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Abstract
Based on a constitutive law which includes- the shear components of
transformation plasticity, the asvmpiotic solutions to near-tip fields of plane-stra}'n
mode I steadity propagating cracks in transformed ceramics are obiained for the case
of linear l'sorropic,hardeni/zg. The stress singularity, the distributions of stresses and
velocities at the crack tip are determined for various material parameters. The factors

influencing the near-tip fields are discussed in detail.

Key words transformation toughening ceramics, shear effect, crack growth,

asymptotic method
I. Introduction

The mechanism of fracture toughness enhancement in ceramics has been widely studied
since the early 1980s. The pioneering constitutive model developed by Budiansky et all"
includes the effect of plastic dilation, but neglects the transformation-induced shear strain. And
their computational results of toughness increment are much less than experimental
observation. There arises doubt from researchers about the validity of the model of Budiansky
et ‘all'!. Recently, increasing experimental evidence found by Chen and Reyes-Morel® -
indicated that plastic shear and dilatant effects are of comparable magnitude and both can not
been ignored in the assessment of toughness increment. Based on these and the related
observations, Huang et al® presented a new micromechanics-based continuum_ model to
account for both dilatant and shear effects. by means of Hill-Rice’s internal variable
constitutive theory. Ye et al® also developed a new constitutive law including dilatant and
shear effects, and used it in their FEM calculation of stationary cracks. Stam et al® carried out
FEM analysis to study the crack growth behavior by using the constitutive law in reference [4].
[t is found that the shear components of transformation deformation which has been neglected
in previous investigations have played an important role in the estimate of toughness behavior
N ceramics.

Asymptotic analyses of stress and strain fields near the crack tip in those pressure-
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sensitive materials have been paid much attention during the past years. Li and Pan!? studied
the asymptotic fields of a stationary crack for deformation-plasticity theory adopting Drucker-
Prager yield surface with associative flow-rule. For incremental smali-strain elastoplasticity
obeying the Drucker-Prager yielding condition, an asymptotic determination of near-tip fields
at the growing crack tip has been presented by Bigoni and Radil®). But all those investigations
not taking the full transformation zone into account, resulted in a plastic reloading zone near
the crack flanks. Furthermore, because a limit value of the pressure-sensitive factors exists in
their asymptotic analyses, the constitutive model in references [7] and [8] can not be used for
transformation toughening ceramics.

In our previous paper [9], the asymptotic analysis of stress and strain field near the model
1 steadily propagating crack has been carried out, based on the constitutive: model "of
Budiansky et all'L It is seen that with the decrease of plastic volumerical tangential modules, the
singularity of stress fields and the level of mean stress ahead of the crack tip will decrease, and
obviously this will lead to an increase in the fracture toughness. In this paper, a brief outline
of the constitutive model developed by Ye et al¥ is firstly given. Then the paper is addressed
to the asymptotic study of plane-strain mode I steady-state growing cracks by using a variable-
separable expression similar to HRR-type fields. The results of detailed computations for
various material parameters are presented and the effects of shear effect on the near-tip fields

are discussed.
II. Basic Equations

2.1 The constitutive relations

A homogeneous isotropic hardening material characterised by a nonlinear constitutive
relation is adopted in reference [5]. It is assumed that the vield criterion contains two stress
invariants and the plastic deformation obeys the associative flow rule. These assumptions are
consistent with the experimental observation in Chen and Reyes-Morel™ ¥ and the theoretical
analysis of Huang et al%, :

The transformation plastic loading surface, f, can be written as:

f=om+poe-<7:—H(Sc—15’)=0 (2.1)

which o, is the effective stress, ge= /-g-s,-js,, , St; is the stress deviator, §¢;==0i3~ O nJss, Um IS
the mean stress, O’m:—;—é(jo-ij and 0Oy, is Cauchy stress, the material constant ¢ measures the
effective stress sensitivity of vielding. de? =J—§—dsf,defj , def yis the increment in total plastic

strain and A is a function of the accumulated effective plastic strain Sde',c* is the
characteristic mean stress at which transformation plasticity occurs. '
Let the plastic volumetric tangential modules be B=(do,/de? and the plastic effective

tangential modules be G =d0e/de” in which ggp= | (2/3)de? det,,def; =d£f;-%d8,ﬁ5”.

