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The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under

conditions relevant to a regenerative cooling system for scramjet applications.A test facility developed for thepresent

study canhandle kerosene in a temperature range of 300–1000K, apressure range of 2.6–5MPa, andamassflowrate

range of 10–100 g=s. In addition, the test section was uniquely designed such that both the wall temperature and the

bulk fuel temperature were measured at the same location along the flowpath. The measured temperature

distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene

surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were

required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer

characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found

as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region

yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the

high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed;

hence, the associated correlation showed a more significant Reynolds number dependency.

I. Introduction

T HERMALmanagement is a key element for successful scramjet
applications. Regenerative fuel cooling has been considered

one of the most effective and practical methods for hydrocarbon-
fueled scramjets [1–3]. In a regenerative cooling system, before
injection into combustor, the fuel flows through the cooling channels
along the combustor wall, carrying away heat from the wall via heat
convection and endothermic chemical reactions (thermal cracking)
[4,5]. A challenge for regenerative cooling systems is that the amount
of the fuel used as coolant must match that used for the combustion.
Hence, with a limited range of fuel mass flow rates, the enhancement
of cooling efficiency plays an important role. A fundamental
understanding of heat transfer characteristics of fuel flow at various
conditions can provide insight into the design and optimization of a
regenerative cooling system.

The typical pressure in the cooling channel for scramjet
applications is approximately 3–7 MPa, higher than the critical
pressure (Pc � 2 MPa) for most hydrocarbon fuels. At the same
time, as fuel absorbs heat from the wall, its temperature rises and
may exceed the critical temperature (Tc � 600 K), leading to super-
critical fuel. The thermophysical properties of fuel at supercritical
states are significantly different from those at compressed liquid

states and present some unique features. It is known [6,7] that
supercritical fuel exhibits a liquidlike density and a gaslike diffu-
sivity. In addition, the variations of many of the fuel thermodynamic
and transport properties, such as density, specific heats, viscosity, and
thermal conductivity, with temperature are complex, depending on
the thermophysical conditions [8,9]. Taking China no. 3 kerosene at
supercritical pressure as an example, its viscosity is decreased by
more than 2 orders of magnitude when the temperature increases
from300 to 800K and the change in its specific heat shows a peak at a
temperature near the critical point. As such, the empirical formula for
the convective heat transfer of liquid and gas, such as the Sieder–Tate
correlation [10], will not be valid. It is therefore imperative to study
the heat transfer characteristics of hydrocarbon fuels under
supercritical conditions relevant to those for scramjet applications.

Among the computational studies on supercritical heat transfer are
a computational fluid dynamics analysis using hydrogen [11] and a
numerical modeling using water [12]. Most of the previous studies
investigating the heat transfer of hydrocarbons were pertinent to
rocket cooling applications [13–17], which have quite different flow
conditions from scramjet applications. Specifically, for a rocket
regenerative cooling system, the average wall heat flux is typically
� 500 W=cm2 due to the small cross-sectional area near the throat
of the rocket nozzle, which is approximately 1 order of magnitude
larger than that for a Mach 6 scramjet application [18]. The working
fuel pressure for a rocket application (� 20 MPa) is also con-
siderably higher than that for a scramjet application. Although a
rocket application has much higher wall heat flux than a scramjet
application, the coolant temperature rise in a rocket cooling system is
significantly smaller because of a relatively larger amount of coolant
(fuel) and a smaller cooling surface. However, a scramjet cooling
system has limited amount of coolant and a much larger cooling
surface. Thus, in many studies for rocket applications [13–17], the
fuel temperature at the exit of the regenerative cooling system is
lower than the fuel critical temperature and the fuel is still in a
compressed liquid state, leading to relatively simple heat transfer
relations. On the other hand, in a scramjet application, the tem-
perature variation of the hydrocarbon fuel may be from room
temperature to its critical temperature and even to a temperature at
which significant thermal cracking occurs. Because of the changes
in the physical state of the fuel, from a compressed liquid to a
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supercritical state, as well as the possibility of fuel thermal cracking,
the associated heat transfer characteristics can vary considerably.

