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Abstract. The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-
sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive
dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of
cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips
touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations
of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter � and
geometrical parameter �.
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1. Introduction

Recently, research on the mechanical properties of some materials that exhibit pressure-
sensitive dilatancy has attracted much attention because these materials cannot be described
by the classical plasticity theories that assume that the hydrostatic pressure has little effect
on material plastic deformation and neglects plastic dilatancy. Examples of these materials
include toughened structural polymers and ceramics. According to studies by Spitzig and
Richmond (1979), Carapellucci and Yee (1986), Sue and Yee (1989) and Chen and More
(1986), it seems that pressure-sensitive yielding has a great effect on the plastic deformation
and fracture of the materials studied.

Because defects emerge very easily in the interfacial regions, with the result that they are
demolished, the interfaces play an important role for many engineering materials and much
work on their crack-tip field has been published. Williams (1959), Cherpanov (1962), Erdogan
(1965), Rice and Shih (1963, 1965) and Malyshev and Salganik (1965) analysed the elastic
problem of a crack lying along the interface between two dissimilar isotropic media by utilizing
different method. Recently Hutchinson et al. (1987), Rice (1988), Shih and Asaro (1988) and
Zywicz and Park (1989) have summarized and developed these early research results. The
solutions for an interface crack in elastic-plastic materials were investigated by Shih and
Asaro (1988; 1990; 1989), Zywicz and Park (1989), Wang (1990). Yuan (1994/1995) has
studied the problem of a plane strain crack lying along an interface between a rigid substrate
and an elasto-plastic dilatant medium. Cook and Erdogan (1972) considered the problem
of two elastic boned half-planes containing a crack perpendicular to the interface. Wang
(1990) presented an exact asymptotic analysis for a crack lying in an elastic-plastic material
and perpendicular to the interface of an elastic-plastic material and a linear elastic material.
However, less attention has been paid to the crack terminating at a straight-line interface as
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Figure 1. Geometry of a crack for bimaterial interface.

depicted in Figure 1, which may be the case during boundary fracturing of the composite or
polycrystalline materials.

This paper investigates the plane strain asymptotic stress field near the crack tip between
the pressure-sensitive dilatant material and the linear elastic material. Based on the pressure-
sensitive yielding criterion introduced by Drucker and Prager (1952) and modified by Li and
Pan (1990), an asymptotic solution for the stress-strain field near the crack tip is obtained
for two types of cracks, one of which lies in pressure-sensitive dilatant material and its tip
touches the bimaterial interface and the other in elastic material and its tip also touches the
interface. The material constants n and � and geometrical parameter � are varied to examine
their effects on the resulting stress and displacements distributions near the crack tip.

2. Constitutive relations

Consider a crack shown in Figure 1(a) which terminates at the interface between a linear
elastic material with the region��6�6� (medium 2) and a pressure-sensitive dilatant material
with the regions �6�6� and ��6�6� (medium 1). The external load is assumed to be the
symmetrical remote tension. Due to symmetry we search only the solution in the region
06�6�.

For the sake of simplicity, it is assumed that both materials have the same elastic modulus
and Poisson’s ratio, i.e. E1 = E2 = E, �1 = �2 = �.
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For the plane strain, the stress-strain relation for material 2 can be expressed as

"ij =
1 + �

E
Sij +

1 � 2�
3E

�kk�ij : (1)

According to Li and Pan (1990) the following simple pressure-sensitive yielding criterion
for material 1 is adopted

�ge = �e + ��m =  (�ij); (2a)

�e = (SijSij=2)1=2
; Sij = �ij � �m�ij ; �m = �kk=3; (2b)

where  (�ij) represents the yield surface in stress space, �ge is the generalized effective shear
stress and � is a pressure-sensitive factor. When � = 0, it means that the effect of hydrostatic
pressure is neglected.

In this analysis, it is assumed that the elastic-plastic behaviour for material 1 in shear can
be expressed as
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where � and 
 are respectively the shear stress and shear strain, �0 and 
0 are the reference
shear stress and reference strain,n is the strain hardening exponent and� is a material constant.

