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Abstract
The system of coupled oscillators and its time-discretization (with constant
stepsize h) are considered in this paper. Under some conditions, it is showed that the

discrete systems have one-dimensional global attractors I, converging to | which is the

global attractor of continuous system.
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I. Introduction
Consider system of coupled oscillators

i=Ax+f(x) (1.1)

in which x={(x', x*, ., x®)ER™ (m=3), 4 is mXm matrix, f is a nonlinear map from

R® toRm™

- : 0 —sin(x’)—l—b\
~2 1
: ' --8in (x?)
. To=2 1
A=m? . y f(x)= :
toT ’ —sin(x™-!)
0 I -2 1

—sin (x™) /

with constant 5> 0.
(1.1) is discretized by one-step method:

X1 =% +h( A%yt f (%2)) (1.2)

with constant stepsize /> 0.
Let Fi denote the map from R” to R™:

Fix=x+h(Ax+f{x)) (1.3)

The main purpose of this paper is to investigate the global attractors of discrete systems
{F}}35 (with sufficiently small h) and continuous system (1.1) and to discuss the convergence
of attractors of discrete systems.
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II. Global Attractor of Continuous System

Consider the initial value problem of (1.1)
g=Ax+f(x), x(0)=x, (2.1)
which determines a continuous-time semigroup {S(#)}..:
S(#):x,p>x(t)

in which x(r) is the solution to initial value problem (2.1).

Let 4; (i=0, )}, +»», m—1) denote the eigenvalues of 4,

A= —am?sin?(iz/2m), (i==0, 1, =, m—1)

The eigenvector corresponding to eigenvalue Z:=0 is denoted by n,=(1, 1, -, 1)7€
‘Rm . Let E,=span{n,} and E.=FE}. The projections from R™ to E: and E. are
denoted by P and () respectively. Note that i,= —4m?*sin*(x/2m)< —~4 (m>3) . In the
sequel, the Euclidean inner product and norm in R™ is denoted by ¢-, .> and |*|

respectively.
Definition 2.1 The set

Z={p+q€R"|pEE., g€E,, lqI<|pl}
is said to be a cone in R™ .
Lemma 2.2 Forany y,, x,€R"
i) if y,—x, €2 , then

S(f)yo'"S(f)anZ, for t=0 (2.2)
iiy if for some ¢,>0, S{t)y,~S(t,)x, ¢ Z . then
[Q(S(#)ys—S ()%, | <exXplt/2]|1Q(y,—x,)] for 0I<H, (2.3)

Proof i) Let x{t)=S(t)x,, y(t)=S(H)yes  p(t)=P(y(t)—x(1)), ()=
Q(y(t)~ x(t)) . then p(1) and g(r) satisfy respectively

p=P(f(y(t)) =7 (x(t)))s p(0)=P(y,=x,) (2.4)
and
g=Ag+Q(f{y(t))=f(x(t))), q(0)=Q(y,~x,) (2.5)
By (2.4) and the fact | f(y) —f(x)|<{y—x]. we have

e 1p(1)|*=2CP () =Pf(x), P>

==21f(y(#))—f(x())]-1p(t)]

==2{y(t)—xit)|-| p(t)]

==2]p(i)+q(t)|-|p(t)]

Z=201pE) P+ pit}]| - [q(t)]) (2.6)

Similarly, from (2.5) it follows
—%f—!q(f)lz<2/h!q(z‘) 2o g(D 2 Tp(t)-1g(t)]) (2.7)

Therefore
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—?;T(59!2—!ﬁ12)<2/115qlz+2(ivﬂ?"‘%-ﬁq}”‘:-!‘zllf)}'lq!

and hence
d < ) L
Ul =11 <(24+8) g1 <0 for Igi=]p]

This shows that  y(#)—x(:)€Z, Yt>0 if y,—x,€3Z (the boundary of Z).
ii) Assume there exists to>0 such that y(# ) —x(t.} & Z , then y(t)—x(1) ¢ Z for 0
t<t, by 1), namely |g(r)|>|p(1)], 0< 1< t0.By (2.7) we have

Lla) <@+l P <hlain]?

and .
lq(t)i*Lexp[Ailiglo} "

Consequently,
1Qu(t) =x (1)) | <<explit/21|Qf yy—x:) |, 0IH,

Definition 2.3 Suppose @ is a Lipschitz map from E. into Ex. The continuous curve
I={p+Dip) I pEE?
is said to be a horizontal curve if
(P{p)—=P(pr) || pr—p:i torany p. pEFE,

Additionally. if @ satisfies @( p4-2an,)=®@(p} for anv peE:. then / is called a restricted
horizontal curve.’