In this paper, the heat transfer characteristics of China no. 3
kerosene at compressed liquid and supercritical states were inves-
tigated experimentally and analytically. Experimentally, a two-stage
fuel heating systemwas used to achieve awide range of fuel preheats,
test section temperatures, pressures, and Reynolds numbers for a
systematic and parametric investigation. Unlike most of the previous
studies, a unique feature of the present work is that within the test
section both the wall and fuel temperatures were simultaneously
measured at the same location along the fuel flowpath. With the
measured temperature profiles, the wall heat flux distribution was
deduced analytically. Such an experimental and analytical study over
extensive variations in the range of thermodynamic parameters is
expected to provide further insight into the kerosene heat transfer
characteristics.

In the next section, the test facility and experimental procedure
will be introduced. Then, the details of the heat transfer analysis will
be discussed, followed by the presentation of experimental results
and the associated discussion.

II. Experimental Specifications

A. Experimental Facility

A two-stage heating system, as shown in Fig. 1, was used to obtain
the desired flow conditions and, at the same time, to prevent
significant carbon formation as a result of the fuel thermal cracking.
The first-stage, storage-type heater, which had a volume of approxi-
mately 3 liter and a capability of heating 2 kg of kerosene to a
temperature of 500 K within 1 h, prepared the test fuel to a desired
preheat temperature. When the test fuel reached a steady state, it
flowed through the second-stage heater, which was heated with
heating tapes that had a maximum power of 12 kW. With proper
asbestos insulation, the second-stage heater can easily heat kerosene
up to 1000K. A part of this second-stage heater also serves as the test
section for investigating the heat transfer characteristics of different
flow conditions. The test sectionwas composed of a 21-m-long T304
stainless steel tube with an inner diameter of 12 mm and a wall
thickness of 2 mm. There were transition sections at the inlet and
outlet of the test section to ensure a fully developed pipe flow.

The tube pressures at the inlet and outlet of the test section were
measured with pressure transducers. There were 16 type-K thermo-
couples spot-welded on the outer wall surface of the tube for the
measurement of the wall temperature along the test section. At
approximately the same locations with respect to the 16 wall
thermocouples, 16 type-K sheath thermocouples were mounted
through the tube wall and positioned at approximately the tube

centerline for the measurement of the bulk fuel temperatures. The
insets of Fig. 1 illustrate the thermocouple arrangement and
assembly. The thermocouples for the bulk fuel temperature mea-
surement had a sheath diameter of 0.5 mm and a response time of
approximately 0.1 s, which is adequate for the current study. To
prevent any heat conduction from the tube wall to the thermocouple
sheath and to facilitate themounting process, each fuel thermocouple
was covered with a steel tube filled with zirconium dioxide. This
thermocouple assembly was then welded on the tube outer wall.
The uncertainty associated with the measurements of the wall
temperatures and the fuel temperatures was estimated to be less than
�3 K, whereas that of the pressure measurements was less than 1%.
All the experimental datawere recorded via a data acquisition system
for analysis.

A sonic nozzle flow meter was installed downstream of the test
section to monitor the fuel mass flow rate. Using the calibration
method proposed in our previous studies [19,20], the fuel mass flow
rate can be determined for given fuel pressure and fuel temperature
upstream of the nozzle, as well as the area of the nozzle throat,
because the fuel flow at the nozzle throat is chocked. Sonic nozzles
with two throat diameters, 1.6 and 3.08 mm, were used for different
massflow rate ranges. After the sonic nozzle, the heated fuelmixture,
kerosene along with products from thermal cracking (if present), can
be cooled down to room temperature through awater cooling system
and then analyzed using gas/liquid chromatography.