In an asymptotic analysis for a near-crack-tip field, the elastic strains are much smaller in
comparison with the plastic stains and, therefore, can be neglected. In this sense, we have the
constitutive equation
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For the plane strain we have

"zz = 0: (5)

Introducing (5) in (4), the strain-stress relations can be written as
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The stress components in polar coordinates are expressed by the stress function �(r; �) as
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Then, the equations of equilibrium can be automatically satisfied.
The relations of the displacement strain are
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The strain compatibility equation is
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In order to ensure the tractions are to be continuous on the interface, we assume that the
stress field in the whole tip zone has the same singularity for both materials. Let

'(r; �) = Kr
s+2

F (�): (10)

Substituting (10) into (7), we obtain

�ij = Kr
s~�ij(�); (11)

e�rr(�) = F
00 + (2 + s)F; (12a)

e���(�) = (2 + s)(1 + s)F; (12b)
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: (12c)

The corresponding stains can be written as
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The strain compatibility (9) can be represented as"
d2
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For the linear elastic material 2, we have the equation

F
0000 + [(s+ 2)2 + s

2]F 00 + s
2(s+ 2)2 = 0: (16)

The general solution to Equation (16) for the symmetric remote tension is

F = B1 cos(s�) +B3 cos(s+ 2)�: (17)

The traction-free conditions on the crack faces require

���j�=� = �r�j�=� = 0; (18)

which means

F (�) = F
0(�) = 0: (19)

The continuity on the interface needs to have

e���(�+) = e���(��); e�r�(�+) = e�r�(��): (20)

From Equation (20) we get

F (�+) = F (��); F 0(�+) = F
0(��): (21)

Ignoring the rigid displacements, we get from (8) the displacements for material 1

u� = �l
fKr(1+ns)eu�(�) (22)

eur = e"l=(1 + ns); eu� = (2e"r� � eu0r)=ns: (23)

As pointed out by Shih and Asaro (1988) for the bimaterials, the material with a lower
hardening capacity responds at the interface as if it is bonded to a rigid substance, so we have

eur = eu� = 0; at � = �
+
; (24)

which can be written in terms of stresses as

e�rr � e��� + 2�e�e = 0
at � = �+:e�0rr � e�0�� + 2�e� 0e � 4(ns+ 1)e�r� = 0

(25)
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Figure 2. � – variation of the normalized stresses for Figure 1(a) (n = 3; � = 45�).

Figure 3. � – variation of the normalized stresses for Figure 1(a) (n = 3; � = 90�).



P
lane

strain
asym

ptotic
fields

for
cracks

term
inating

atthe
interface

349

Table 1. The values of s and the crack I (n = 3)

� 0� 15� 30� 45� 60� 75� 90� 105� 120�

� = 0:00 �0:25000 �0:249887 0.249035 �0:246551 �0:241165 �0:230951 �0:212612 �0:179875 �0:119537

� = 0:10 �0:2500 �0:249640 �0:248198 �0:244747 �0:237952 �0:225720 �0:204416 �0:167091 �0:099260

� = 0:20 �0:249268 �0:247145 �0:242644 �0:234345 �0:219960 �0:195472 �0:153230 �0:073636

� = 0:30 �0:248749 �0:245866 �0:240205 �0:230260 �0:213520 �0:185536 �0:137872 �0:053164

� = 0:40 �0:244320 �0:237352 �0:225556 �0:206154 �0:174205 �0:120382 �0:025636

� = 0:50 �0:242400 �0:233939 �0:219981 �0:197456 �0:160830 �0:099525 >0

� = 0:60 �0:229691 �0:213079 �0:186683 �0:144227 �0:074020 >0

� = 0:70 �0:223998 �0:203867 �0:172237 �0:121821 �0:039078 >0

� = 0:80 �0:189321 �0:149108 �0:085345 >0 >0

� = �lim 0.187 0.374 0.584 0.773 0.857 0.865 0.866 0.774 0.480

s �0:250000 �0:245673 0.237134 �0:215824 �0:170827 �0:102627 �0:002249 �0:000395 �0:000132
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Table 2. The values of s for crack I (n = 6)

