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The influence of contact angle and tube radius on the capillary-driven flow for circular cylindrical tubes is studied
systematically by microgravity experiments using the drop tower. Experimental results show that the velocity of the
capillary flow decreases monotonically with an increase in the contact angle. However, the time-evolution of the velocity
of the capillary flow is different for different sized tubes. At the beginning of the microgravity period, the capillary flow
in a thinner tube moves faster than that in a thicker tube, and then the latter overtakes the former. Therefore, thereis an
intersection between the curves of meniscus velocity vs microgravity time for two differently sized tubes. In addition, for
two given sized tubes this intersection is delayed when the contact angle increases. The experimental results are
analyzed theoretically and also supported by numerical computations.

Nomenclature

the distance between the wetting barriers, mm

the radius of the centerline of the free surface inside the
reservoir, mm

internal diameter of tube, mm

meniscus height, mm

meniscus velocity, m/s

meniscus acceleration, m/s?

initial liquid height, mm

internal radius of tube, mm

the radius of the free surface inside the container, mm
time, s

the reorientation time, second

dynamic contact angle, deg

static contact angle, deg

kinematic viscosity, ¢St

liquid density, kg/m?

surface tension, N/m
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1. Introduction

HE capillary-driven flow has long been investigated by

scientists and engineers [1-3] both theoretically and experi-
mentally, because of its importance for fluid dynamics, surface
science, and especially for fluid management in space. In earlier
years, most relevant experiments were performed under normal
gravity conditions [4,5]. However, the capillary-driven flow becomes
remarkable only when the size of the capillary tube is small for
terrestrial experiments. To solve this problem, many researchers
recently began to experimentally study the capillary-driven flow
under microgravity because large sized capillary tubes can be used by
removing the effect of gravity. Related theories are also progressing.
Levine et al. [6] made modifications to the Lucas—Washburn
equation [1,2] by introducing the appropriate momentum balance
equations and presented the most detailed theory for the capillary rise
in tubes. Dreyer et al. [7] examined the capillary-driven flow under
microgravity in a 4.7 s drop tower using parallel plate channels, and
the results showed that at an early stage of penetration, the capillary
rise is governed by inertial forces. Weislogel and Lichter [8] studied
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the capillary-driven flow along the interior corners of a partly filled
container in microgravity using a 2.2 s drop tower and modified A-¢
(rising height vs time) dependencies were observed. Chen and
Collicott [9] presented the experimental results on capillary flow in a
vane-wall gap geometry obtained with the Purdue drop tower, and
effects of geometric parameters, contact angle, and the fluid viscosity
on the flow were investigated. An experimental study on the
capillary-driven flow and the final equilibrium position of the inter-
face in double proboscis containers conceived and developed by
Concus et al. [10] was carried out by the USML-2 space shuttle flight.
For circular cylinders, the capillary rise flow was extensively studied
by Stange et al. [11] and typical three-flow regimes were identified
with the aid of analytical and experimental results. Dreyer has
included some recent progress in the study of capillary flow under
microgravity in his book [12].

Because of removal of the ubiquitous effects of gravity in
terrestrial experiments on fluid behavior, experiments in micro-
gravity make it possible to deepen our knowledge of the nature of
capillary-driven flow. This knowledge is particularly important for
the design of fluid transfer systems of spacecraft, such as propellant
and cryogenic fluid tanks, thermal control systems, coolant reser-
voirs, and systems for collection, storage, and provision of water
[13]. Itis also helpful in improving modeling studies predicting fluid
flows in porous media [14,15]. Under microgravity conditions, the
flow behavior of fluid is rather complicated due to the competition of
different influencing factors, including contact angle, tube size, and
so forth. However, there is still a lack of systematic study on the
effects of these factors on the dynamic of capillary-driven flow.

In this study we performed a series of experiments in a Beijing
drop tower, which provided 3.6 s of microgravity, to systematically
study the influence of contact angle and tube radius on the capillary-
driven flow under microgravity. As a basic model of fluid transfer
systems, circular cylindrical tubes are adopted in the experiments.
The results show that the larger contact angle will decrease the
velocity of the capillary flow. We found, however, that the time
evolvements of the velocity of the capillary flow are different for
different sized tubes. At the beginning of the microgravity period, the
capillary flow in a thinner tube moves faster than in a thicker one, and
then the latter overtakes and outstrips the former. Therefore, there
is an intersection between the curves of meniscus velocity vs
microgravity time for two different sized tubes. In addition, for two
given sized tubes this intersection delays when the contact angle
becomes larger. The experimental results are analyzed theoretically
and also supported by relevant numerical computations.