With the current system, the test section can have amaximumwall
temperature of approximately 1100 K, a pressure range of 2.6–
5 MPa, and a fuel mass flow rate range of 10–100 g=s. In this study,
the fuel temperature can vary from 300 to 800 K as a result of
convective heat transfer. Although a further increase in fuel tem-
perature is possible, it was not attempted here because significant
thermal cracking was noted [21] to occur at fuel temperatures higher
than 800 K. In addition, the Reynolds number of the fuel flow,
defined by the tube inner diameter and fuel local properties, ranged
from 3000 to 500,000 in the present investigation, whereas the wall
heat flux was in the range of 1–30 W=cm2.

B. Experimental Procedure

Before each run, �2 kg kerosene was prepared to a preset
relatively low temperature in the first-stage heater and, at the same
time, the test section in the second-stage heater was heated to a
specific high temperature. When the setting temperatures in both the
first- and second-stage heaters reached steady state, the preheated
kerosene in the first-stage heater was then driven by pressurized
nitrogen at a given pressure and flowed through the test section,
while the heating tapes in the test section were turned off when
commencing the heat transfer characterization experiment. It

Fig. 1 Schematic diagram of two-stage kerosene heating system, test section, and thermocouple assembly for fuel/wall temperature measurements.
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typically took 6–8 s for the fuel flow to reach equilibrium. Although
the total experiment run time was 13–16 s, in general, the experi-
mental data in the last 4 s were used for the subsequent heat transfer
analysis. After each run, high-pressure air was used to purge out the
residual kerosene and carbon deposition (if present) in the test
section.

Figure 2 shows the time variations of the pressures at the inlet and
outlet of the test section and the fuel temperature measured at the
outlet for a mass flow rate of approximately 20 g=s. It is noted that, at
a reference time of t� 1 s, the pneumatic valve downstream of the
first-stage heater was opened and the preheated kerosene started to
flow into the second-stage heater (test section). To build up the tube
pressure within a relatively short time, the second pneumatic valve
located downstream of the second-stage heater was still kept closed.
At t� 4 s, the second pneumatic valvewas opened and the kerosene
flowed through the test section. Figure 2 shows that a steady state
of the flow at the exit of the test section was established at
approximately t� 8 s. It is also seen fromFig. 2 that after t� 8 s the
inlet and outlet pressures were very close, indicating an insignificant
pressure drop through the test section.

III. Analytical Specifications

A. Heat Transfer Analysis

The control volume considered is shown in Fig. 3,which is formed
by the tube inner wall and two cross sections at adjacent locations
along the axial direction separated by �x where the wall and bulk
fuel temperatures are measured. Because the kinetic energy of the
fuel for the present study is at least 5–6 orders of magnitude smaller
than its internal energy, by neglecting the kinetic energy and the
viscous effect, the energy equation can be expressed as

@

@t

Z
V

��e� dV �
Z
s1�s2�s3

��uh� � n dS�	
Z
s1�s2�s3

qw � n dS

(1)

where S1 and S2 are, respectively, the surfaces on the left and right
sides of the control volume, S3 is the wall inner surface, � is the fuel
density, e is the internal energy per unit mass, h is the enthalpy per
unit mass, and qw is the wall heat flux.

Knowing that the axial heat conduction through S1 and S2 are
negligible, Eq. (1) can be simplified as

@��e�
@t

�V � � _mh�s2 	 � _mh�s1 � qwS (2)

where �e is the average value in the control volume based on the

mean fuel temperature �Tf � 1
2
�Tf1 � Tf2�,�V is the volume of the

control volume, _m is the fuel mass flow rate, qw is the meanwall heat
flux into the control volume, S� �d�x is the surface area of the
inner wall, and d is the inner tube diameter.

During the experiment, when the heating tapeswere turned off, the
wall temperature dropped as the fuel carried away heat. Although the
reduction rate of the wall temperature varied with operation
conditions and locations, the typical valuewas approximately several
Kelvin per second for the conditions investigated. Hence, the first
term in Eq. (2) becomes important and, in turn, plays a significant
role in overall heat transfer. For all the cases investigated, the heat
flux analysis indicated that the unsteady effect accounted for 10–30%
of the local heat flux.