Corollary 2.4 If /is a horizontal curve (restricted horizontal curve ). then S{r)!
(W #>0) is still a horizontal curve (restricted horizontal curve).

Proof For any y, x€S{#)I, there exist 3 y.. x, €[, such that S()y,=y, S()xs=x.
Since »,, ¥, €/, y,—x,€Z. From Lemma 2.2 it follows St yy,—S{tix,=y—x€Z, hence
S(#)! is a horizontal curve.

Note the fact f(x+2xn.)=/f(x) , then S(#) is a restricted horizontal curve if [ is a
restricted horizontal one.

Lemma 2.5 There is a constant ¢>0, such that, for any x €R™, there exists t0>0,
1QS (t)x| <Kc/a for #£>t, . If ]Qx-]<c/.4 .then [QS(tix{<c/4 forall 1>0.

Proof Obviously, fis a bounded map from R® to R™. that is, there is a constant ¢>{
such that | f{x)|<Cc for any x €R™ . Suppose x € R™. then S(1)v satisfies

t
S(t)x= e’“x—!-g eADF(S () x)dT (2.8)

= 1QS (1) x| <e*Q) 1 Qx|
t
+ e Qi1 £(S(nx) de
1]

ot
<Lexpl[Ait]| Qx|+ ¢\ explA(t—r7)ldr
Yo

==explit]|Qx| +(c/I M) i—explii])
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This immediately leads to lemma 2.5.

Theorem 2.6 For anv >0, the map S(v) has an invariant restricted hori-
zontal curve |: S(r)l=I.

Proof Let H=1[G, 2x) + 5,cFE:, F={xER"|PxEH}

A ={1|1_is a restricted horizontal curve }
A={i=INZ|IE€E .}

let IT denote the map from £ to Ve
mM=i=in%
For any I 4 , 1 corresponds to a unique Lipschtz map from H to E.. Let M denote the

set of Lipschitz maps corresponding to all the elements of & . The operations in M are defined
as usual and the norm is defined as follows: '

lgl=max|g(p)I, geEM
pel

Then M is a Banach space.
Let

HM={glgeM, |gl<c/4}

In the sequel, the element in M and the corresponding one in A are regarded as the same. M
is compact in M by Arzela-Ascoli theorem, since M is uniformly bounded and equi-
continuous. We define a map F from M to M such that I7.S(r)==F.JT , namely,
Fr=J1oS(:YoIT"' . By lemma 2.2 and 2.5 we have F = M. Since F is continuous from M
into M, F has at least one fixed point / in M by Schauder fixed point theorem. Let
I=IT-'7, then
S(N=S(c) T 1=IT"'Fl= 1"} =]

thus / is an invariant restricted horizontal curve for S(z).

Theorem 2.7 System (1.1) has one-dimensional global attractor /. [ is a restricted
horizontal curve in R™ . '

Proof For +>>0. by theorem 2.6, there exists ! € A4, such that S(r)=! . We shall
prove:1° / is invariant for the semigroup {S(#)},,,. i e S(@)=l, V¥i>0. 2° for
any xGR™, J(S(t)x, [)->0 as ¢->-Foo | therefore, / is the global attractor of system
(L

Proof of 1° For any x€ER™_ we show d(S(nv)x, 1)=0 . as n>+oc. here

d(x.Ndenotes the distance between x and /. Without loss of generality. we assume IQxl<('/4.
For any integer n. there exists § €1 such that PS(nr)x=Pg . Since S(v)I=1I. there is a
Y€1 such that S(nv)y=§ which implies S(nr)y~S(nrix¢ Z . By lemma 2.2 we have
d(S{nv)x, )IQ(S(nv)x—=S(nr)y)]
<exp[Ain/2]|Qx~Qy|
<exp[hnt]-(c/2)
which Jeads 1o d(S(nr)x, 1)>0 as n—>-+oo. Hence S (r)has a unique invariant restrict-
ed horizontal curve.
Suppose 1 is sufticiently small such that IS (¢)I € M .
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_FOHS(t)l::HoS'/T)S(f)l:HoS(f)S(T)I::HOS(f)I

This shows JIS(t)! is a fixed point of Fin M, and hence S()/ is an invariant restrictrd
horizontal curve for S{z) . From the above discussion, it follows S(#)/=[, >0 .

