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Abstract: For a n-dimensional vector fields preserving some n-form, the following 

conclusion is reached by the method of  Lie group. That is,  if  it admits an one-parameter, 

n-form preserving symmetry group, a transformation independent of  the vector field is 

constructed explicitly, which can reduce not only dimesion of the vector field by one, but 

also make the reduced vector field preserve the corresponding ( n - 1 ) -form. In particular,  

while n = 3, an important result can be directly got which is given by Mezie and Wiggins in 

1994. 
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I n t r o d u c t i o n  

With the development of Lie group theory since the end of last century, the important role 

played by this theory in the research of differential equations has been noted by more and more 

physicists and mathematicians, and has been getting continuously development both in theoretic 

and applied researches. In [ 1 ] ,  Olver introduced systematically some elementary concepts, 

theorems and important applications about Lie group. Today, Lie methods have gotten into all 

research fields of differential equations, such as the integrability of equations. In [ 2 ] ,  Sen and 

Tabor got ftrst integrals of Lorenz model just by Lie methods. For high dimensional differential 

systems, Lie methods are more important due to its role in reducing dimension of systems. 

It is well-known ~that a n-dimensional first-order ordinary differential equations (ODEs) 

admi~ing an one-parameter symmetry group can be reduced into a ( n - 1)-dimensional system of 

ODE, and the solutions of the original equations may be obtained by integrating the solutions of 

the reduced equations. However, do there exist other connections between the original system and 

the reduced system? Especially, if the original n-dimensional system is of some properties, one 
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may ask that whether the reduced system still preserve these properties. This is a very significant 

problem in theory and applications. To answer this question, the key is to know about what 

symmetric group the system should admit, so that the reduction procedure would not destory the 

properties of  the original system. In past, because of the importance of Hamiltonian systems, 

reduction of Hamiltonian systems on symplectic manifolds was one of active research subjects of 

differential dynamical systems. Lie method was one of modem reduction methods for symplectic 

manifolds, which first appeared in the paper of Smale [3] . Further developments due to Meyer [a] , 

e t c . ,  led to the fully developed Marsden and Weinstein [5] , i . e .  any n-dimensional Hamiltonian 

system admitting an one-parameter Hamiltonian symmetry group can be reduced into a ( n - 2) -  

dimensional Hnmiltonian system (refer to [1 ,  6 ] ) .  Recently, Mezic and Wiggins [7] got such a 

result 'that 3-dimensional volume-preserving vector fields admitting one-parameter, spatial, 

volume-preserving symmetry group could be reduced into a Hamiltonian system with one degree 

of freedom. Thus the dynamical study on this kind of 3-dimensional systems was simplified. 

There exists a common point in the works mentioned above, that is, they are all focused on 

the study of 2-form-preserving Hamiltonian systems. But a kind of more wide-ranging n- 

dimensional systems preserving some n-form (here, it means divergence free) largely emerges in 

mathematical models of physics, atmospheric dynamics, biology, e tc . .  Thus the research on 

reduction of these systems is very important too. With the aid of Lie method, the main result of 

this paper shows that for an n-dimensional vector field preserving n-f rom,  if it admits an one- 

parameter, spatial, n-form-preserving symmetric group, then it can be reduced into a ( n  - 1 )- 

dimensional vector field preserving the corresponding ( n - 1 ) - form.  Particularly, when n = 3, 

we can deduce directly one of the main results obtained in [ 7 ] .  In addition, by using the main 

theorem in this paper, some previous related results can be easily obtained. In the meantime, it is 

well-known that the classical Hamiltonian systems are divergence free, so,  in a sense, the main 

results obtained in this paper are a geometric generalization in the spirit of  symplectic reduction for 

Hamiltonian systems (to see [ 5 ] ) .  

1 Basic Concepts and Preparatory Theorems 

For later consulting, in this section, we introduce some definitions, notations and 

fundamental results. Symbols used in this paper are the same as those in Olver [1] . 

D e f i n i t i o n  1.1 Let M be an n-dimensional manifold with local coordinates ( x 1 , - - . ,  x" ) .  

