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Abstract:  A second-order dynamic model based on the general relation between the 

subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the 

second-order model was made using moderate resolution direct numerical simulation date at 

high Reynolds number (Taylor microscale Reynolds number Rx = 102 - 216 ) for 

homogeneous, isotropic forced flow, decaying f low, and homogeneous rotating flow. 

Numerical testing shows that the second-order dynamic model significantly improves the 

correlation coefficient when compared to the first-order dynamic models. 
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Introduction 

In LES, the large scales in the flow are computed explicitly and the subgrid-scales (SGS) ,  

which are filtered out by an average process operation on the Navier-Stokes equations, are 

modeled. Since LES requires less computer time than the direct numerical simulations and uses 

simpler and more universal models than standard Reynolds stress model, LES has become an 

important method for simulating turbulent flows. In LES, the objective is to model the effect of 

subgrid-scale stress on the large scale motion. Intensive efforts have been made to model the 

subgrid-scale slxess using information from the resolved large scales. Most SGS models are based 

on eddy viscosity assumptions. The most commonly used model is the Smagorinsky model. 

Assuming that energy production is balanced by dissipation, Smagorinsky obtained the following 
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expressions for the subgrid-scale stress and eddy viscosity: 

r~ - ( 1 /3 )  ~ijrk~ = - 2u,Sq, (1) 

v, = ( c , ~ ) z  I S 1, (2) 

where Sii = -~ ~ ~ + 3 xi ] 

is the resolved strain rate tensor, I S I = ~/f-~iiSij is the magnitude of swain rate tensor, c, is the 

Smagorinsky constant with a value between O. 1 and O. 27 and ~ is the length scale for the grid 

f'flter. 

The Smagorinsky model, though very successful in the LE$ of turbulent flow, has some 

notable drawbacks. For example, it requires an empirical flow-dependent model constant and an 

ad hoc damping function to predict the proper asymptotic behavior near a wall or in laminar flow. 

Moreover, this model can not account for energy backscatt~r, a desired property of LES 

(Leith [1] ) .  A remarkable improvement to the Smagorinsky model was made by Germano 

et al. [2] and Lilly [3] using a dynamic subgrid-scale eddy viscosity model. In their dynamic 
model, two filters are used and the model coefficient is calculated dynamically using an algebraic 

identity to relate the subgrid scale stresses at two filter levels and the resolved relative subgrid 

stress. This model gives the proper asymptotic behavior near any wall and is able to predict the 

energy backscatter since the dynamically determined model coefficient could be negative. The 

advantages of this dynamic model over the traditional Smagorinsky model have drawn increasing 

attention. This model has found a wide acceptance in LES. This dynamic subgrid model was used 

by Yang and Ferziger [4] in the simulation of turbulent obstacle flow, by Zang et al. [5] in 

recirculating flow, and by Piomelli [6] in a channel flow at high Reynolds number. Moin et al. [7] 

extended it to the simulation of compressible flow. A notable problem associated with the 

dynamic model is numerical instability when the model coefficient becomes negative. 

It should be pointed out that both the Smagorinsky model and the dynamic model are eddy 

viscosity models in which the subgrid-scale stress is only proportional to the strain rate tensor. It 

is expected that a model would be more accurate if more information is included in addition to the 

strain rate tensor. Lund and Novikov Is] suggested that a dependence on the rotation rate tensor be 

included because it is believed that the vortex stretching is the dominant mechanism by which 

turbulence transfers energy from large scales to small ones. They expressed the subgrid-scale 

stress as a function of strain and rotation rate tensors in the form of a series expansion involving 

products of  the strain and rotation tensors. 

In this paper, a second-order dynamic model based on the general model suggested by Lurid 

and Novikov N is formulated and tested using DNS data. The directly simulated turbulent flows 

used for model testing are: homogeneous isotropic forced flow, homogeneous isotropic decaying 

flow and homogeneous rotation flow. In the following section, the essential features of the 

second-order dynamic models are described and the method used to test the models is presented. 

The test results and discussion are given in Section 2.  The conclusions are presented in Section 3. 

1 Methodology 

In a dynamic eddy viscosity model, two triter operators are defined to obtain the large-scale 
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quantities. One is the grid filter G , the other one is the test filter G with a filter width larger than 

. The large scale quantities are obtained by 

f f ( x , )  = ( x , ) C , ( x ,  - x , ) d x ~ ,  (3) 

?(~,) = f f ( ~ , ) ~ , ( ~ ,  - ~ i ) d x l .  (4) 

Let G = GG. Applying the filters G and G to the incompressible Navier-Stokes equations one 

obtains two sets of filtered equations 

3 ~  8 1 8/~ _ 8v~ a 2~; 
at + ~ ( ~ ' ~ )  = - ~ ~ ,  % + " a~9~ j' (s) 

where 

8 ui 8 "-~ "~ 3 3"- "" 
= - ~ ~ ,  - ~ + ~ % % ,  (6 )  + 

rq = uiuj - uiu j ,  (7) 

r~ = ~ - ui u; (8 )  

are subgrid-scale stress and subtest-scale stress. The resolved stress is defined as 