Proof of 2° Forany . x€R” ,it follow from (2.3) d{(S{t)x, I)>0 as t->
+co . Therefore, / is global attractor of semigroup {S(#)}., - (or system (1.1)).

III. Attractors of Discrete Systems

In this section, the notations are the same as-in the previous section.
Let

Fox=Bx+hf(x), xER™

in which B=I+4hA. [ is the identity in R™ . In the sequel we suppose A< 1/4m?* such that
the eigenvalues of B p;= 1k, satisfy 01, i%O, 1, vy m—1.
Lemma 3.1 Forany y, x€R™,
Dify—x€Z, then
Fiu—-FixeZ, n= 1
ityif Fty—Ftx¢ Z  then
[QUF Ly~ Fix) [ <(1=2R)*[Q(y~x) | (3.2)
The proof is similar to that of lemma 2.2.
Lemma 3.2 VYx€R™, 3N>0  whenn>N, |QF%x|<c/4 (here ¢ is the same as
in lemma 2.5). Furthmore, if {Qx|<Cc/4, then {QF xx]<{c/4.
The proof is similar to that of lemma 2.5,
Theorem 3.3 F', has an invariant restricted horizontal curve {} 1 Falp=I,.
Theorem 3.4 [, is the global attractor of F, .
The proofs of theorem 3.1 and 3.4 are similar to those of theorem 2.6 and 2.7 and
hence omitted here.

3

IV. Convergence of Attractors

From the discussions of section II and section III, we know in phase space R™ (m=3)
the discrete system {F{}iZ1(A<{1/4m?) and the continuous system have one-dimensional
attractors [, and [/ respectively, which are restricted horizontal curves in R™ . Suppose Il
and / correspond respectively to the elements @, and @ in Banach space M.

For the solution x(7) to the initial value problem of (1.1)

= Ax4-f(x), x(0)=x,
the approximation value at time T calculated by one-step method is denoted by F¥ x, where
the stepsize A=T/N. N is an integer. By the convergent property ol one-step method we
know F’,‘,'xo—Qx(T) as h—>0. For the whole system. what can be said about the relation
between /y. the attractor of the discrete system. and / which is the attractor of the continuous
system? General results seem to be unknown. In this section we show that for the system of
coupled oscillators (1.1). ], approaches 7 as A-—>0, by which we mean that the corresponding
elements @, converge 1o @ as -0 1 Banach space M.
Theorem 4.1 limiQ,—Pl=u

E—>0
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Proof Note that {@4}(0<h<1/4m?) is uniformly bounded and equi-comihuél‘xs,‘ hence
{@,} is precompact in M. We prove theorem by contradiction. Suppose @,»P as k>0 ,
that is, 36,20 and series {@; } such that |y, ~P|> 2¢, (i=1.2,..) while ;>0 as
i—>+o00 . {@Pn,} has a convergent subsequence since {@,} is precompact in M. For simplicity
of presentation, we assume @, »¥ €M , and ¥]<c/4. Consequently, [¥ ~@P|>e, .
According to the definition of the norm in M, there exists a p€H such that |¥(p)—
D (p)|>¢€,; on the other hand, [Py, {p) =¥ (p)| >0 as - 4oo, then there is an integer
number N, such that [Py, (p) —D(p)]|>¢, for i>N,. Let x=p+P(p) ', then we have

d(xy In;)>2e (4.1)

if i>Ny, here &1 is some positive number. Take T;=#h;n; such that 7;is less than some
T>0and Ti>T ={—In(2e,/c)/2]. Since ! is invariant for S(7’;). there exist X, such that
S(T:)x;=x, i=1, 2-.. . On theinterval [0, T:], calculating the initial value problem -
t=Ax+f(x), x(0)=x].
by one-step method, the error tends to 0 as A;—>0.
“Consequently Fjix;—>x. as i->4oc0 -
Let us suppose that

]F;;:x; -x|<er if i>N, (4.2)
From (3.2) it follows

d(FRixl, I )< =200" o (c/2) < (1=2h) T M5 (0/2)

Since
li —2h;) To/k; .
Il;l‘rflﬂ(1 ) =expl[—2T]
there exists N, >0, such that
d(Fpixi I 1<exp[—2T,](c/2)<er for i>N, (4.3)

Taking N=max{N,, N,, N;} , we have d(x, ln;)<2 as i>N by:(4.2)and (4.3).
This is in contradiction with (4.1).

From Theorem 4.1 it follows immediately that [, converges to/as A->0
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