� 0� 15� 30� 45� 60� 75� 90� 105� 120�

� = 0:00 �0:142857 �0:142817 0.142541 �0:141709 �0:139799 �0:135910 �0:128250 �0:112765 �0:079269

� = 0:10 �0:142857 �0:142734 �0:142246 �0:141044 �0:138552 �0:133736 �0:124501 �0:106094 �0:068042

� = 0:20 �0:142857 �0:142604 �0:141861 �0:140244 �0:137108 �0:131264 �0:120256 �0:098552 �0:052821

� = 0:30 �0:142857 �0:142427 �0:141380 �0:139291 �0:135428 �0:128407 �0:115354 �0:089850 �0:036816

� = 0:40 �0:142192 �0:140786 �0:138148 �0:133437 �0:125028 �0:109542 �0:079534 �0:018006

� = 0:50 �0:140004 �0:136745 �0:131004 �0:120890 �0:102396 �0:066853 >0

� = 0:60 �0:139073 �0:134953 �0:127889 �0:115555 �0:093125 �0:050411 >0

� = 0:70 �0:132477 �0:123558 �0:108054 �0:079983 �0:027099 >0

� = 0:80 �0:116333 �0:095288 �0:057282 >0 >0

� = �lim 0.346 0.495 0.656 0.790 0.857 0.865 0.866 0.774 0.480

s �0:142857 �0:140992 0.139051 �0:127915 �0:106556 �0:070643 �0:001581 �0:000279 �0:00094
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Table 3. The values of s and the crack I (n = 10)

� 0� 15� 30� 45� 60� 75� 90� 105� 120�

� = 0:00 �0:090909 �0:090893 0.090785 �0:090458 �0:089679 �0:088016 �0:084530 �0:076731 �0:057019

� = 0:10 �0:090909 �0:090859 �0:090665 �0:090180 �0:089140 �0:087035 �0:082705 �0:073700 �0:048851

� = 0:20 �0:090909 �0:090806 �0:090505 �0:089838 �0:088503 �0:085888 �0:080569 �0:068751 �0:039267

� = 0:30 �0:090909 �0:090733 �0:090300 �0:089423 �0:087746 �0:084529 �0:078017 �0:063545 �0:027825

� = 0:40 �0:090909 �0:090635 �0:090043 �0:088916 �0:086829 �0:082875 �0:074876 �0:057093 �0:013839

� = 0:50 �0:090504 �0:089718 �0:088283 �0:085683 �0:080785 �0.070853 �0:048785 >0

� = 0:60 �0:089290 �0:087456 �0:084174 �0:077990 �0:065386 �0:032475 >0

� = 0:70 �0:086284 �0:082000 �0:073877 �0:057200 �0:020588 >0

� = 0:80 �0:078184 �0:066414 �0:042037 >0 >0

� = �lim 0.444 0.566 0.691 0.798 0.856 0.865 0.866 0.774 0.480

s �0:090909 �0:090121 0.088201 �0:083863 �0:072873 �0:050649 �0:001218 �0:000216 �0:000073
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Figure 4. � – variation of the normalized stresses for Figure 1(a) (n = 3; � = 120�).

3. Solution for asymptotic fields for cracks I as shown in Figure 1(a)

Combining the nonlinear Equations (15) for plane strain and the boundary conditions (19) and
(25), the eigenvalue s and eigenfunction F on the region �6�6� for the pressure-sensitive
material 1 can be found using the shooting method. The initial value of F (�) is taken as unity
for simplicity. After s is preferred to �1=(1 + n) and a value of F 0(�+) is given, F 00(�+)

and F 000(�+) can be obtained from (25), by using the fourth order Runge-Kutta method with
automatic step-size control. Equation (15) can be integrated from � = �+ to � = �. The
results at � = � generally cannot fully satisfy the boundary conditions. Then, adjust s and
the initial value of F 0(�+) step by step and repeat the process until the conditions (19) are
satisfied within the limit of error required.

After F (�+) and F 0(�+) are obtained for the pressure-sensitive material, the coeffi-
cients B1 and B3 in Equation (17) can be determined by employing the conditions (19)
and (21).