With the developing transformation plastic deformation, we have
f=don+udoe~ H'de? =0 12.2)

where H'=dQ/ de*s Q=0n,+puo.
According to Drucker's postulate. we have:

, 0f j 3
defy=dig - =diQ, (2.3)
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where Q‘,—_-.;.a,.j + _23_;1 5

(;’ , d’is a scalar multiplier. It is easy to be found that dey=dA
Ve _
and ge? = pdA, S0 We can get the hardening modutus H’: H’=3(B+uG)/n/2 +5u s
The constitutive relations in rate form can be expressed as follows:
. . . .« .
e;,:-%,—[(l-f‘v)m;"*l’o‘mafj]T -H-T(kacu)Qu (2.4)
where 0 before the onset and after the end of transformation
a=
1 at transformation loading stage

In the case of ¢ =0, the above equations are reduced to the constitutive equations of
Budiansky et al. From the experimental results mentioned above, the tangential modules
H’>0 holds for Mg-PSZ ceramics, because B>0 and G>>0 . Thus loading and unloading

criterion can be given as follows:
>0 loading stage

: Quém<=0 netural loading (2.5)
<0 unloading stage
The yielding criteria can be formulated as:
Cpt U0e=0Th (2.6)
The condition for the completion of transformation is:
0=0" , (2.7)
in which @ is the plastic dilatation and @7 is a constant. and the plastic effective strain is not

constrained by any conditions.
2.2 Basic equations

X2

Fig. 1 Typical configuration of steadily- growing plane cracks

Under the small transformation condition. there are two distinct regions, actively loading
transformation and elastic, in the neighborhood of the crack tip, which are separated by the
boundary I' on which elastic unloading begins. Those are shown in Fig. 1. Transformation
loading occurs in domain A4, and region A. corresponds to elastic unloading and full
transformation stage. The height of transformation zone is A and the height of the fully
transformed zone is A, The transformation zone is separated from elastic zone by the
boundary Q, and there exists a fully transformed zope circled by Q. in the immediate vicinity
of the crack tip. In this paper, we require that the material parameters B and the strength of
transformation w=E@T(1+v)/0l/(1—v) should satisty the conditions B>0 and o>10,
which are always true for some materials. such as Mg-PSZ and TZP. The FEM results in
references [3. 5, 7] indicated that H. is much smaller. comparcd with A, in the case of above
conditions. And the experimental observation of Marshall et al'¥9 also showed that in
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toughened Mg-PSZ ceramics, fully transformed zone can not be found by Raman
Spectroscopic in the regions adjacent to crack tip, and the maximum amount of transformed
particles was approximately 80% of the original tetragonai phase particles. So, the ring region
circled by Q. and Q: is big enough for the existence of asymptotic solutions, because the
deformation in fully-transformed zone has very little influence on the stress fields in it.

A Cartesian reference system is employed, as shown in Fig. 1, with the origin attached to
the moving crack tip. It moves together with the crack at a constant velocity V. Therefore, the
steady-state propagation condition implies that zmy\‘material derivative can be identified with a
spatial derivative in the direction x,

/e in. 1 sind 8 a] ‘
dC)/di==Va( )/om=V|-=2% 2 —cos (2.8)
Referring to the co-ordinates (r, (), the equations of equilibrium are:
(ro'rr)yr+0'r9,9“0'98=0 (2.9)

(rovs) se+0sny0+ Ces=0
The strain components are related to the two in-plane velocities v and vy, vs and v, by
érr"'—'vnr, Egp= (00»9 +vu,.)/r

. 1 .
€ra=—:2*[ve,r+(vno—ve)/n (2.10)

£43==0
Let e,, € be the unit vectors in the directions of r and 0 respectively, and the material
derivative of stress components can be obtained by the following equations:

(e,-a-e,)‘=e¢-a-e,+e¢-6‘-ej+e;-o- ey

s1n6
¢ =V=— (2.11)

smB

Using Eq. (2.11). the followmg expressions of the components of stress rate tensors are

obiained:

sinf
O',-5=V[ n (0r9,9-0'n+<709)—'00390r0n]

_V[sm@(o,me —90,8) ~ cos()amr]
(2.12)

6’66=V|:'Si:19(‘700;9 +2049) — cOostiae,s ]

sind
Oay== V[ ! 0'33,9--00!;00'3,,,]

Across the loading-unloading boundary I', all the stress components must be continuous
in this paper. As a mater of fact. it has been proved by Narasimhan and Rosakis"! that the

requirement is correct if the material is stable in the Drucker sense.

