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Abstract 
The hydrodynamic interaction between two vertical cylinders in water waves is 

investigated based on the linearized potential flow theory. One of the two cylinders is 

fixed at the bottom while the other is articulated at the bottom and oscillates %ith 

small amplitudes in the direction of the incident wave. Both the diffracted wave and 

the rediation wave are studied in the present paper. A simple analytical expression for 

the velocity potential on the surface of k&h cylin,der is obtained by means of Grass 

addition theorem. The wave-excited forces and -Moments on the cylinders, the added 

masses and the radiation damping coefficients of the oscillating cylinder are all 
expressed explicitly in series form. The coefficients of the series are determined by 

solving algebraic equations. Several numerical examples are given to illustrate the 

effects of various parameters, such as the separation distance, the relative size of the 

cylinders, and the incident angle, on the first-order and steady second-order forces, the 

added masses arld radiation-damping coefficients as well as the response of the 

oscilia ting cj.(inder. 

Key words wave-excited force, added masses. radiation damping, drift force, 
articulated cylinder, two vertical cylinders 

I. Introduction 

With the construction of large offshore structures, wave diffraction and radiation 

problems caused by several bodies become increasingly important. Large offshore platforms, 
wave-power extraction devices, large storage facilities and offshore floating airportsI’] have 
been proposed or constructed with several elementary members or legs such as cylinders. Thus, 
the interactions among several solid bodies in fluids, such as the hydrodynamic interaction 

between offshore structures and floating ice masses and the collision beta-een two ships, need 
to be investigated for accurate and efficient theoretical predictions. The interaction between 
two cylinders is, perhaps, the simplest problem to be investigated. 

To consider the interaction among several bodies in an incident wave, it is necessary to 
account for not only the diffraction of each body, but also the multiple scattering due to other 
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bodies. The diffraction and radiation waves of each body can affect other bodies, and in the 
mean time, they are reflected by other bodies. This process goes on and on, In principle, this 
type of problems can be solved by a number of reliable numerical methods[21. However, the 
computation is quite cumbersome as the number of bodies increases. Therefore, it is desirable 
to have some analytical methods to reduce the complication of computation. 

We shall adopt the approach developed by ZBviska13j and rediscovered by Spring and 

Monkmeyer[4l for water waves. In this approach, the direct matrix method is used to solve for 
the amplitudes of wave components around each body simultaneously, subjected to the 
boundary conditions for the respective body. Ohkusu[51 applied the two-dimensional scattering 
of acoustic radiatioy by an array of circular cylinders to a structure that is composed of three 
vertical circular cylinders. Later, Simon 61 developed a plane-wave approximation (or large- 

spacing approximation) and applied it to axisymmetric bodies in heaving motion. Kagemoto 
and Yuef71 combined the features of the matrix method and the multiple-scattering technique to 
develop an interaction theory to solve the complete problem. They determined wave excited 
forces, hydrodynamic coefficients and second-order drift forces based algebraically on the 
diffraction characteristics of every single body. Fang and Kim f81 determined the seakeeping 
characteristics of two adjacent ships advancing on parallel course. They employed the two- 
dimerisional integral-equation method to consider the hydrodynamic interaction between freely 
floating cylinders in beam sea. Linton and Evansr’l simplified the expression of the velocity 
potential. They all dealt with the diffraction of fixed uniform vertical cylinders, but no 
radiation wave was considered. Recently, Kirn[‘Ol extended the diffraction theory to radiation 
problem and calculated the added masses and damping coefficients for four cylinders with the 
same diameter located at corners of a square. On the other hand, Landweber, Chwang and 
Guo[“] developed an irrotational-flow model in which time-varying added masses were 

determined from the solutions of integral equations for source distributions on the surfaces of 
two bodies. Forces on bodies were obtained from Lagrange’s form of equations of motion, but 
there were no waves. 