Consider the n-form/ '2 on M: s = dx I A "'" /~ dx" . So the divergence of any vector field Y 

on M maybe deffmed by LrO = (divY)g2,  where L is Lie derivative, see [ 1 , 2 ] .  

Remark  1 From now on, the considered n-form refers to g] defined above. 

With the above definition, we will give an equivalent condition in the form of definition, 

under which the flow generated by vector field Y preserves the n-form 12. 

D e f i n i t i o n  1 .2  Let F be a vector field on M,  def'med by 

dx  i 
dt  - f ~ ( x ' , ' " , x ' , t ) ,  ( x l , ' " , x  ")  E M, t E R ,  i = 1 , ' " , n .  (1) 

We say that the vector field F preserves the n-form ~ if and only if 
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d ivF  = ~f~ (x l  , t )  
~=l ~x ~ = O. 

D e f i n i t i o n  1 .3  Let G be an one-parameter Lie group acting on M x R .  If  G satisfies 

conditions: ( [ ) G is a symmetry group of the system (1) ; and ( li ) the infinitesimal generator 

, ,  follows, v - -  The, ,  we the C , , a  sy me y V of G 
i l l  

= 0 we group of the system ( 1 ) .  Furthermore, if V satisfies condition: ~ ~ ( x 1 , . . .  9 ~/:n ) 

call G as an n-form-preserving, spatial symmetric group of ( 1 ) .  

In general, for a given vector field ( 1 ) ,  how to fred its spatial symmetry group is a 

nuisance. But in many cases, with the help of acknowledge of the background of systems 

considered, one can guess the spatial symmetry group of the system through physical or geometric 

methods, herein lies the art of Lie group theory. For the sake of completeness in theory, we 

introduce a quite useful theorem below. 

8 ( hereafter denote T h e o r e m  1 .4  Lie group G generated by V = ~ ( x l ,  .'" , x ~ ) ~x i 
iffil 

V = (~1 , . . .  , ~ , ) )  is a spatial symmetry group of the system (1)  if and only if [ F ,  V] = 0. 

Where F = ( f l  , ""  ,f~ ) ,  [ F ,  V] denotes the Lie bracket of F and V,  defined in coordinates by 

I F , V ] ,  = fj f f -~ -  ~ 3x~1, i = 1 , ' " , n .  
]=t 

P r o o f  This is an easy calculation applying Theorems 2.36 and 2.71 in [ 1 ] .  

Theo l : em 1.5 Let the system ( 1 )  admit an one-parameter symmetry group G whose 

infinitesimal generator is V. Then there exists a local transformation of variables, defined near 

point ( x ,  t )  at which V I(~,,) # 0,  given by 

~' = 7 ] i ( y X , ' ' ' , y r t , $ ) ,  t = ~ ( y l , . . . , y n , $ ) ,  i = 1 , ' " , n ,  (2) 

such that in new variables ( y ,  s ) ,  the system (1) becomes 

dy '  yl ,y~-a , s )  i 1 n ,  (3) 
ds = g~ ( ' " "  ' = ' " "  

where y~ , - . . ,  y ~ - i  , s are a complete set of functional independent invariants of V,  i . e .  

V ( y  ~) = 0,  i = 1 , " ' , n  - 1 ; V ( s )  = O,V(y" )  = 1. (4) 

P r o o f  The main idea is to apply the "straightened out" theorem, for the details one can 

refer to Theorem 2 .66  in [ 1] .  

Remnrk 2 Because the right hand of the system (3) is independent of y~, the component y~ can be 

gotten by quadrature. Thus we usually call the first n - 1 equations of the system (3) as a reduced system 

of the system (1) under G. 

In particular, when G is a spatial symmetry group, we get the following corollary. 

C o r o l l a r y  1 .6  Suppose G in Theorem 1 .5  is a spatial symmetry group, then for the 

transformation ( 2 ) ,  we can take s = t and r]~ ( i  = 1 , ' " ,  n)  independent of  s ,  hence y~(i = 1, 

�9 - . ,  n)  is independent of t .  