For various � and �, the eigenvalues s are given in Tables 1, 2 and 3 respectively for
n = 3, 6 and 10. The �-variations of the stresses e�ij and e�ge are presented in Figures 2–7 for
n = 3 and 10. The solutions for n = 3 and n = 10 represent the crack-tip field for typical
high-hardening and low-hardening materials, respectively. All the stresses are normalized by
setting the maximum value of generalized effective stress e�ge equal to unity.

When � = 90� and � = 0:0, it becomes a problem for the crack perpendicular to the
interface of the classical elastic-plastic material and linear material which was considered by
Wang (1990). Our results as shown in Figures 3 and 6 coincide with those given in Wang
(1990).
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Table 4. The critical angle �0 for crack I

n = 3 n = 6 n = 10

� = 0:00 100:6� 96:3� 94:0�

� = 0:10 100:0� 96:0� 93:9�

� = 0:20 99:3� 95:7� 93:8�

� = 0:30 98:6� 95:4� 93:6�

� = 0:40 97:9� 95:0� 93:4�

� = 0:50 97:0� 94:6� 93:2�

� = 0:60 96:1� 94:1� 92:9�

� = 0:70 94:9� 93:4� 92:5�

� = 0:80 93:2� 92:3� 91:7�

In the case of � < 90�, a �lim exists for each n. When � = �lim, the numerical result of
generalized effective stress �ge at � = � for the pressure-sensitive dilatant material approaches
0. When � > �lim, we cannot find any solution based on the HRR-type formulation. This is
similar to that given in Li and Pan (1990).

In the case of � > 90�, also exists a �lim. The eigenvalue s is greater than zero when
� > �lim.

Figures 8 and 9 show the displacements euij near the crack tip for n = 6 and various � and
�. It is clearly visible that the conditions (24) are exactly met and the crack faces obviously
open.

3.1. THE EFFECT OF PARAMETER � ON ASYMPTOTIC FIELDS

From Tables 1–3, it can be seen that the eigenvalue s increases as � increases for the same
�. When � is equal to a certain value (for example, � = 135�, for n = 3, 6 or 10) the
eigenvalue s is greater than zero for all �. It means that the singularity disappears near the
crack tip.

From Figures 2–7 it is interesting to find that the parameter � has a strong effect on the
jump value in the radial stress across the material interface, (e�rrj�+ � e�rrj��). For � = 0:0,
when � is small, the jump value (e�rrj�+ � e�rrj��) is greater than zero, and as � arrives at a
certain value it becomes negative, then positive again when � continues to increase.

Generally, there exists a critical angle �0 for each n and �. When � < �0; ��� has peak
value in the symmetric face and e�r� is always positive in the whole field. However, when
�>�0; e�r� has peak value near 90� and a minimum value at the symmetric face, and e�r� is
negative in the region between 0� and 90�. Table 4 lists the �0 for various n and �.

3.2. THE EFFECT OF PRESSURE SENSITIVITY PARAMETER � ON THE NEAR-TIP FIELD

From Tables 1–3 it can be seen that the eigenvalue s increase as � increases. When � < 90�

the eigenvalue s is always negative for all the�. When � > 90� the eigenvalue may be positive
for a certain value of �.

From Figures 2–7 it can be seen that the pressure sensitivity parameter � has little effect
on the stresses e�ij except for the small �. When � is small, the (e�rrj�+ � e�rrj��) changes
from positive to negative as � increases.
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Figure 5. � – variation of the normalized stresses for Figure 1(a) (n = 10; � = 45�).

Figure 6. � – variation of the normalized stresses for Figure 1(a) (n = 10; � = 90�).



Plane strain asymptotic fields for cracks terminating at the interface 355

Figure 7. � – variation of the normalized stresses for Figure 1(a) (n = 10; � = 120�).