Considering the mass conservation equation for the control
volume,

@ ��

@t
�V � _m2 	 _m1 � 0 (3)

the local mass flow rate varies along the tube due to the unsteady
effect. Because the mass flow rate at the outlet of the test section can
be determined with a sonic nozzle flow meter, the mass flow rate
distribution along the tube can be obtained via Eq. (3).

The local heat flux into the control volume is then calculated as
follows:

qw �
d

4

@��e�
@t
� _m2h2 	 _m1h1

�d�x
(4)

Here, the first term on the right-hand side indicates the unsteady
effect of the fuel flow.

The Nusselt number is expressed as Nu� �d=k, where ��
qw=� �Tw 	 �Tf� is the heat transfer coefficient for low-speed flows,
k is the fuel thermal conductivity evaluated at the mean fuel

temperature �Tf, �Tw � 1
2
�Tw1 � Tw2� 	 qw‘=kw is the inner wall

temperature determined based on the assumption of one-dimensional
heat conduction through the wall thickness ‘, and kw is the thermal

conductivity of the stainless tube. Here, �Tw also represents the fuel
temperature near the wall. Moreover, the Reynolds number based on
the tube inner diameter is defined as Re� 4 _m=��d /�, where / is

the fuel viscosity evaluated at �Tf.
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It is noted that the uncertainty in the deduced heat transfer
parameters, such as local wall heat flux qw and heat transfer
coefficient �, depends on the accuracy of the fuel and wall tem-
perature measurements and the reproducibility of the experimental
data. An uncertainty analysis was conducted to determine the
uncertainty in the reported values of qw and �, yielding 
 8% for
qw and 
 10% for �.

To demonstrate the adequacy of the temperature measurements
and the heat transfer analysis, nitrogen flows at different Reynolds
numbers, by varying pressures and mass flow rates, were tested and
studied. Figure 4 plots the experimentally determined Nusselt
number divided by Pr1=3�/f = /w�0:14 as a function of Reynolds
number, where Pr is the Prandtl number and/f and/w are the fuel
viscosity values at the bulk fluid temperature and the inner wall
temperature, respectively. The Sieder–Tate correlation [10] for
turbulent flows, Nu=�Pr1=3�/f = /w�0:14� � 0:027Re0:8, is also
plotted in Fig. 4 for comparison. A good agreement is shown in
Fig. 4, with a discrepancy of less than 
 10%.

When analyzing the heat transfer characteristics of kerosene using
these equations, the knowledge of various thermodynamic and

transport properties of kerosene over a wide range of pressure and
temperature variations is required. Recognizing that kerosene
contains hundreds to thousands of hydrocarbons, a surrogate fuel
model, consisting of a small number of fuel components, can be used
to represent the real fuel and predict the desired characteristics of
the actual fuel. The development of a kerosene surrogate and the
calculations of thermodynamic and transport properties are
described in Sec. III.B.

B. Kerosene Surrogate and Evaluation of Thermodynamic and

Transport Properties

A composition analysis showed that China no. 3 kerosene con-
sists of 53% alkanes, 39% cycloalkanes, 5% benzenes, and 3%
naphthalenes by mass. Accordingly, a 10-component surrogate was
proposed, as listed in Table 1. The thermodynamic and transport
properties as well as the critical point of this surrogate were then
calculated with the National Institute of Standards and Technology’s
SuperTrapp program [22] based on the extended corresponding
statesmodel [23]. Comparedwith the kerosene surrogate proposed in
our previous study [20], the current surrogate gives better predictions
for fuel properties such as specific heat. The predicted critical
temperature and critical pressure of this surrogate are, respectively,
660 K and 2.4 MPa, whereas the measured critical temperature and
critical pressure for China no. 3 kerosene are, respectively, 640K and
2.4 MPa [24].