1L

A cylindrical acrylic container with internal diameter 150 mm and
total height 150 mm was used for the experiments. The container was

Experimental Setup and Procedure
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Fig. 1 Schematic representation of the geometry of experimental
apparatus for measuring the meniscus height. The initial liquid height is
named #/, (=depth of immersion), the meniscus height 4. The tube
diameter is d, the dynamic contact angle is y,. The radius of the free
surface inside the container Rc is calculated with the distance a between
the wetting barriers and the radius c of the centerline of the free surface
inside the reservoir.

filled with liquid up to a level of 60 mm. The tubes, manufactured
from acrylic plastic and open on the bottom and top, were immersed
in the liquid from above (see Fig. 1). Internal diameters of d = 4, 6,
and 10 mm were used. The immersion depth of the tubes (equals
initial liquid height /4) was hy = 10 mm. A charge-coupled device
(CCD) camera and a Hi8 video recorder system attached at the outer
sides of the tubes were used to monitor and record the position of the
meniscus. Wetting barriers were used to prevent the liquid from
climbing up the outer side of the tubes and the inner container wall.

Because distilled water and ethanol produce equilibrium contact
angles on acrylic 80 and O deg, respectively, the two fluids can be
mixed in different proportions to produce a range of contact angles.
Three aqueous ethanol mixtures were used: Eth/H,020/80(%vol.),
Eth/H,0 30/70(%vol.), and Eth/H,O 40/60(%vol.). Similar
materials have been used by Weislogel and Ross [16] to adjust the
contact angles in experiments.

The surface tensions, viscosities, and densities of these aqueous
ethanol solutions were measured specifically for this research work
using standard laboratory procedures and are shown in Table 1 with
their respective uncertainties. The equilibrium contact angles for
each fluid/solid pair were measured by an optical contact angle
measuring device (OCA20) with the software for contact angle
measurements (SCA) software. This SCA software is based on
goniometry, and contact angle can be assessed directly by measuring
the angle formed between the solid and the tangent to the drop
surface. The assignment of the tangent line that will define the
contact angle is a factor that can limit the reproducibility of contact
angle measurements. Conventional goniometry relies on the con-
sistency of the operator in the assignment of the tangent line. This can
lead to significant error, especially subjective error between multiple
users. SCA software overcomes this problem by using computer
analysis of the drop shape to generate consistent contact angle data.
Equilibrium contact angles determined in this approach are also
listed in Table 1. The properties of experimental fluids were
measured at room temperature (25 °C).

Because the contact angles are strongly affected by surface
contamination, a procedure for cleaning the tubes is indispensable.
Before each experiment, the tubes were rinsed twice with ethanol and
cleaned ultrasonically in a warmed detergent for 30 min. After the
cleaning, the tubes were again rinsed with the respective test
liquid several times and allowed to air dry. Through these cleaning

procedures, the surface conditions of the tubes were sufficient to
make the resultant data repeatable.

A spacecraft in orbit can provide a long and stable microgravity
environment but it is very costly. Alternatively, the drop tower is a
cost-efficient way to provide short term microgravity at low cost. In
this study the experiments were conducted in the dual-drop capsule
system of the drop tower in Beijing. This facility provides 3.6 s of free
fall with g-residual estimated at 10~ g, [17]. After the release of the
drop capsule, the weightlessness condition is reached within a few
milliseconds. The liquid surface inside the tube changes from the 1g,
shape (flat at the tube center and curved in the vicinity of the liquid—
solid contact line) to the spherical microgravity shape. At the same
time, the liquid starts to flow into the tube.

Figure 2 shows a typical image recorded from the CCD camera.
The internal diameter of the tube was d = 6 mm and the initial liquid
height 4, = 10 mm and the liquid was Eth/H,0 30/70(%vol.). The
first picture (r = 0) shows the 1g, fluid configuration before the drop
of the capsule. With the release of the drop capsule, a microgravity
condition is established and the liquid starts to flow into the tube. The
progression of the meniscus height # with experiment time ¢ was
evaluated from the recorded video data. By varying contact angle and
tube size, data of a series of progression of i ~ t was achieved.

