr of <g(R)>

FIG. 8. Effects of filter width on the collision-related
statistics of different Stokes numbers, where rErr de-
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notes the relative error of the result from FDNS to that
from DNS, rErr=(appns— ¥pns)/ @pns, and a repre-
sents a statistical quantity and the open symbols in (c)
are our numerical results and the solid symbols are ob-
tained from Fig. 28 of Fede and Simonin (Ref. 14). (a)
The radial distribution function at contact (g(R)); (b)
the radial relative velocity at contact {|w,(R)|); (c) the

particle collision rate (N.).
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FIG. 9. Effects of filtering operation and spectral eddy
viscosity model on (g(R)) of different Stokes numbers
in LES (64°), FDNS (k=21), and DNS (256°) flow
fields. (a) (g(R)) variation with St; (b) relative error of
(g(R)) from LES and FDNS to the DNS results.

1. Radial distribution function

A nonuniform distribution of particles (the accumulation
effect) at the Stokes numbers near one is mainly induced by
small-scale eddies which are directly related to the cutoff
wavenumber in FDNS and related to both the cutoff wave-
number and the spectral eddy viscosity SGS model in LES.
For k=21, the space resolution in 256> DNS is four times of
the ones in FDNS and LES (Ax; gs=Axppns=4Axpns). Fig-
ure 9(a) shows the dependence of (g(R)) from the DNS,
FDNS, and LES on the Stokes numbers, and Fig. 9(b) plots
the relative errors (rErr) of the FDNS and LES to the DNS
results. Figure 9 shows that there are three regimes for
(g(R)). In the limit cases of both Sty—0 and Stx— o, par-
ticles tend to be uniformly distributed and (g(R))— 1 since
particles with a very small Stokes number are distributed like
fluid elements and particles with a very large Stokes number
are not responsive to flow structures. For the intermediate
Stokes numbers, particles interact with a range of fluid ed-
dies and tend to accumulate in the regions of low vorticities,
leading to the large values of (g(R)) with a peak value
around Stg=1 in the DNS. This trend is consistent with the
previous observations.'®*?

Our results from Figs. 8(a) and 9 are qualitatively similar
to Fig. 22 of Fede and Simonin,14 where a different measure
of preferential concentration was used. For very small Stokes
numbers, Stx<1, the effect of filtering is to decrease the
particle accumulation as small-scale eddies most relevant to
accumulation have been removed. A very interesting obser-
vation from Fig. 9 is that the magnitude of the relative error
in (g(R)) for the FDNS flow has its maximum near Sty
=0.5, with a maximum reduction of as much as 40%. For
Stx>0.5, the magnitude of the relative error decreases with
increasing the Stokes number, indicating that the SGS eddies
make less and less contribution to the preferential concentra-
tion. For Sty>1, the FDNS yields a slightly higher (g(R))
than the DNS result, indicating that the accumulation of
these particles is more controlled by resolved eddies and the
SGS eddies may act to randomize the particle distribution.
Therefore, filtering out the random small eddies increases
(g(R)). For Stx> 10, the particles are not responsive to the
SGS eddies so the FDNS yields accurate results.

Compared with the FDNS at the same spatial resolution,
the LES predicts an even lower value of (g(R)) for small
Stokes numbers St <<1. This is due to the overdissipation of
the SGS model which tends to damp the eddies near the

SGS, making them contribute less to preferential concentra-
tion. Interestingly, for the intermediate Stokes numbers 1
< Stx <10, a higher (g(R)) is realized when compared to the
FDNS. This results from the fact that the resolved large-scale
eddies are more coherent in space and time, particles have a
longer interaction time with low vorticity regions, leading to
a somewhat stronger preferential concentration. For the par-
ticles with very large Stokes numbers, Sty> 10, the results
from the DNS, FDNS, and LES are similar.

The peak values of (g(R)) in the FDNS and LES occur at
a slightly larger Stokes numbers than that in the DNS. This is
expected as the effective time scales for strongest vortical
structures in the FDNS and LES are larger than 7.

2. The radial relative velocity

For particles with large Stokes numbers, the velocities of
the collision pair are uncorrelated and the relative velocity at
contact is mainly determined by the energy-contained
eddies.'® The energy-contained eddies are supposed to be at
large scales and well resolved by LES. However, in the limit
when particle inertia goes to zero, the relative velocity of
particles is essentially determined by the local gradient of
fluid velocity field provided that the collision radius R is
small. In this limit, Saffman and Turner” provided a predic-
tion for (|w,(R)|) in terms of the turbulent kinetic energy
dissipation rate or the enstrophy of the flow field. As shown
in Table II, although the relative percentage of turbulent ki-
netic energy that is filtered out in LES is negligible, a sig-
nificant amount of enstrophy has been filtered out. Thus, we
expect that a large error could arise in the LES prediction of
the relative velocities for particles at very small Stokes
numbers.