Figure 8. Angular distribution of displacements for Figure 1(a) (n = 6; � = 45�).
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Table 5. The values of s for crack II (n = 3)

� 0� 15� 30� 45�

� = 0:00 �0:250000 �0:203528 �0:132769 �0:036687
� = 0:10 �0:250000 �0:206072 �0:142312 �0:050305
� = 0:20 �0:250000 �0:208969 �0:148532 �0:061045
� = 0:30 �0:212513 �0:155459 �0:071256
� = 0:40 �0:217145 �0:163941 �0:082554
� = 0:50 �0:175349 �0:097148
� = 0:60 �0:192326 �0:113293
� = 0:70 �0:158163
� = �lim 0.254 0.469 0.631 0.740

s �0:250000 �0:221365 �0:199472 �0:182684

Table 6. The values of s for crack II (n = 6)

� 0� 15� 30� 45�

� = 0:00 �0:142857 �0:120392 �0:084354 �0:021464
� = 0:10 �0:142857 �0:120939 �0:087172 �0:029927
� = 0:20 �0:142857 �0:121695 �0:089176 �0:036047
� = 0:30 �0:142857 �0:122296 �0:092136 �0:041768
� = 0:40 �0:125013 �0:096090 �0:048209
� = 0:50 �0:128509 �0:101833 �0:056700
� = 0:60 �0:111058 �0:069559
� = 0:70 �0:091771
� = �lim 0.397 0.547 0.663 0.755

s �0:142857 �0:131055 �0:120575 �0:112941

3.3. THE EFFECT OF VARYING n

It is clearly visible from Tables 1–3 that the eigenvalue s increases as n increases.
Comparing Figures 2–4 with Figures 5–7 respectively it was found that the stress compo-

nents are slightly affected by the changing n in the pressure-sensitive dilatant material. The
effect of varying s on the stresses in elastic material is larger than that in material 1.

4. Solution for crack II as shown in Figure 1(b)

Figure 1(b) shows another type of crack that lies in medium 1 and its tip touches the interface
of media 1 and 2. The external load is also assumed to be symmetric remote tension.

For material 1 the traction-free conditions on the crack faces require

���j�=0 = �r�j�=0 = 0: (26)

For material 2 the symmetry condition requires

u�j�=� = �r�j�=� = 0 (27)
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Figure 9. Angular distribution of displacements for Figure 1(a) (n = 6; � = 120�).

or

F
0(�) = F

000(�) = 0: (28)

Using the same method as stated above, we obtain the solution in this case. The eigenvalue
s for the various � and � are given in Tables 5 and 6 for n = 3 and 6, respectively. The
numerical results show that the eigenvalue s for � > 50:5� is larger than zero. Therefore, we
give the numerical results only for � = 0�; 15�; 30� and 45�. From these tables it can be seen
that the eigenvalue s increases as � increases for the same �. However, for the same n and �
the eigenvalue s decreases as � increases. This is different from what we discussed above.

Figures 10 and 11 show the �-variations of the stresses e�ij with n = 6 for � = 15�; 30�

and � = 0:0; �mid; �lim. The �mid is a middle value between 0.0 and �lim. The stresses are
normalized by setting (e�ge)max in the elastic region equal to unity. It can be seen that the
parameter � has little effect on the stresses e�ij for the pressure-sensitive dilatant materials.
However, � has an effect on the distribution of stresses e�rr. e�rr increases as � increases for
the small �. On the contrary, e�rr decreases as � increases for the larger �. For other n and �
we have obtained similar results.

5. Conclusion

1. Based on the pressure-sensitive yielding criterion, we obtained exact asymptotic solutions
for the stress-strain field near the crack tip for two types of cracks which satisfy the continuity
of tractions and displacements on the interface and traction-free conditions on the crack faces.
The present results show that the stress distributions near the crack tip are quite similar to
those of the HRR singularity field.
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Figure 10. � – variation of the normalized stresses for Figure 1(b) (n = 6; � = 15�).

Figure 11. � – variation of the normalized stresses for Figure 1(b) (n = 6; � = 30�).
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2. For crack I which lies in the pressure-sensitive dilatant material, the eigenvalue s

increases as � increases. The parameter � has a strong effect on the distribution of the radial
stress along the circumferential direction. The eigenvalue s increases too as the material
constant � or n increases.

The stress components in the pressure-sensitive dilatant material are slightly affected by
the changing � or n.

3. For crack II which lies in the elastic material, the eigenvalue s increases as � increases,
but decreases as � increases. The parameter � has a slight effect on the stresses in the
pressure-sensitive dilatant material. However, it has an effect on the distribution of stress e�rr.
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