.~q = ~,~j - u i u ; .  (9) 

As shown by Germano Ez] , Tij,  r q ,  Y~i are related by 

.~ = r,; - % .  (1o) 

1.1 T h e  s e c o n d - o r d e r  d y n a m i c  m o d e l  

If  it is assumed that the subgrid stress is a function of both the strain and the rotation 

tensors, the subgrid stress model can be expressed in general form as (Lurid and Novikov tS] ) 

vii  - ~ S i i V k k  = - - C l A "  I S ] S i t  + c ~ ' ( S i k R k j  - R i k S k j )  4- 

c3ZX2(S~Ski )"  + c4~X~'(RikRki)" + 

1 -- -- -- 
csTX 2 T - - ~ (  S~SkIRo" - R~SkzSLj ) , (11) 

where Rq is the resolved rotation tensor; ()  * indicates the trace-flee part.  The f'n'st term on the 

RHS is the Smagorinsky term associated with the strain tensor. The remaining terms depend on 

the rotation tensor and are of higher order than the first term. Lund and Novikov Is] evaluated this 

expression by calculating the correlation coefficient between the exact stress and models using 

direct numerical simulation for homogeneous isotropic turbulence. They found that if the model 

coefficients are constant and only one term is used in the right-hand side of Eq. ( 1 1 ) ,  the first 

term is the best one with a correlation coefficient of 0 .24 .  If more terms are included, there is not 

significant improvement on correlation coefficient. The correlation coefficient is only 0 .26  if all 
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terms are included. If  the model coefficients are allowed to vary in space and t ime,  the best term 

is still the first one with a correlation much better than that with a constant model  coefficient. But 

the first term is not dominant. As more terms are included, the correlation increases. This result 

indicates that the model with a variable model coefficient performs better than the model with a 

constant coefficient. For the model with variable coefficients the correlation is better when more 

information is included. From Lund and Novikov'  s results, if can be seen that the best two terms 

are the first two terms on the right-hand side of Eq. ( 11 ) .  The base model used here to formulate 

the second-order dynamic model is 

1 ,~ - 7  
vii - -~8iirkk = - ~ c l A "  I S I Sii + c z -Az (S~Rk i  - R ~ S k j )  (12) 

Since the model is invariant to the filtering process, the subtest stress can be expressed as 

Tq - f fc~i jTkk = -- 2 c l A  2 I S I  S q  + c 2 A 2 ( g i k R k j  - R i l ~ S k j ) .  (13) 

Substituting Eqs. (12) and (13) into the algebraic identity Eq. ( 1 0 ) ,  one obtains 

= c ,  + ( 1 4 )  

where ~ is the trace-free part of S i ) ,  and 

M~j = -  2(&'- I S I  S, j  - 7 x  a I S I S i j ) ,  (15) 

N,g = &Z ( Si~[lkl - R ~ S k i )  - [X~'(3aRki - R ~ S k ~ ) .  (16) 

Eq. (14) represents five independent equations for two unknowns. The error at each point of 

space can be minimized by applying a least-squares approach. Let 

d 
dct~_.j~ ~ - ~ ( ~ 0  �9 - ClMi  j - c~Nij)*- = 0 ( l  = 1 , 2 ) .  (17) 

i ] 

c I and c2 are then given by 

( . . ~ * M  + M . . ~ * ) ( 2 N N )  - ( . , ~ ' N  + N . ~ ' ) ( M N  + N M )  
c ,  = ( 2 M M ) ( 2 N N )  - ( M N  + N M )  ~- , (18) 

( . , ~ N  + N . ~ * ' ) ( 2 M M )  - ( . . , ~ M  + M . , ~ ' ) ( M N  + N M )  (19) 
c~ = ( 2 M M ) ( 2 N N )  - ( M N  + N M )  ~ " 

where .~ '  " M  = ~ My and the same rule is applied for the remaining terms. Substituting c l and 

c~ into Eq. (12 ) ,  one obtains the second-order dynamic model. 

1 .2  T e s t i n g  of m o d e l s  

The 3D turbulent flow data used to test the models are obtained from direct numerical 

simulation of the Navier-Stokes equations using a spectral method. The direct simulations were 

performed for three different flows: forced homogeneous isotropic flow with Ra = 102, 151 and 

216; decaying homogeneous isotropic flow with initial Ra = 113; and rotating homogeneous flow 

with Rx = 190 and Ro = u ' /2 zc f2  = 0 . 2 ,  where u' is the rms velocity and ~Q is the rate of  

rotation. Fig. 1 shows the energy spectrum of stationary isotropic turbulence for different 
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Reynolds numbers. Decaying turbulence was simulated using a random initial condition with a 

prescribed energy spectrum. The energy spectra for decaying and rotating turbulence flows are 
shown in Fig .2. 
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With the velocities known at the fine grid, the large scale quantities at grid f'flter level such 

as ~; ,  r 0. ,S# and Rq were calculated using the filter operator in Eq. ( 3 ) .  Then, the quantities at 

test filter level Tq ,~%~, S~ and/~# were obtained using Eq. ( 4 ) .  In this paper, a box triter in 

physical space is applied to both grid f'flter and test triter. The grid f'flter width is taken as A = 8A. 