In the’ present paper, we shall consider the interaction between an incident wave and two 
circular cylinders. One of them is fixed at the bottom and the other is articulated at the 
bottom and can oscillate in the wave direction. Both the diffraction wave and the radiation 
wave are considered. In Section II, an exact interaction theory is formulated by means of an 
addition theorem for wave potentials. A simple analytical expression for the velocity potential 
on the surface of each cylinder is also given. In Section III, the wave excited forces and 

moments are obtained by integrating the pressure on both cylinders. Added masses and 
damping coefficients of the oscillating cylinder are determined. In Section IV, several numerical 
examples are presented. The effects of various parameters, such as the separation distance, the 
relative size of the cylinders, and the incident angle, on wave excited forces, the steady drift 
forces, the added masses and damping coefficients are discussed. In principle, the method 
presented here can be used to solve the problem with N bodies. The generalization is not 
difficult but tedious. The only change is that the total velocity potential is summed over all 11~ 

bodies instead of two bodies. 

II. Formulation 

Let us consider the irrotational motion of an incompressible and inviscid fluid around two 
surface-piercing circular cylinders. In a Cartesian coordinate systelfi with the 3 axis pointing 
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vertically upward, the mean free surface is 
located at z=O and the bottom of the fluid is at 
z= -A. Cylinder 1 with radius al is fixed at the 
bottom and Cylinder 2 with radius uz is 
articulated at the bottom and can oscillate in 
the x direction which is the direction of the 
incident wave. The motion of the two cylinders z 
can be described in two cylindrical coordinate 0 
systems (rt, 6, 2) (i= 1, 2) with the origins 01 
and 02 being in the z=O plane (Fig. 1). The Fig. 1 Coordilrate systems for two 

coordinates of 01 and 02 are (XI, yl, 0) and (XZ, cylinders 

32, 0) respectively. 
The velocity potential @(x, y, z, t) satisfies the Laplace equation 

vw=o 
and the linearized boundary conditions for CD are 

(2.1) 

@l,+g@*=o on z=O (2.2) 
@,=o on the bottomon z= -h (2.3) 

@f$=o on C1:rl=aI (2.4) 

@ 
dY 

n= -@+h)c0& on C2:r2=uz (2.5) 

where W is the small angular deviation of cylinder 2 from the z axis and in the linear theory, 
equation (2.5) can be satisfied on the surface of cylinder 2 in the static equilibrium position 
Y =O. The velocity potential @ should also satisfy the radiation condition at infinity. 

We assume that all motions are time harmonic with angular frequency CD, then @ can be 
expressed as 

where 

@(x,y,z,t) =d,(x,y:z)e-i”C (2.6) 

d=gktanh (kh) (2.7) 
k is the wave number and 9 is the gravitational constant. The spatial velocity potential of the 
incident wave 41 may be expressed as 

4 I= 
igA 

- --&(z)ei%- (2.8) 

where Iji=eXp[ik%jj is a phase ‘factor associated with cylinder j, A represents the 
amplitude of the incident wave and (xj, yj) are the coordinates for the center of cross- 
sections of cylinder j and 

fo(=) =coshh(+4 
coshkk 

Equation (2.8) can be written as 

k?) 
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cPr= -!$.!-Iji E J,(kr,)exp [ irr(f-Oj)]fO@) (j=-192) (2.10) 
ffas--‘X, 

where J,(krj) is the Bessel function of the first kind and of order n and argument&j. 
The general forni of the diffraction wave potential due to the incident wave is given by 

d’df= -@/ e A,jZ,jNr(krj) exp[inOjlfO’(z) (i=l, 2) (2.11) 
SW -0.3 

where H, (krj) =Hz’ (krj) is the Hankel function of the first kind and of order n. A,j are 
unknown coefficients to be deter-mined and 

(2.12) 

The prime’ denotes differentiation with respect to the argument ka, . 
The radiation potential due to the oscillation of cylinder 2 is 

+~,B.mjX.m,K.(k,r,)fm(~) ]exp[iflfljl (i=1,2) 
m 

where p is the amplitude of the overturning motion of the oscillating cylinder, 

y+ym 

(2.13) 

(2.14) 
I: (kmaj) 

Xnmj= K:, (kmaj) (2.15) 

I,(k,,,cj) is the modified Bessel function of the first kind, K,(k,rj) is the modified Bessel 
function of the second kind, km are the solutions of the equation 

(2.16) 

fmh) = coskm (23-k) 
cos( kmh) 

(2.17) 