III. Results and Discussion
A. Experimental Results

The results of the drop-tower tests are presented in Figs. 3 and 4.
Figure 3 shows typical experimental results of the effect of contact
angle on the capillary-driven flow under microgravity conditions,
where meniscus height /4 is plotted vs microgravity time 7. Stange
etal. [11] predicted and verified that for the capillary rise in circular
tubes there exists three successive stages in which the meniscus
height is dominated by the inertia force, convective losses, and
viscous forces acting against the driving capillary force, respectively.
As a result of the three different regions, the meniscus height
increases proportional to the square of time (h ~ #%), then a linear
dependence (h ~t), and finally the Lucas—Washburn behavior
(h~ /D).

For the case of d =4 mm (Fig. 3a) in our experiments, the flow
enters the Lucas—Washburn region (i ~ /1) very rapidly for three
different contact angles. From Fig. 3a, it can be seen that the slope of
all 4 mm curves decreases almost immediately after the start of the
meniscus rise. Figure 3a also shows that the smaller the contact angle,
the faster the time for the flow to enter the Lucas—Washburn region. In
the case of d = 6 mm (Fig. 3b) for the contact angle y, = 42 deg the
curve entered the Lucas—Washburn flow (i ~ +/7) before 3.6 s,
whereas for the contact angles y, = 54 deg and y, = 66 deg the flow
did not. In the case of d = 10 mm (Fig. 3¢), all three curves are in the
first region (h ~ £*) before the end of the 3.6 s microgravity time.
However, all three figures in Fig. 3 show that the meniscus height &
decreased with the increase of contact angle during microgravity
duration for all cases of tube radii, despite differences in the time to
enter Lucas—Washburn flow.

Figure 4 shows typical experimental results of the effect of tube
size on the capillary-driven flow under microgravity conditions,
where meniscus height / is plotted vs microgravity time . In the case
of y, =66deg (Fig. 4a), for d =4 mm, the curve covers the
complete process from the initial meniscus development to the final
Lucas—Washburn behavior (& ~ /1), whereas for d = 6 mm and
d = 10 mm the curves remain in the first region (1 ~ #?) until the end
of 3.6 s microgravity. During the 3.6 s microgravity, the meniscus
heights increased with the decrease of tube size.

Table 1 Relevant fluid/interfacial properties

0£5%,N/m p=45%,kg/m®> v+1%,cSt y, £2,deg

Eth/H,0 20/80(%vol.) 0.0443
Eth/H,0 30/70(%vol.) 0.0364
Eth/H,0 40/60(%vol.) 0.0328

958 1.49 66 deg
937 1.83 54 deg
916 2.11 42 deg
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Fig. 2 Selected frames of capillary-driven flow of Eth/H,0 30/70(%vol.) into a tube from the experiment video under microgravity condition in the
drop tower Beijing. The internal diameter d = 6 mm and the initial liquid height /2, = 10 mm.

For the case of y;, = 54 deg (Fig. 4b), the velocity of the meniscus
is much larger than the case of y, = 66 deg, which caused quite
different results, as shown in Figs. 4a and 4b. From Fig. 4b it can be
seen that the curve entered the Lucas—Washburn flow (h ~ /%) at
microgravity time ¢t = 2.2 s for d = 4 mm, whereas for d = 6 mm
and d = 10 mm the flow is still in the first region (& ~ %) with
positive acceleration of speed (increasing slope in the curve) until the
end of the 3.6 s of microgravity. And the d =4 mm and d = 6 mm
curves intersect at 2.5 s because the velocity of the meniscus d =
4 mm tube decreases much earlier than d = 6 mm. However, the
curve for d = 10 mm does not intersect with the d =4 mm curve
within the microgravity duration due to the lower meniscus velocity.
At the end of the 3.6 s of microgravity, the meniscus heights in
descending order are 6, 4, and 10 mm tubes.

In the case of y, = 42 deg (Fig. 4c), the velocity of the meniscus
is larger than that for both cases of y, = 54deg and y, = 66 deg.
For the same reason previously mentioned, the d =4 mm curve
intersects with the d = 6 mm curve. However, the intersection time
0.36 s is much earlier than that for y, = 54 deg. Figure 4c also
shows that the d =4 mm curve intersects with d =10 mm at
2.24 s, which is different from Fig. 4b. These results imply that the
intersection time for the same sized tubes becomes earlier for
smaller contact angles. For y, = 42 deg, the meniscus heights in
descending order are 6, 10, and 4 mm tubes at the end of the 2.4 s
microgravity.