Figures 5a and 5b, respectively, show the calculated density and
specific heat at constant pressure as a function of temperature with
varying pressures. It is seen that, for pressures higher than the critical
value, fuel enters the supercritical state directly without going
through a two-phase region. Other fuel properties, such as enthalpy,
dynamic viscosity, thermal conductivity, etc., were also calculated
using SuperTrapp [22] with the 10-component surrogate, based on
the assumption that there is no thermal cracking under the conditions
investigated. Figures 5c and 5d plot the computed results for dynamic
viscosity and thermal conductivity, respectively. A significant

Table 1 Ten-component surrogate of China no. 3 kerosene

Composition Molar Percentage

Alkanes n-Octane 6
n-Decane 10
n-Dodecane 20
n-Tridecane 8
n-Tetradecane 10
n-Hexadecane 10

Cycloalkanes Methylcyclohexane 20
trans-1,3-Dimethylcyclopentane 8

Benzenes Propylbenzene 5

Naphthalenes 1-Methylnaphthalene 3
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reduction in viscosity near the critical temperature is noted, as shown
in Fig. 5c.

IV. Results and Discussion

A. Test Conditions

Table 2 lists the experimental conditions for test cases with and
without fuel preheating in the first-stage heater. The first seven tests
were conducted with the 1.6-mm-diam sonic nozzle at varying
pressures, whereas the last three tests with largermassflow rates used
the 3.08-mm-diam sonic nozzle. As listed in Table 2, kerosene at the
first-stage heater was prepared at supercritical pressures and the test
section was heated to 710–860 K before each run.

B. Test Results

Figure 6 shows the distributions of wall and fuel temperatures
along the tube at t� 11 s (cf. Figure 2 for the time sequence) for
test 2 without fuel preheating. As a result of absorbing heat from the
wall, the fuel temperature rose from 300 K at the inlet to 765 K near
the outlet and, at x� 11 m, the bulk fuel temperature approached the
wall temperature. Axial distributions of local wall heat flux (qw) at
two reference times, t� 9 and 12 s, are plotted and compared in
Fig. 7a. It is seen that the heat flux distributions at t� 9 and 12 s are
fairly close, indicating stable heat transfer characteristics for this time
duration, consistent with the discussion of Fig. 2. In the region of
0 
 
 
 10 m, qw varied from �3:5 to 8 W=cm2, with an average
value of 5:6 W=cm2. This is the region in which effective heat
transfer existed and in which the experimental data were used for
further analysis/correlation. Reynolds number distribution along the
tube at t� 9 s is presented in Fig. 7b. It was found that Re increased
bymore than 2 orders ofmagnitude, from 3000 at the inlet to 110,000
near the outlet, which was caused by the drastic reduction in fuel
viscosity when approaching the critical temperature. Though not
shown here, the Prandtl number also changed considerably, from
approximately 18 at the inlet to less than 1 at the outlet. Because of
the wide variations of fuel properties and key parameters (e.g., Re
and Pr), a detailed numerical simulation of supercritical kerosene
flow in a heated tube is challenging.

The distributions of the Nusselt number at t� 9 and 12 s are also
shown and compared in Fig. 7c. Again, the distributions of the
Nusselt number at two reference times are very close to each other,
demonstrating stable heat transfer characteristics of the fuel flow.

Table 2 Summary of test conditions

Test
no.

Pressure,
MPa

Fuel preheat temperature
at first-stage heater , K

Initial temperature at
second-stage heater, K

Measured mass
flow rate, g=s

Maximum wall
heat flux, W=cm2

1 2.7 no 770 15 5.5
2 3.5 no 790 19 8
3 4.2 no 770 24 6.5
4 4.5 no 710 29 6.2
5 3.0 460 750 26 4.5
6 3.6 500 790 30 5
7 4.6 460 735 32 6
8 3.5 no 860 65 23
9 4.0 no 750 90 16
10 4.2 no 845 80 26
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Although the Nusselt number is seen to generally increase along the
tube, indicating an increase in the convective heat transfer, the axial
variation ofNuwas noted to be rather gentle in the plateau region of
2:5 
 
 
 4:5 m. This plateau region corresponds to a transition
region beyond which substantial changes in fuel flow properties
occur, which will be discussed in due course.