[11. Asymptotic Solution
It is noted in reference [6] that the system of partial differential equations consisting of
equations (2.4). (2.10). (2.11). which. arc homogeneous in r. is strongly elliptic if H">0.
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Therefore asymptotic solutions can be sought in a variable-separable form, similar to the HRR-

type fields!S: ¥

v,=K(V/E)y: () (2ar)®/s
vo=K (V'/E)ys(6) (2mr)/s
= Kys(6) (2ar)s/s
Ore=Ky,(0) (22r)*
ouw=Ky,(0) (2nr)*
Oy =Kuye(0) (27r)*

where negative s is the stress singularity coefficient, I is called as transformation stress

intensify factor (SIF), and y:(0) (i=1, 6) are unknown functions.

The substitution of (3.1) into (3.12), (2.4), (2.9), (2.10) yields a system of six first-order
ODEs in the forms

(3.1)

yi=ys—(1+5)y,

yi=—(1+8)ys

yi=(sy,cos0+g,,)/sind+2y,

4!=(sy,cosf+c;,)/sind
y=—y1+5[Fpp—V(Trr+Ts3) +AQss ]

yl=(1=8)y+ 2s[ (1+) &ro +4Qes]

(3.2)

where
y=04/ (0K (27)r*" '], yi=dy:/db,
é« = —s(yssinf+yscosd)
&= —s(y,5ind+ y;cosd),
U S R S D"
Q=g t5#o— Qu=gtouz

1,3 s 3 sm
Qas—3T2uUe, -re*"zuge

o=l a“[v(1+>>-—+vc:)33(@33 Qo) = Qo (Que +3Qs5) |

~2816Qn(Qur+9Qu) +:(H-+01,)}

. 1 H . . ) . .

O3;= H,/E+an [V IS (.Q'rr+Qse)—st(Q"Qn‘i‘QoaQ‘ee+2Qfs_0.'re)]
H’

d=(1“1’2)*‘E_‘+Q§3+Q2ﬂ+QVQans‘

= H (QrrTrr + QasTos + Q330 50+ 2Q435 25 )

fix

in which 4<0 if the transformation unloading starts and then let Q,,=Q,,=
Quw=0Qys=0 in the above experssions.
The mode 1 symmetry requires that
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Y2(0) =y (0) =y (0} =y{(0)=y.(0)=0 (3.3)

Moreover, on the crack flank. tractions must vanish, hence:

Ys () =ys(w) =0 (3.4)
With the normalisation of stress field. thus:
ys(0) =1 (3.5)

By taking into account ¥ (0)=y'(0)=0 the following auxiliary boundary conditions
can be established:
Y1(0) = —5{y(0) =155 (0) +ys(0)1+Qss (0) 4(0) }

y5(6)="'{é’4<0)+y5‘9)]“@33(0)4_’1(0) (3.6)

The.system of ODEs can be solved by using the standurd Runge-Kutta procedure, except
for the amplituder K in (3.1). With the values of s and y,(0) assigned tentatively, the
integration is performed and the values of ¥:(7) and yg(x) are checked if the condition
(3.4) is met. On the basis of the error, s and y,{0) are reassigned and the process is iterated.
With the control of the error and the time step, a safisfactory result can be got.

1V. Numerical Results

The numerical analysis was cariiei out for Mg-PSZ containing 35 vol% t-ZrO. The
matsrial parameters used in this calculation are E=208GPa, v=0.3, F/E=O.C'63_,
G/E = 9,226 and various values of ¢=0.0, 0.1, 0.2, 1.5, 0.6. The numerical results of many
constants, such as the singularity s and the unloading angle ff, are reported in Table 1. It can
be seen that the value of s increases with the.in’crease of the parameter, but the value of
changes very little. -

Tabie 1 The constants for various vilues of

u 0 0.1 0.2 0.5 0.6
s —0.40825 | —0.38109 —0.35505 ~0.30110 ~0.28767
8 : 64° 67° 68" 69° | 72°