Petrash et al. [18] performed a series of drop-tower experiments to
investigate the equilibrium liquid configuration for a capillary tube in
acylindrical tank. Because their target of experiment is different from
ours, only the conditions in their study in which the radius of the
tubes that they chose is less than one-half the radius of the cylindrical
tank are comparable to our case. Therefore, their relevant experi-
mental results for this condition are similar to ours: the capillary
liquid rise occurs in the tubes. However, the intersection of 4 ~ ¢
curves for different sized tubes was not observed within a quite short
available microgravity time (2.3 s) because the relative differences of
the tube sizes they chose were much larger than ours.

From Fig. 4 it can be seen that with the increase in tube size the
microgravity time needed to enter Lucas—Washburn flow increased.
And the h ~ t curve of smaller sized tubes may intersect the curve of
larger sized tubes. Therefore, the meniscus height does not decrease
monotonically with the increase of the tube size within a given
microgravity duration. This result can in general be explained by
different behaviors of the flow corresponding to the different stages.
Attheinitial stage of the flow process, the capillary force is dominant.
For smaller sized tubes the capillary force is larger, resulting in larger
meniscus velocity. When the flow enters the Lucas—Washburn re-
gion, it can be predicted from the Lucas—Washburn equation [2] that
the distance of capillary rise increases with the increase of tube size.
Therefore, it becomes possible for the intersection of the curves for
different sized tubes. A more detailed discussion is presented in the
next section.

B. Discussion

Considering the initial meniscus reorientation, the dynamic
contact angle of the advancing meniscus, and the curvature of the free
surface inside the container, a second-order nonlinear differential
equation for the meniscus rise based on the approach of Levine et al.
[6] with some improvements was put forward by Stange et al. [11]

i 1 o[2scosy; 1
T h+hy+BR\pl R Rc

- [%(h+ho)+%]uh—[1 +K(x)]%fz2} 1)

Herein, / denotes the position of the meniscus center point, and Jrand
i1 denote the meniscus velocity and acceleration, respectively. y, is
the dynamical contact angle. An incompressible, homogeneous,
Newtonian liquid under isothermal conditions is assumed. The tube
internal radius is R(=1/2d). The exponential function s denotes the
initial development of the meniscus from a flat to the curved
equilibrium surface

R3
s() =1 — e/t with 1, = 0.413,/’”T @

The reorientation time ¢, was proposed by Siegert et al. [19] and
confirmed by the recent drop-tower experiments of Michaelis et al.
[20]. The excess pressure drop K (x) is a parameter that represents the
velocity profile development and K(x) = 4/3 in our experiments.

Equation (1) is solved numerically using a Runge—Kutta algorithm
in this study. The initial conditions are h = h=0at t=0. The
solution of Eq. (1) yields the meniscus height & and the meniscus
velocity h as a function of time ¢. By varying the dynamic contact
angle y, (we will not distinguish y, and y, for simplicity of
discussion so that the contact angle will be denoted by y hereinafter)
and tube internal radius R, a series of & ~ ¢t and i ~ t curves were
obtained. Based on these curves the influence of the contact angle and
the tube size on the capillary flow will be analyzed as follows.

The experimental results show that the meniscus height decreases
monotonically with the increase in contact angle and does not
decrease monotonically with the increase in tube size within a given
microgravity duration. To explain the results, the numerical
computations according to Eq. (1) concerning the effect of contact
angle and tube size on the meniscus height and meniscus velocity of
capillary rise are presented and numerical data of & ~ ¢ and h ~ t are
also presented in Figs. 5 and 6.

According to the experimental data in the previous paragraph, it
can be seen that the duration time of region 1 (4 ~ *) and region 3
(Lucas—Washburn behavior, # ~ 4/f) are longer than region 2
(h ~ t). Therefore, the contribution from the region of the velocity-
increasing pattern of (4 ~ £?) and the velocity-decreasing pattern of
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Fig. 3 Experimental data from drop-tower tests. Effect of contact angle
on the capillary-driven flow. Meniscus height & vs time ¢ for tube
diameters d = 4, 6, and 10 mm, initial liquid heights #, = 10 mm.

(h ~ /1) to the meniscus height of the capillary flow within a given
microgravity duration are more essential.