The measured wall and fuel temperature distributions along the
tube at t� 11 s for test 5with a fuel preheat temperature of 460K are
plotted in Fig. 8a,whereas thewall heatflux distributions at t� 9 and
11 s are illustrated and compared in Fig. 8b. Similar to Fig. 6, the fuel
temperature distribution shows an increasing trend and, at x� 14 m,
the bulk fuel temperature approaches thewall temperature, leading to
a substantial reduction in heat flux of less than 1 W=cm2 beyond

x� 12 m. The closeness of the heat flux distributions at t� 9 and
11 s further indicates that the stable heat transfer characteristics were
established.

C. Heat Transfer Characteristics of Kerosene Flows

Figure 9a plotsNu versusRe in logarithmic coordinates for test 10
with a relatively large mass flow rate of 80 g=s. The Nusselt number
is shown to increase with an increasing Reynolds number, indicating
an increasing importance of the convective heat transfer of fuel flow.
Furthermore, Fig. 9a illustrates distinct regions in terms of the
Nu–Re correlation. For 15; 000 
 Re 
 25; 000 (region 1), Nu
increased with Re with a power of approximately 0.85, whereas for
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Fig. 9 Nusselt number versus Reynolds number: a) test 10, and b) test 3 and 10.
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Fig. 10 Heat transfer correlations based on the present experimental data: a) region 1, and b) region 2.
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45; 000 
 Re 
 200; 000 (region 2), the power index became
approximately 1.35. The transition from region 1 to 2was noted to be
in the range of 25; 000 
 Re 
 45; 000 for this test case. Such a
change in the power index was also found in other tests. Figure 9b
shows the results of test 3 with a mass flow rate of 24 g=s and the
comparison with test 10. Similarly, the power indexes characterizing
the increase ofNuwith Re for test 3 were 0.85 and 1.35 in regions 1
and 2, respectively. However, the transition region for test 3
corresponded to 7000 
 Re 
 15; 000.

It was further noted that the characteristic temperatures corre-
sponding to the beginning of the transition region and the beginning
of region 2 were the inner wall temperatures of �520 and �600 K,
respectively. These results suggest that, at a supercritical pressure,
when kerosene in the vicinity of the wall was heated to a temperature
of approximately 520 K, it would be no longer at a pure compressed
liquid state; consequently, the changes in fuel properties affected
the heat transfer of the fuel flow. Additionally, when the fuel near the
wall was heated to above 600 K, the fuel became supercritical and
heat convection was significantly enhanced. Enhancement in the
convective heat transfer of kerosene flow when approaching its
critical temperature has been observed in many of other studies
[9,15,25] under much larger wall heat fluxes (500–1000 W=cm2).
However, it has to be pointed out that, for the current studywith lower
heat fluxes, neither a sudden change in heat convection, nor pressure
oscillation and the associated flow instability, were observed, as
found in the literature [9,15,25]. Instead, a relatively smooth
transition region exists before entering region 2.

D. Heat Transfer Correlations

The heat transfer data in regions 1 and 2 were further correlated
with the fuel flow properties. Data in region 1 were correlated based
on the expression of Nu� cReaPrb�/f = /w�d, which has been
used in many previous studies [8,13–17]. In this expression, the
power in the Reynolds number represents the effect of the flowfield
on heat convection, whereas the power in the Prandtl number denotes
the effect of fuel properties. In addition, this expression takes into
account the change in viscosity due to the temperature difference
between the bulk fuel flow temperature and the heat transfer surface
temperature.

The heat transfer data in region 1 were found to correlate well
for the coefficients of c� 0:0065, a� 0:89, b� 0:4, and d� 0:1.
Figure 10a shows such a correlation by plotting Nu=�Pr0:4�/f =
/w�0:1� versus Re, with a standard deviation between the experi-
mental data and the correlation of 3.6%. Table 3 lists and compares
the current correlation and the literature data [15,16] at fuel tem-
peratures of 
 500 K for various kerosene-type fuels. As shown in
Table 3, China no. 3 kerosene has relatively lower heat convection
capability as compared with JP-8 and JP-7. Moreover, the current
heat transfer correlation for kerosene is close to that of [15], even
though the wall heat fluxes were quite different in the two studies. It
was found that in all these correlations the Reynolds number effect is
dominant, whereas the Prandtl number effect is less important and
the dependence on Prandtl number can be specified as Pr0:4.