Figure 10(a) shows the dependence of (|w,(R)|) on the
Stokes number, and Fig. 10(b) plots the relative errors of the
FDNS and LES to the DNS results. It can be seen that
(lw.(R)|) is small when the particle Stokes number is small
(Stg<<1). The reason for this behavior is that, in this limit,
the two particles are strongly correlated as they are trans-
ported by large eddies, and only small-scale eddies are effec-
tive in generating particle relative motion. It is also observed
that the quantity (|w,(R)|) increases rapidly with the particle
Stokes number for Sty <<20. As the particle Stokes number
increases, the large-scale turbulent fluctuations become ef-
fective in generating relative motion as different eddies en-
countered by the particles during their passage to a geometric

Downloaded 20 May 2010 to 159.226.230.152. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids 22, 055106 (2010)

FIG. 10. (Color online) Effects of filtering operation
and spectral eddy viscosity model on {|w,(R)|) for par-
ticles at different Stokes numbers in LES (64°), FDNS
(kg=21), and DNS (256%) flow fields. 6=1.87,/T,
C,,=1.5 are used to fit the numerical results in Eq. (21).
ST in the legends denotes the ST theoretical prediction
at zero Stokes number. (a) {|w,(R)|) variation with St;

(b) relative error in {Jw,(R)|) of the LES and FDNS
results using the DNS results as the benchmark.

055106-10  Jin, He, and Wang
101 L S AL S AL AL T T T T
DNS
|—=—— FDNS -6
|—e—— LES A
————— Eq.(20) =
A A ST.DNS = 0.2
& Q0 b stEDNs ] 2
‘§ e ST.LES | /M S
“ B o= d .04
107" Lu L sl L -0.6
102 10" 10° 10" 10°
(a) Sty (b)

contact can all contribute to the relative motion (i.e., the
memory effect). For Sty > 20, the relative velocity begins to
decrease slowly with the Stokes number, as there are no
more large-scale fluctuations in the flow to disturb the par-
ticle motion."® One can observe that the relative velocity in
the FDNS is smaller than that in the DNS, but larger than
that in the LES. Therefore, the relative error in the LES is
larger than that in the FDNS for particles with small and
intermediate Stokes numbers. As particle inertia increases,
the radial relative velocity is affected more and more by the
large-scale turbulence. The relative errors for FDNS and LES
decrease with increasing particle Stokes number.

We shall now analyze the various behaviors of the radial
relative velocity with the existing theories. The radial rela-
tive velocity for finite Stokes number particles is governed
by the interaction of particles with both large-scale energetic
eddies and small-scale dissipation eddies. By assuming that
both PDFs of w, and fluid velocity gradient du/dx are Gauss-
ian, Wang er al.'® developed a model for (lw,(R)]) which
combines the turbulent acceleration mechanism of the large-
scale turbulent motions and shear mechanism of the local
small-scale dissipative motions as

<|W,(R)|> = \/%<W;2’(R)> = \/g\kwishear) + <W;2",accel>'

(20)
The acceleration mechanism™® was expressed as
WY cet) S T2 B +26)"?
w? T Vy—1 1+6
1 1
X - , 21
{(Ha)z (1+70)2] .

where 0=2.57,/Ty, y=0.183u'?/vg, Ty is the Eulerian inte-
gral time scale, v is the Kolmogorov velocity, and the factor
C,, is used to fit the numerical results. Equation (21) shows
that the effect of acceleration mechanism on radial relative
velocity depends on particle relative inertia 6, turbulent in-
tensity u'2, and the turbulent Reynolds number Re, since
u’z/v%<=Re>\/ V/E. For particles with very small Stokes num-
bers, the relative velocity is related to the local shear rate of
the flow™

2 2
<Wr,shear> _ i(g) , (22)

v?( 15

where R is the collision radius and was set to 0.5 in the
simulation. Thus, the shear contribution scales with the
small-scale flow velocity vg. The predictions of (|w,|) using
Eq. (20) are compared with the DNS results in Fig. 10(a). It
is shown that Eq. (20) can provide a reasonable prediction of
the simulated {|w,|) data.