Plots of angular distributions of the mean stress and effective stress near the crack tip are
shown in Figs. 2 and 3, respectively. It is demonstrated that the angular distributions of

o,,-.:rt,../[[\'(zm)'] Q,:g,/[K(Zﬂr)'}
” 4.0
2.0 —_— 0 =0.0.1.0.2
Lok 3.0 —"1—/1:().5

———r = 0.6

2.0

-2.0 ——= =06 “ 0.0
7

-3ul 2 s -1.9 N "

0o 30 &0 99 120 150 180 0 .30 6 9 120 150 180

Fig. 2 The angular distribution of mean Fig, 3 The angular distribution of effective
stress for various values of y stress for various values of y
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stresses change very little if u<<0.2 and the gradient of the stress curves ahead of the crack
tip is much smaller compared with those in the casc of ©1=0.5 and 0.6. When u reaches a large
value, the curve of stress ahead of the crack tip becomes steeper and steeper. It can be found
that the values of effective stresses ahead of the crack tip decrease with the increasing value of
i, while the values of mean stresses increase a lot. Therefore the ratio of on/0. increases
rapidly with p increasing. This indicates that the degree of the constraint ahead of the crack

tip increases a lot.

2.0 an

T

~3.0 ) \ ; N | 4 - 3.0 . . N L \ Kl
TUo 300 o0 90 1200 130 180 030 oo 90 10 150 180

Fig. 4 The angular distribution of stress Fig. 35 The angular distribution of

components for ¢=0.1 : stress components p=0.5

Figs. 4 and 5 demonstrate the angular distributions of stress components at the case of
#=0.1 and 0.5. It can be seen that by increasing the effective-stress sensitivity y, the state of
stress near =0 approaching to the crack tip tends to be a hydrostatic state of tension. This is
due to the singula\rl behaviour at the vertex of the yield locus, similar to the Drucker-Prager
yield surface used in Bigoni and Radi®. In the computation, when p is greater than 0.613, we
can not find any solution based on the present HRR-type formulation. Therefore, if we use the
constitutive model including the plastic volumetric deformation to obtain the asymptotic crack-
tip tields, it must be noticed that there is a limit value for its material constants, such as (i in
this paper and the pressure-sensitivity in Drucker-Prager yield locus. For this reason, the
asymptotic solutioncan not be obtained for the dilatation plasticity model in reference [1], by
using the Drucker-Prager yield surface. In addition, from the result in Bigoni and Radi®, the
maximum value of the limit value of the pressure sensitivity is 0.5, much less than the value for
the case of transformed ceramics, for example, 0.7~0.98 for Mg-PSZ and TZP ceramics. So,
we can say that the constitutive law presented here is more suitable for the dilatation-
dominated materials such as ceramics, rock and concrete, and the Drucker-Prager yield locus
is suitable for steel and plastics in which the shear stress are much more important than
volumetric deformations. '

It can be seen that when 6 approaches to =, the angular distribution of O, T35 tends to
be negative infinite. These results in the existence of constant compressive stresses in the region
near the crack flank in the wake. It is consistent with the results of our previous work?,
Budiansy, et al'! and Stam et al'¥ But in the paper of Bigoni and Radi®, we found that the
same result occurs only at the case of large value of the pressure sensitivity, but at most cases,
the stresses o,,, 033 tend to be positive infinite as those in the classical elastic plastic
materials.
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V. Conclusions

In this paper, a constitutive model which includes the effect of shear part of
transformation plasticity, is given and the asymptotic analysis of stress and velocity fields in
the ring zone near the crack tip is carried out. The near-tip zone is comprised of the
transformation loading zone and the elastic one in which the material is under unloading or at
full-transformation stage. The near-tip asymptotic fields are dependent on the choice of the
value of effective-stress sensitivity. It can be seen that an increase in u will produce:

{1) a reduction in the singularity of the near-tip fields;

(2) a decrease in the effective stress ahead of the crack tip;

(3) an increase in the ratio of mean stress and effective stress, which means that the degree
of constraint near the crack up increases;

(4) a little change in the angular distribution of stress ficlds if the value of 4 is less than 0.2.

In the meantime, we can find from the computational results that for volumetric-
deformation-dominated materials, the constitutive model presented in this paper is more
suitable for asymptotic analysis than the Drucker-Prager yield condition.
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