When entering region 2, the fuel near the wall became super-
critical; hence, the convective heat transfer was significantly en-
hanced. The heat transfer data correlation in region 2 based
on Nu� cReaPrb�/f = /w�d yielded c� 0:000045, a� 1:4,
b� 0:4, andd� 0:1, with a standard derivation of 6.8%, as shown in
Fig. 10b. As expected, the correlation of region 2 leads to a larger
power index for the Reynolds number than that of region 1,
indicating a more important Reynolds number dependency. This can

be explained by the significant changes in fuel properties when
transitioning from region 1 to 2. At low temperatures, the fuel is at a
compressed liquid state. Thus, the power index for the Reynolds
number effect is close to the typical value for many common liquid
fuels, which is approximately 0.8. Because the properties of super-
critical fuels present some unique features, as addressed earlier, the
corresponding heat transfer characteristics are affected, as reflected
by the increase in the power index associated with the Reynolds
number.

V. Conclusions

A series of heat transfer characterization experiments using
China no. 3 kerosene flows in a heated tube system were conducted
under supercritical pressure conditions. Both the bulk fuel flow
temperature and the tube wall temperature along the flow direction
were measured simultaneously. Based on the measured fuel and
wall temperature distributions along the flowpath and the calculated
fuel properties using a 10-component kerosene surrogate, the local
heat flux distribution was deduced through a heat transfer analysis.
The following is a list of several conclusions drawn from this
investigation.

1) The current heating system can accommodate a wide range of
pressures, temperatures, mass flow rates, and Reynolds numbers
(cf. Table 2) for kerosene experimentation.

2) Under supercritical pressures, when the kerosene temperature
along the flowpath was increased toward and beyond the critical
temperature, significant changes in fuel/flow properties, such as
density (cf. Figure 5a) and Reynolds number (cf. Figure 7b), were
noticed.

3) Based on the results of the heat transfer analysis, the heat
transfer characteristics of kerosene flows can be classified as three
regions (cf. Figure 9): a compressed liquid region (region 1), a
supercritical fuel region (region 2), and a transition region that
bridges regions 1 and 2. Convective heat transfer was greatly
enhanced in region 2 when the fuel temperature near wall exceeded
600 K.

4) The correlation of the heat transfer data in region 1 yielded a
result similar to that for other kerosene-type fuels at temperatures of
less than 500K,whereas the heat convection capability of the present
China no. 3 kerosene was found to be lower than JP-7 and JP-8
(cf. Table 3).

5) The correlation for the heat transfer data in region 2 shows an
increased Reynolds number dependency (cf. Figure 10). Such a
change in heat convection characteristics is expected to be caused by
the transition of the fuel state from the compressed liquid state to the
supercritical state with increasing temperature.

The current study focused on the supercritical heat transfer
without fuel thermal cracking. As the fuel temperature is further
increased (� 800 K), kerosenewill undergo an endothermic decom-
position process, which provides additional heat sink capacity. To
cover the entire range of the fuel temperature variations for scramjet
applications, a follow-up investigation is currently underway to
upgrade the existing heating system and experimentally study the
heat transfer characteristics of kerosene flows under mild-to-
moderate thermal cracking conditions.
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Table 3 Comparison of heat transfer correlations for common kerosene-type fuels

Nu� cReaPrb�/f = /w�d c a b d

China no. 3 kerosene
Present study in region 1 0.0065 0.89 0.4 0.1

[15] 0.008 0.873 0.451 0
JP-7 [16] 0.01 0.906 0.4 0
JP-8 [16] 0.017 0.855 0.4 0
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