Bnoj and Bnnlj are unknown coefficients to be determined. 
The total velocity potential is 

(2.18) 

This velocity potential @, after being substituted into (2.6), satisfies the governing equation 
(2.1), the boundary conditions (2.2) and (2.3) and the relevant radiation condition at infinity. 
All the unknown coefficients in (2.18) will be determined by applying the boundary conditions 
(2.4) and (2.5). The only difficulty is that equation (2.18) is expressed in terms of two 
cylindrical coordinates. Using Grafs addition theorem for Bessel function@,we have 

H,(krl) exp[ii(& -a,,) ]= e H,+z(kR)Jl(krz)exp[il(n+al,--82)1 (2.19) Ir-00 
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K,(Kr,)exp[in(el--alt)J= ,-jj K,+I(RR)ll(kr;)exp[il(s+alL-e2)3 (2.20) 
m 

Then the velocity potential can be expressed in terms of the coordinates (rj, 8,, z) as 

(i#j, i=l, 2, j=l, 2) (2.21) 

where. 

R=J (x,-x1)2+ty2-y1)2 9 uij- -arc tan(E) 

Equation (2.21) is valid for ri<R -Therefore it is an expression valid near cylinder j. 
Replacing I by -1 in (2.21) substituting (2.21) into boundary conditions (2.4) and (2.5) and 
using the orthogonality relations for cosn0, sin& andf,(z), we have 

Ijiexp [ I il$ -f-Al,+ 2 A,J,JT,-l(kR)exp[i (n-l)aif] =o, 
“c-22 

-c~<l<-, i+j, j=l, 2 

Blol+ E &2Zn2N,-~(hR)expCi tn-l)hl=O, -00<l<=J 
ns-03 

(2.22) 

(2.2W 

DC 

i 

0, 
Bh2+ C B,,IZ,IN,-l(kR)exp[i(n--l)al,]= 

l#kl, --cl<cQ 
n--a kCd2, 1=&l 

(2.23b) 



932 Zhou Xianchu, Wang Dongjiao and Allen T. Chwang 

Blmz+ e BnmeXRm~K,-l(k,R)expCilnlexp[i(n--l)azll=o, 
n--c-I 

(2.24a) 

Bw+ 2 B,,~X,m~Kn-~(k,R)exp[i(n--l)alllexp[iZltl 
“W-03 

{ 
0, l#kl, -=<I<= 

= Cd2, 1=-l-!, l<<m<=J 
(2.24b) 

where 

C- -zcoshkh(khsinhkk-coshkk+i) 
lo- kzJ: (ka2) (sinhkhcoshkh+kh) 

c ini= 
~zcosk,h(k,hsink,h+cosk,h - I) 
*k:I: (kmo2) (sink,hcosk,h+R,h) 

(2.2W 

k25b) 

(AZ,, AZ), (Bzo,, 410~) and (BM, Bw) are completely determined by linear equations 
(2.22) (2.23) and (2.24) respectively. Unfortunately, they form an infinite system. In order to 
evaluate them, (2.22) and (2.23) are truncated to a 2(2L+l) system of equations with 2(2L+ 1) 
unknowns and (2.24) is truncated to a 2M(2Lf 1) system of equations in 2M(2L-i- 1) 
unknowns. 

In order to simplify the expression for the velocity potential, we interchange the 
summation order and replace 1 by -I, and thus we have 

= E [ e A,,Z,‘H,-z(kR)expCi(n-I)ar,l ]exp[ilflf]ll(kr,) 
z--cm (2.26) f&---(X, 

“cm zcm El kdnmtK~+ztkmR) Iz tk d-3 expr-j~(~--8,)leXp[i(n+l)al~]f,(2) ) 

I  lsem $, [ ~~~B.,,X,.1K..z(R.R)exp[i(n-Z~a~,]exp[ile,)I 

. exp[ilnlll(k,r5)f,(z) 
By using equations (2.22) to (2.24) we can simplify 4(r,, 8~, z) as 

(2 27) 
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where 812=u dnd 6 22= I. In particular, the velocity potential on the jth cylinder becomes 

where the following Wronskian relations for Bessel functionPl have been used: 

J: (kaj)Hn(kaj) -Hi (kaj)Jn(fel 

=-i[Jn+l(kaj)Y,~kaj)-J,(kaJ)Yn+l(kar) I=-&, 

For a single fixed circular cylinder, we assume that the center of the cylinder is at the 
origin and !Pv=O. Then, from equations (2.22) to (2.24), we have Anl=-i”, BRO~=Bnnl=O. 