P r o o f  Since G is a spatial symmetry group, the function t is just an invariant of G, and 
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we can take s = t .  Furthermore, since V ( y )  = ~ ~xTx ~ where ~ ( i  = 1,  --- ,  n)  are 
i = l  

independent of t ,  the solutions to the equation V ( y )  = 0 or 1 are all independent of  t .  This 

completes the proof. 

2 The  M n l n  R e s u l t  and Its Proof  

With the preparations in section 1, we will introduce and prove our rnMrt result in this 

paper. 

T h e o r e m  2 .1  Let n-dimensional vector field (1 )  preserve the n-form s and admit an 

one-parameter spatial symmetry group G preserving O .  Then there exists a transformation of 

variables such that the reduced vector field of (1) under G preserves the corresponding ( n - 1 )  - 

f o r m .  

Before giving the proof of the theorem, we first prove the following lemma. 

L a m i n a  2 .2  Suppose there exists a differentiable invertible transformation q~ 

x i = ~ i ( y l , ' " , y ~ ) ,  i = 1 , ' " , n ,  (5) 

under which the system (1) takes the following form: 

dY i , " "  n t ) ,  i = 1 , " "  n .  (6) 
d t  - g i ( Y l  "Y " 

Then for system (1)  and ( 6 ) ,  the following relation is valid: 

0f~ 1 ~ 3 ( I  J I gi)~_ , (7) 
,=, 3 x  i - I J I ,=t 3 y '  

where j is the Jacobian matrix of the transformation ~ ,  I J I is its determinant. 

P r o o f  According to properties of partial derivative and matrix calculation, after a straight 

and lengthy calculation, one can prove the result. 

P r o o f  of  T h e o r e m  2.1  Let the infinitesimal generator of G be V = ( ~ 1 , . . . ,  C ) .  

Applying Theorem 1.5 and Corollary 1 .6 ,  there exists a transformation of coordinates as (5 )  

under which the system (1)  takes the following form: 

d Y  ~ _ k~ (yX  , i f - 1  t )  i = 1 " " , n .  (8) 
dt  ' " "  ' ' ' 

According to the assumption of the theorem and the relation ( 7 ) ,  we can deduce 

a( t  J I k,) 
0. (9) 7 

,=l 3 y '  

Furthermore, applying (4 )  in Theorem 1 . 5 ,  we find that under the transformation ~ the 

vector field V takes form (0,  "" , 0 , 1 ) .  Using Lemma 2 .2  once more,  we get 

0 = ~ o~----~/ 1 0 +  "'" + 0 +  3y  } ~  - 0 
3x ~ - I J I  

Therefore I J I is independent of y~,  then (9) becomes 
n - i  

~(t J i k , )  _ 0. ( lo)  

Now, consider the reduced system of the system ( 1 ) ,  i . e .  the fin'st n - 1 equations of the 

system (8)  
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dy '  _ k~(y 1 . . . , f f _ l , t )  i = 1 , ' " , n -  1. (11) 
d t  ' ' 

Introduce a transformation r :  

Z 1 --- f I J I d y l , z  2 = y 2 , ' " , z ~ - I  = y r t - 1 ,  (12)  

under which, suppose (11)  takes the form 

dz i 
- , z ~ - : , t )  i = 1 , . " , n  - 1 .  ( 1 3 )  dt g i ( z l  "" '  ' 

Apparently, the i n v e r s e / ' - :  o f / "  exists. Namely,  u n d e r / , - 1 ,  (13)  becomes ( 1 1 ) .  

Now calculatJng the Jacobian matrix D Z / D  Y(  Z = ( z: , ... , z=-l ) , Y = ( y: , ' "  , y " - : ) )  of  

DZ 
D Y -  

P - : ,  we can get 

I J I 9 I J I d y  1 3 ~ - :  I J I d y :  

0 1 "'" 0 

0 0 "'" 1 

(14) 

Thus applying Lemma 2 .2  and ( 1 0 ) ,  we have 

.-t 9 gi 1 ~_, 3( D~y k~ ) ~ ~  1 ~ 3(I  J I k , )  _ 0 
~=, 3z 7 - 3 y  ~ - I J I ~=, 3y' 

To sum up,  for the vector field (1)  satisfying the conditions in Theorem 2 . 1 ,  there exists a 

transformation of  coordinates: x --~ z ,  under which (1)  takes the form 

. - t  3 g i 

: a z ;  - 0 ,  i = 1 , ' " , n -  1, 

4 a, "' (is) 
g ~ ( z t ' " ' ' z ~ - l ' t ) '  Z ~ = y . 