It is noted that Eq. (20) reduces to the Saffman and Turn-
er’s (ST) theory for particle with zero inertia or 6— 0, as

=y 2r 2, (3)

then {|w,(R)|) is directly proportional to the square root of
the dissipation rate in DNS, FDNS, and LES flow fields
when R and v are prescribed. The ST predictions of {|w,(R)|)
are 0.387, 0.285, and 0.254 for DNS, FDNS, and LES flow
fields, respectively, and these are shown in Fig. 10(a) as well.
The molecular viscosity coefficient used for the LES case is
the same as the DNS case, ¥=0.0488. Indeed, for particles
with very small Stokes numbers, the data agree with the ST
predictions. This is true even for FDNS and LES when the
actual dissipation rates (see Table IT) and molecular viscosity
are used in the ST theory. The inset in Fig. 10(a) is an en-
largement for the small Sty region using linear scales, where
additional data corresponding to fluid particles are added.
The average radial relative velocity for fluid particles was
calculated from the Eulerian velocity field using

(wR)|)= %[<|M(x,y»2’l) —u(x+R,y,z,0)|)
+{v(x,y,z,0) —v(x,y + R,z,1)|)
+{w(x,y,2,8) = w(x,y,z + R,1)|)], (24)

where u, v, and w are the velocity along the x, y, and z axes,
respectively. The numerical results of {|w,(R)|) between fluid
particles are 0.37, 0.281, and 0.238 for DNS, FDNS, and
LES flow fields, respectively. Due to the loss of large amount
of enstrophy in FDNS and LES flow fields, FDNS and LES
both underpredict the relative velocities when compared to
DNS for Stg=0. Furthermore, the relative reductions in
FDNS and LES in this limit are different due to different
levels of loss of enstrophy. The very minor discrepancies
between our numerical results and the ST theory might come
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FIG. 11. (Color online) Effects of filtering operation

and spectral eddy viscosity model on (N,) for particles
with different Stokes numbers in LES (64°), FDNS

(kss=21), and DNS (256°) flow fields. ST in the legends
denotes the Saffman and Turner’s theory for small

Stokes number particles. (a) (N,) variation with St;; (b)
relative error of (N,) from the LES and FDNS to the

DNS results.
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from the finite particle diameter of 0.57 assumed in the
simulations since the ST theory assumes R << 7.

At the high Stokes number limit, one can observe in Fig.
10 that (|w,(R)|) from DNS, FDNS, and LES are in good
agreement and the relative errors of FDNS and LES ap-
proach zero. Since the velocities of the two colliding par-
ticles in this limit are completely uncorrelated and can be
characterized by a Maxwellian distribution, the relative ve-
locity is also Maxwellian. According to the analysis based on
the kinetic theory for the very high Stokes number limit
(St,— ), {|w,(R)|) can be expressed as> >’

2 1—
(Iw Ry = =\ 3V (25)

where vi is the variance of particle velocity. Since (wR)|)
is now related to the one-point statistics vf,, which is almost
unaffected by the small-scale fluid motion for particles with
high Stokes numbers.'**® Thus, the agreement of FDNS and
LES with DNS at the high Stokes number limit shown in
Fig. 10 are qualitatively consistent with this theoretical argu-
ment. A quantitative comparison in this limit will be pro-
vided in Sec. Il E 3 when results on the collision rate are
discussed.

3. Particle collision rate

Figure 11 shows the dynamically detected collision rate
of particles from the DNS, FDNS, and LES. Again, the ST
predictions are plotted for the small inertia limit using the
dissipation rates in DNS, FDNS, and LES, respectively. The
general trends from the three flow fields shown in Fig. 11(a)
are similar. The collision rate increases very rapidly for small
Stokes numbers, reaches a peak at Stx=10, and then drops
slowly with an increase in Stg. This behavior is consistent
with the results for the collision kernel found by Sundaram
and Collins™ and Zhou er al.*® The peak reflects both the
effects of particle interaction with small and large scales of
fluid motions. The interaction of heavy particle with small-
scale motions produces a nonuniform particle distribution
which enhances the collision rate through a large value of the
radial distribution function at contact {(g(R)). On the other
hand, as Stokes number increases, the turbulent transport ef-
fect which produces a large value of relative velocity,
(lw,(R)], will dominate the collision rates.'® For small
Stokes numbers, filtering causes a lower (g(R)) and
(lw,(R)]), as shown in Figs. 9 and 10, and thus a lower par-

ticle collision rate according to Eq. (18). The maximum rela-
tive errors occur at Sty=0.5 and are larger than 60%. For
intermediate Stokes numbers, 1 < Sty <10, however, filtering
causes an overestimation of (g(R)) but an underestimation of
(Iw.(R)]). This is a fortunate combination and leads to a
rather accurate prediction of the overall collision rate. In fact,
for Sty>3, both FDNS and LES yield very reasonable re-
sults for collision rate, and the difference between FDNS and
LES is not noticeable. The nonmonotonic variation of the

relative errors in (NC) for intermediate Stokes numbers
shown in Fig. 11(b) is a combination of the effects of (g(R))
and (Jw,(R)]).