Equation (2.29) reduces to the result of McCamy and Fuchs[‘3]. For asingle oscillating circular 
cylinder, moving the origin to the axis of the cylinder, we have &z== -i”, B102=C10/2,. 
B 1m2=Cd2, Bno~=Bnmz =o(n+ 1) , This recovers the result of Drake et al.t14i. If Y =O, 
both cylinders are fixed and Bnml= Bnn2=0 Equation (2.22) is the same as that of 
Linton and Evans[gl. 

III. Forces and Moments 

The first-order horizontal wave excited forces Re (f,je-*mt), Re (fvre-5”t) and base 
overturning moment Re (MYJe-L’U1) on the jth cylinder are given by integrating the pressure, 
which is induced by incident and diffraction waves, over the surface of the cylinder. Thus 

= 2iPgAtanhkh 
k2H: (ka,) (A*jFA-lj) ( ’ } 

i 
(3. la) 

(3. lb) 
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The forces Ro (f,zle-fmt), Re (fFyje-cOL) and moment Ro(M,,je-‘a”) due to 
radiation can be expressed as 

0 -h 

=ZT 2i&.+tanhkh 
k2H; (kc+) eLljf B- IO,) 

cx n(Blmj+B-lmj) 

k,hsink,h +cos k,h - 1 
k:cosk,h 

=- y”&& -icJ&$ (3.2b) 

where JB+~, BR+j are the added masses and radiation damping coefficients due to the pitch 
motion of cylinder 2 respectively. 

Cylinder 2 is freely pinned at a fixed point at the bottom and remains upright in still 
water due to the excess buoyancy in the cylinder. The linearized equation for the overturning 
motion of cylinder 2 can be written as 

I!P+c!P= (Mg2+M,g2)e-i@~ (3.3) 

where I is the moment of inertia of cylinder 2 about the articulated point, Mg2 is the wave 

induced pitching moment on cylinder 2 and Mvg2 is the hydrodynamic moment on cylinder 2 
due to radiation. The stiffness coefficient C arises from the balance of moments induced by 
buoyancy and weight forces acting on centers of buoyancy and gravity of cylinder 2. It is given 

by 

C=+Pgna~ A2 - M,gC, (3.4) 

In the present computations, M,/pjra: h =c) .5 and C,=O .5h . 
The above equation is valid for small F’ and can be solved by the frequency domain 

analysis. After the response of pitch motion of cylinder 2 is determined, we can calculate the 
second-order forces. Actually, the total force is 
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& 

i I 

2s .a 

Fgj =- o 5 5 
Uj{ -PgZ+&(P(')+Gj2PgajCOSejY(')) +&2[p(2) 

21 

$6j2(Zfh)Y(‘) qp- - 6~~a,cose,Y (1) ag -+d,ePga,COSep(“) 

+d,,+qzz+h) (Y(l))?] } 
co& 

i I sine d~d@,+o(~3) f ‘Cm) 

where 

( 
1 d@(l) =E --.- 
9 at I 

+djajCOSOjY") +O(E’) Z-0 1 

The superscripts (1) and (2) denote the first and the second order respectively. 

2n 22 
M #jr=- I 5 aj{ --PgZ+&(p(')+Sj2PgajCOSejY(‘)) +&‘[P(‘) 

0 21 

+d&z+h)w q- d,2ajcosO$P (‘) * +GjzPga,cosOjY t2) 

+aj?. $qzz+h) (Y(‘))2]-}cos6j(2+h)dzdej+O(&3) (334 

For the mean drift forces and moment, the second-order .potential are not needed, as will be 
seen later. 