In Eq. (1) the denominator & + Ay + (73/60)R, the second, and
the third items on the right-hand side describe the contributions
from the inertia force, the viscous force, and convective losses,
respectively. The denominator % + hy + (73/60)R plays a major
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Fig. 4 Experimental data from drop-tower tests. Effect of tube size on

the capillary-driven flow. Meniscus height 2 vs time ¢ for contact angle
Y, = 66, 54, and 42 deg, initial liquid heights 4, = 10 mm.

role in the region of velocity increasing (region 1), and the second
item plays a leading role in the region of velocity decreasing
(region 3).

Figures 5a—5c show the meniscus height and meniscus velocity
corresponding to different contact angles for d = 2 mm,d = 6 mm,
and d = 20 mm, respectively. From Fig. 5 we can see that with the
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Fig. 5 Numerical solutions from Runge-Kutta algorithm. Effect of
contact angle on the capillary-driven flow. Meniscus height 2 and
meniscus velocity & (or v) vs time ¢ for tube diameters d = 2, 6, and
20 mm, initial liquid heights i, = 10 mm. The dashed line refers to
velocity and the solid line refers to height.

increase in contact angle the meniscus height 4 decreased within a
given microgravity duration. Because the contact angle y, as an
influence parameter on the meniscus height, appears only in the first
item (cos y) on the right-hand side of Eq. (1), the meniscus velocity
decreases with the increase in the contact angle both in the region of
velocity increasing (region 1) and velocity decreasing (region 3). In
addition, the numerical results (see Fig. 5) show that the transition
times needed to move from region 1 to region 3 for different contact
angle do not change significantly. Therefore, the influences of

0.25 | Ho0.25
0.20 | H0.20
—~0.15| {0.15 ~

(7]

E E
~ 0.10 | 40.10=
0.05 | H0.05
0.00 | H0.00
05 00 05 1.0 15 20 25 3.0 35 4.0
t(s)

a)
0.20|- L 0.20
0.16|- L 0.16
% 012 012
E | =
~ 0.08]- 10.08
0.04 10.04
0.00 10.00
05 00 05 10 15 20 25 3.0 35 4.0
t(s)
b)

0.10 | J0.10
0.08 | J0.08
2006 J0.06 E
E =
> 0.04 J0.04

0.02 J0.02
0.00 | J0.00

1 1 1 1 1 1 1 1
05 00 05 10 15 20 25 3.0 35 4.0
£(s)
c)
Fig. 6 Numerical solutions from Runge-Kutta algorithm. Effect of
tube size on the capillary-driven flow. Meniscus height # and meniscus
velocity 7 (or v) vs time  for contact angle y = 20 deg, 50 deg, and 80 deg,

initial liquid heights 7, = 10 mm. The dashed line refers to velocity and
the solid line refers to height.

contact angle on the meniscus velocity and meniscus height of
capillary rise change monotonically.

Figures 6a—6¢ show the meniscus height and meniscus velocity
corresponding to different tube sizes for y = 20 deg, y = 50 deg, and
y = 80deg, respectively. Figure 6 shows that the meniscus height &
does not decrease monotonously with the increase of the tube size.
For the smaller sized tube the velocity of the meniscus decreases
much earlier than that of the larger sized tube. This tendency can be
seen more obviously from the h ~ t curves in Fig. 6. This behavior
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can be accounted for that the curve of the smaller sized tube may
intersect the curve of the larger sized tube, as shown in the experi-
mental results.

Alternatively, looking at Eq. (1), the parameter of the tube size R
exists in both the first and second item of the right-hand side of Eq. (1)
and the two items have opposing contributions to the meniscus
acceleration: one is positive and the other is negative. In the region of
velocity increasing (region 1), the capillary force is counteracted by
the inertia force. From Eq. (1) it can be expected that the acceleration
of the meniscus will be larger for a smaller sized tube, which results in
larger meniscus velocity. However, in the region of velocity
decreasing (region 3), the flow is controlled by the friction force as
shown in the second item on the right-hand side of Eq. (1). Therefore,
the increase of the tube size will increase the acceleration of the
meniscus so as to increase the meniscus velocity. Because of the
contrary effect of the tube size on the meniscus velocity, the curves
for different tube sizes could intersect each other at some point during
the transition from region 1 to region 3. In addition, the numerical
results (see Fig. 6) show that with the increase of tube size, the
microgravity time needed to enter the Lucas—Washburn flow zone
obviously increased, which led to the intersection easier.