A is the grid space for the time grid. The test filter width A is given by the ratio a = A / A  . The 

ratio a = 2 is used in our work. 

Evaluation of the accuracy of modeled quantity, M,  in representing an exact quantity, X,  is 

done in terms of a correlation coefficient 

C ( M , X )  - B ( M X )  (20) 
~ / ( M z ) ( X a )  ' 

where ( ) indicates averaging over whole domain. 

2 R e s u l t s  and  D i s c u s s i o n  

The test results for the second-order model are summarized in Tables 1 and 2.  The results for 

Smagorinsky model and first-order model are also included for comparison. For Smagorinsky 

model, the correlation coefficient is about 0 .2  for forced and decaying flow, shown in Table 1. 

This value is lower than Clark' s [9] 0 .27 ,  McMillan' s [I~ 0 .32 and Lund and Novikov' s [8] 0 .24  

for turbulent flow at a lower Reynolds number ( R~ ~ 40 ) with lower resolution. The model 

coefficient is about 0 . 0 7  which is about the same as the value obtained by Clark [9] . The 

correlation for rotating flow is about 0 .14 .  The lower coefficient for rotating flow than the others 

T a b l e  1 S t t r a m a r y  o f  c o r r e l a t i o n s  b e t w e e n  e x a c t  S G S  s t r e s s  a n d  m o d e l s  

forced flow decaying flow rotational flow 
models 

R~ = 102 R~ = 151 R x = 216 t = 8 t = 13 R A = 190 

Smagorinsky 0.203 0.188 0.203 0.192 0.207 0.140 

first-order 0.197 0.129 0.129 0.091 0.101 0.112 

second-order 0.719 0.518 0.424 0.268 0.262 0.535 

T a b l e  2 S u m m a r y  of  m o d e l  c o e f f i c i e n t s  

models 
forced flow decaying flow rotational flow 

Rx = 102 Rx = 151 R~ = 216 Ra = 190 

Smagorinsky c 0.053 

fin-st-order ~ 0.026 

~1 0.024 

second- order 

~'~ - 0.19 

0.064 

0.031 

0.030 

- 0 . 1 8  

0.075 

0.038 

0.038 

- 0 . 1 8  

t = 8  t =  13 

0.083 0.084 

0.035 0.039 

0.038 0.044 

- 0 . 1 4  - 0 . 1 3  

0.072 

0.015 

0.014 

- 0 . 1 7  

may imply that more information needs to be included in the model to account for the rotation in the 

rotating flow. 

The first-order dynamic model is essentially the Smagorinsky model with its coefficient 
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dynamically determined. Since it has a variable model coefficient. It is anticipated that its correlation 

would be better than the Smagorinsky model. But it is found the correlation is only about 0.1 ~ 0 .2  

for all flow cases. 

The correlation for second-order dynamic model is approximately 0 .4  ~ 0 .7  for forced flow, 

0.26 for decaying flow and 0 .54  for rotation flow. The overall improvement over the first-order 

dynamic model and base model is remarkable. This improvement might be due to the inclusion of the 

rotation tensor and strain tensor because the largest improvement is found for rotating flow. It is also 

interesting to notice that the mean of c l ,  corresponding to the Smagorin.~ky term, is in the range 

0.013 ~ 0 .04 ,  well within the Smagorinsky constant range 0.01 ~ 0 .06.  This means that when the 

coefficient is determined dynamically, its meaning still approximates the Smagorinsky constant. The 

mean of c~_ is almost a constant in the range between - 0.13 and - 0 .18.  These results imply that 

for the dynamic method, the model coefficients are spatially stable and consistent with Smagorinsky 

model. 

3 Conclusions  

The first-order dynamic model based on the Smagorinsky model overcome major drawbacks 

of its base model and has a variable coefficient which may potentially improve the model 

accuracy. The first-order dynamic model and its base model - -  the Smagorinsky model were 

tested by measuring the correlation coefficient between the high-resolution DNS and the model 

calculations. It is found that the correlations for the Smagorinsky model s about 0 . 2 .  The 

correlations for dynamic model based on Smagorinsky model are lower, or considerably lower in 

some cases, than that of its base model. To pursue a model with higher accuracy, a second-order 

dynamic model was formulated based on the general relation between the subgrid scale stress and 

the velocity gradient tensor (decomposed into strain and rotation tensors).  The resulting model 

shows a significant improvement over the first-order dynamic model. 

Finally, it should be pointed out that the results in this paper are obtained from homogeneous 

isotropic forced flow, decaying flow and homogeneous rotation flow. The conclusion may not be 

generally applied to other flows without further investigation. 
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