According to Drake et al. (1984) for an articulated cylinder, the second-order forces are 

where 

-a,cosB,Y (‘) =+$-I @C’l J zJdz- fg~~1)2 
G 

a@(‘) -ajy(‘) ~ 
at I z--h 

COSOj cOS8jdOj 1 (3.6) 

fr=q,eefmt= -$-@+dj~YajCOSOj 

For the mean second-order forces (time-averaged forces), the above expressions become 
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. dej (3.W 

rn$ =$+a( cose$ej{ -Sq.‘I:h-tS01VQ.0#‘(z+h)da-djp2iwe* 

. \I,[ (r+h)z(-!$-cosBj- --$$-sinB,)-a,-!$--(z+h)cosdj 1d.z) 

(3.7b) 
where the superscript *denotes the complex conjugate and the superscript (1) is omitted in the 
above expressions. 

IV. Discussion of Results 

Some numerical examples are shown in this section to illustrate the effects of various 
parameters on forces, added masses, radiation damping coefficients and the response of the 
system. Unless it is stated otherwise, the values of the parameters invloved in the present study 
are R=8m, a1=az=2m, k=0.2/m, and h=8m. In order to evaluate the accuracy of our 
computation, we have calculated two examples given by McIver and Evans (1984) and Drake et 
al. (1984) for the wave excited force in the diffraction problem and the steady drift force in the 
radiation problem respectively. Our results agree completely with their results. In our 
calculation, M=L=8 is accurate enough. In all the following presentations, the horizontal 
wave excited forces and the steady drift forces are nondimensionalized by pgAa,h and 
PgA2a, respectively. The dimensionless added masses and radiation damping coefficients 
ci$j and bi+j due to the overturning motion of cylinder 2 are defined by 

A A aIfij= Paa:,;,:! ’ 
5#j 

“!~j &raZ,h3/2 ’ (i=i,.a) (4.W 

(4. lb) 

where At+j and Bi#, are defined in equations (3.2a) and (3.2b) respectively. 

Added mass and damping coefficients (rtZ=O’) 

n I I.7 
--- --- _--- 

1.25 
1.20 I I I I I 1 OS ,bwZ 1 1 I I L 

0’ 60’ 120’ 180” 240” 300’ .360’ 0’ 60” 130” 1SO” 240’ 300’ 360’ 
a12 =I2 

Fig. 2 Wave excited forces in the s direc- Fig. 3 Added mass and damping coeffi- 

tion versus the incident angle x1: cients of the articulated cylinder 
versus the incident angle YC 

The dependence of the wave excited forces in the s direction on the incident angle ti12 is 
shown in Fig. 2. It is noted from Fig. 2 that the wave excited forces are symmetric about x,2= 
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71. Because ‘the radii of the two circular cylinders are equal, lfrlh) I =Ifzr(~-~lz) I 

according to physical intuition. It is valuable to note that the maximum magnitudes 
of the wave excited forces are not at CI ,2=0 or n/2, but at some incident angle between them. 
The wave force components perpendicular to the wave direction are small in comparison with 
those parallel to the wave direction at any incident angle clt2. Therefore, they can be neglected 
in computing the magnitudes of .the wave excited forces. The dependence of the added masses 
and radiation damping coefficients on the incident angle is shown in Fig. 3. We note from Fig. 
3 that the added masses have minimum values and the radiation damping coefficients have 
maximum values when the incident angle a12=n/2. 

The variation of the wave excited forces with the dimensionless separation distance kR is 
shown in Fig. 4. At zero incident angle, the wave excitied force acting on the fixed cylinder 
(cylinder 1) oscillates with a larger amplitude than that on the articulated cylinder (cylinder 2). 
The amplitude of oscillation decreases as the.separation distance increases. As RR approaches 
infinity, the wave excited forces tend to that of an isolated cylinder. 

j-=1, j=2(at2=90") 

Lot, 
0 2 4 6 8 10 

kR 

Fig. 4 Wave excited forces versus the 

separation distance k R 

18r 

121 ’ / I 
0 2 4 6 r, 10 

kR 

Fig. 6 Response of the articulated 

cylinder 

Added mass and damping coefficients (a,,=O’) 

QlfQ 

0.81 . as@ 
0.6?- 
O.Q- h, 

n.2- n, 
0 I bw 

0 2 4 6 8 10 
k.R 

l.lr 
Added mass and damping coefficients (a,,= 90’; 