By comparing Figs. 6a—6c it can be seen that for two given tube
sizes, the meniscus velocity decreases with the increase of the contact
angle and therefore, the two corresponding & ~ ¢ curves intersect
later. For d = 6 mm and d = 10 mm, in Fig. 6a the h ~ t curves
intersect at 1.8 s, whereas in Fig. 6b the & ~ t curves intersect at
1.86 s, and in Fig. 6¢ the i ~ ¢ curves intersect at 2.0 s microgravity
time. Ford = 2 mm and d = 20 mm in Figs. 6a—6¢, the & ~ ¢ curves
intersect at 1.35, 1.40, and 1.55 s microgravity time, respectively.
Therefore, in Fig. 4b the & ~ t curves ford = 4 mmand d = 10 mm
do not intersect within 3.6 s microgravity time because the contact
angle is large and the meniscus velocity is slow. However, the trend
that the curves of h~t would intersect somewhere if the
microgravity time can last longer is obvious.

From Eq. (1) it can be seen that the larger the meniscus velocity h,
the larger the friction force as shown in the second item of the right-
hand side. The larger friction force will make the flow enter the
Lucas—Washburn region (for the same sized tubes) earlier. As
mentioned previously, the intersection of curves for different sized
tubes occurs during the transition from region 1 to region 3.
Therefore, the curves intersect earlier for larger velocity h for two
given tube sizes. Because the meniscus velocity increases with the
decrease in the contact angle for the same sized tubes, the curves
intersect earlier when the contact angle is smaller. This is consistent
with both experimental and numerical results from Eq. (1), as shown
in Figs. 4 and 6.

Apparently, what Eq. (1) requires is the dynamic contact angle y,
to quantitatively describe the capillary flow behavior. Furthermore,
the precision of the dynamic contact angle is an important factor in
determining the meniscus height of capillary flow. However, how the
dynamic contact angle is dependent on the meniscus velocity is still
an open issue until now. As known, there are some empirical
equations available for y, in literature [21,22]. Unfortunately, we
found that for test liquids in our study the y, calculated using the
relevant formula presented in [21,22] are apparently much less than
the values observed in the experiments, and therefore we do not think
the two equations are suitable for our case. Considering this, static
contact angles were used instead in all numerical computations in
the current study. Accurate estimation of dynamic contact angles
would be desirable for studying the capillary-driven flow under
microgravity more quantitatively.

IV. Conclusions

The influences of contact angle and tube size on the capillary-
driven flow in circular cylindrical tubes are studied under micro-
gravity using a 3.6 s drop tower. The experimental findings and
related analysis can be summarized as follows:

Both the meniscus height 2 and the velocity i decrease
monotonously with microgravity time as contact angle increases.
The explanation for this fact is straightforward. The contact angle is

only related to the capillary force, which is a driving force for the
flow. Therefore, with the increase in the contact angle (decrease in the
capillary force), the meniscus velocity decreases whether it is staying
in the region of velocity increasing (region 1) or velocity decreasing
(region 3).

The h ~t curves and the h ~ ¢ curves do not change mono-
tonously with the increase of the tube size within some microgravity
duration. The i ~ ¢ curves of different sized tubes may intersect each
other. We also find that a smaller contact angle will make the
intersection occur earlier. The influence of the tube size on the forces
controlling the capillary flow is different from the contact angle. The
larger tube size corresponds to larger volume (and mass) of liquid
inside the tube. Therefore, in region 1 where the inertia force is
dominant, larger tube size makes the acceleration of the flow smaller,
leading to smaller velocity and height. On the other hand, in region 3
the viscous force is a dominant factor for the flow. With the increase
of tube size, the tube wall will relatively have less influence on the
flow so that the viscous force decreases accordingly. Thus, the
increase in tube size tends to increase the flow velocity in region 3.
The contrary effect of tube size on the flow velocity in regions 1 and 3
makes it possible that & ~ t curves of different sized tubes intersect
each other. With the decrease in the contact angle the meniscus
velocity increases and the flow enters the region of velocity
decreasing earlier, which make the intersection of curves of two
given sized tubes occur earlier.

The results in this study may be useful for controlling the trans-
portation of liquid under microgravity as different sized cross
sections will cause different meniscus velocities.
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