In the two limiting cases of very small and very high
Stokes numbers, particles uniformly distribute in the flow

field, (g(R))=1.0, the collision rate (N.) depends only on
(lw,(R)]y. Based on Egs. (18) and (23), the average collision
rate for fluid particles (the zero inertia limit) is

7\ 8_77 3"_5\/5
(N =1/ 15R2 o (26)

where the average number density used in the simulations
was ny=400 000/(27)3~1613. Figure 11 shows that both
FDNS and LES underpredict the collision rates due to the
losses of dissipation rate in FDNS and LES flow fields, as
implied by Eq. (26).

Based on Egs. (18) and (25), the average collision rate
for particles with very high Stokes numbers (St,— ) is

(N = 2\ iR L. 27)

The quantitative comparison between the numerical collision
rates and the theoretical prediction using Eq. (27) for par-
ticles with high Stokes numbers is shown in Fig. 12, where

the collision rate is normalized by IVC=<NC)/ (\v_ﬁ/ 3R2n(2)/ 2),
vf, is obtained from the simulated particle velocities in DNS,
FDNS, and LES flow fields, respectively. The theoretical

value of ]VC for high Stokes number limit is NC=4V"7T=7.09
based on Eq. (27). From Fig. 12, we observe that there is a
good agreement in the collision rates obtained from DNS,
FDNS, and LES. However, the theoretical value at the high
Stokes number limit (Stg— ) is still significantly above the
values seen in the simulations. We note that Stx=80 for the
DNS flow case is equivalent to 7,/Tp=5.7, where Ty is the
Eulerian integral time. Therefore, the theoretical limit would
require a much larger 7, than those shown in Fig. 12. The
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FIG. 12. The comparison between the normalized numerical collision rates
with the kinetic theory of Abrahamson (Ref. 37) for particles with high
Stokes numbers.

difficulty to reproduce the kinetic high Stokes number limit
in DNS was noted in previous studies (for example, see Fig.
4 in Ref. 33 and Fig. 6 in Ref. 40).

IV. CONCLUSIONS

The turbulent collision of heavy particles is a small-scale
process, where the small-scale velocity field plays an impor-
tant role. This represents a challenge to LES of such a pro-
cess. In LES, the large-scale velocity is explicitly obtained
by solving the filtered Navier—Stokes equations which are
closed with an eddy viscosity SGS model such as Eq. (6) to
account for the effects of the SGS velocity on the large-scale
one, while the SGS velocity itself cannot be obtained explic-
itly. The particle-pair and collision-related statistics of heavy
particles are significantly affected by the SGS velocity fields.
We have demonstrated here that the errors in LES of turbu-
lent collision can be attributed to two sources: the absence of
SGS velocity due to filtering and the error from the eddy
viscosity SGS model. We have attempted to clearly quantify
the errors from these two sources using both a priori and a
posteriori tests.

We carefully examine the relative errors on the radial
distribution functions at contact and the radial relative ve-
locities at contact caused by filtering and the SGS model.
The relative errors of collision-related statistics increase
when the filter width increases, and for particles with small
Stokes numbers, the relative errors are much larger than the
relative amount of turbulent kinetic energy filtered out. For a
given filter width, k=21 or nk=0.284, these relative errors
are found to be quite significant for a wide range of particle
Stokes numbers, as a result of the interactions of particles
with small-scale fluid motions. The errors exhibit nonmono-
tonic dependencies on the particle Stokes numbers. For a
range of intermediate Stokes numbers, such as 1 <Stx <10,
the radial distribution functions at contact in the FDNS and
LES can be larger than that in the DNS. This nonmonotonic
variations have a fortunate consequence: the collision rate
can be well predicted by the FDNS and LES when Stx>3
since the overestimation of (g(R)) partly cancels the under-
estimation of (jw,(R)|). For Sty <1, we find that both FDNS

Phys. Fluids 22, 055106 (2010)

and LES with the spectral eddy viscosity SGS model tend to
underpredict the radial distribution function at contact and
radial relative velocity at contact. As a result, the error on the
turbulent collision rate can become quite larger. For example,
at Stg=0.5, the relative error on the collision rate can be as
large as 60% in LES.

By examining the spectral content of the particle concen-
tration field in DNS, we have demonstrated that the domi-
nant scales governing the preferential concentration change
with the Stokes number. Those observations further clarify
the dynamics of heavy particles relevant to the SGS motions
in LES. Our analysis suggests that, for Sty<<3, a particle
SGS model must include the effects of the SGS motions on
the turbulent collision of heavy particles.
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