1.2i i 
at+2 

1.G 
L 

i:$ 

a5#2 

0.4/- \ bw 

"3 I I , bs+z I 
0 2 1 $ 8 10 

KR 

Fig. 5 Added mass and damping coeffi- 
cients of the articulated cylinder 

versus the separation distance k R 

Though at zero incident angle, the added masses and damping cofficient of the articulated 
cylinder oscillates with the separation distance kR as shown in Fig. 5, the amplitude is very 
small. They are constant at IX,~= 7~12, and increases very rapidly as the two cylinders become 
closer. So, the added masses and the radiation damping are almost independent of the 
separation distance RR. This is the reason why a plane-wave approximation (or large-spacing 
approximation) developed by Sirnor&“] can be applied to the case with normal spacing. We note 
from Fig. 6. that the response of the articulated cylinder is almost unchanged when RR 
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becomes large. For small k.R, however, the response of the articulated cylinder decreases 
rapidly due to the shadow effect of the leading cyhder at ~z~~=O, and becomes large due to the 
interaction between two cylinders at g,*=n/2. 

As the size of the cylinder increase, the wave excited forces increase until they reach 
maximum values near kaz0.5 (Fig. 7), not bear ka!a= 1 as in the case for an isolated cylinder. 
Then they decrease as well as oscillate with further in&ease in ka at CGZ=O and the amplitude 
for the leading fixed cylinder is large then that for the back articulated cylinder. As shown in 
Fig. 8, the steady drift force increases fast when k.u> 1. The resonance for the articulated 
cylinder occurs near kaz0.2 (Fig. 9) where the viscous effect should be take into 
consideration. 

2.5r 

OO_i 2.0 
ka 

Fig. 7 Wave excited forces versus the 

size of the cylinder 

1.0 
ka 

Fig. 9 Response of the articulated 

cylinder 

0.8~ 
0.7- 

-0.2t ka 

Fig. 8 Drift forces on the articulated 

cylinder 

aJa2 

Fig. 10 Wave excited forces on the 

articulated cylinder versus 

the size ratio 

It is obvious that the wave excited force on the fixed cylinder increases as its size 
increases. However, as the relative size al/a2 increases, the wave excited force on the back 
cylinder decreases at aj3=0 as shown in Fig. 10, because of the large wake of the front 
cylinder. When ~~2~42, the wave excited force on the articulated cylinder increases slowly. 
Since the separation distance between the centers of two cylinders is fixed, the gap between 
two cylinders becomes small w,hen the radius of the fixed cylinder beconies large. Thus, the 
interaction between two cylinders is strong, and the component of the wave excited force and 
the steady second-order force perpendicula;, to the wave direction may not be negligible. 

V. Conclusions 

Based on the present results, it is found that the magnitudes of wave excited forces on 
cylinders depend on the incident angle which is the.angle between the incident wave direction 
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and the line joining two cylinder centers. The wave force component perpendicular to the wave 
direction is very small in comparison to that parallel to the wave direction. The maximum 
wave force occurs at a certain incident angle which is neither zero nor right angle. The wave 
excited forces also depend on the separation distance between the two cylinders. At zero 
incident angle, the wave force actint on the front fixed cylinder oscillates with a larger 
amplitude than that on the back articulated cylinder and the amplitude of oscillation decreases 
as the separation distance increases. For large separation distances, the wave forces on both 
cylinders approach to those for isolated cylinders respectively. If the front cylinder becomes 
large, the wave force on the back one decreases at zero incident angle because of the large 
wake of the front cylinder. On the other hand, the wave force on the articulated cylinder 
increases slowly if the incident angle is 90 degrees. 

The added masses and radiation damping cofficients for articulated cylinder 
corresponding to the excited force in the wave direction and the overturning moment are 
considered. It is found that the added masses have minimum values and the radiation damping 
coefficients have maximum values when the incident angle is 90 degrees. The radiation 
damping coefficient and the added masses oscillate with the separation distance at zero incident 
angle while they are almost independent of the separation distance at a=n/2. Resonance for 
the articulated cylinder occurs at certain wavelength. 
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