Thus the theorem is proved. 

R e m a r k  3 From the above proof, we know that the transformation under which (1) becomes (15) 

does not depend on the vector field ( 1 ) ,  but only depends on the symmetry group G. And the whole 

transformation preserves an n-form corresponding to ~ .  

3 C o r o l l a r i e s  a n d  A p p l i c a t i o n s  

When n = 3 ,  for the reduced system in Theorem 2 . 1 ,  we can get directly one of  the main 

results in [ 71 : 

T h e o r e m  3 .1  Let the following 3-dimensional system be a volume-preserving system 

dxl 
dt - f ~ ( x l ' X 2 ' x 3 ' t ) '  i = 1 , 2 , 3 ,  (16) 

d i v f ( x )  = O x---~ -- O. 
i m l  

Suppose further that it admits an one-parameter spatial, volume-preserving symmery group G. 
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Then there exists a local transformation of coordinates 

x~ = # ~ ( z l , z 2 , z 3 ) ,  i = 1 , 2 , 3 ,  

such that in new variables the system (16) becomes 

" dzl  ~ H ( z l  , z 2 ,  t )  

d t  - 3z2 " 

dz2 3 H ( z l  , z 2 ,  t )  (17) 
-~- = - ~ z l  ' 

dz3 
- - ~  = k 3 ( Z l , Z 2 , t ) ,  

where H ( z l  , z2 ,  t )  is a certain function. 

P r o o f  From Theorem 2 .1 ,  the 2-dimensional reduced system of (16) must be a 2-form- 

preserving vector field, hence it can be expressed as a Hamiltonian form. So the system (16) can 

be turned into the form of (17) .  

In fluid mechanics, there are many flows in the form as (17)  and are called regular duct 

flows (see OttinotS]). Just because (16) can be transformed into ( 1 7 ) ,  in Ref. [ 7 ] ,  J .Mezie  

and S. Wiggins rewrote the system (17) in action-angle-angle variables and generalized the KAM 

theorem, and Meinikov method to the 3-dimensional system, which made they study the 

integrability and perturbation of the 3-dimensional fluid flows successfully. 

If the system (16) is autonomous, then the function H is its first integral. Thus it is easy to 

get the following corollary. 

C o r o l l a ry  3 .2  Let the system (16) be a volume-preserving autonomous vector field and 

admit an one-parameter, spatial, volume-preserving symmetry group G. Then the system (16) 

must exist a f'rrst integral. 

Combining Corollary 3 .2  with the result obtained in [ 9 ] ,  that is, for any system described 

by three autonomous ordinary differential equations, if it admits an autonomous invariant, then 

this system can be written as a generalized Hamiltonian system (see [ 6 ] for the definition) and its 

Hamiltonian just is the invariant, we can easily get the following conclusion. 

C o r o l l a r y 3 . 3  The system satisfying the condition in Corollary 3 .2  can be transformed 

into a generaliTeA Hamiltonian system. 

In [ 10 ] ,  Zhang Jinyan investigated the global periodicity of 3-dimensional gradient 

conjugate systems (the gradient conjugate system is an autonomous system which is divergence- 

free and admits a first integral) and obtained the following result: 

P r o p o s i t i o n  3 .4  Suppose the 3-dimensional gradient conjugate system :~ = F ( x )  are 

analytic and admit a normM analytic first integral G ( x ) .  Then the fLxed points of the 2- 

dimensional restricted system on level manifold G ( x )  = e ( c  > 0) must be centers or 

(generalized) saddles. Further, if the number of fixed points on G ( x )  = c is finite, then orbits 

of the system lain on the integral surface G ( x )  = c all are closed orbits except centers and finite 

number of joint orbits between saddles. The above properties refer to global periodicity. 

From Proposition 3 .4 ,  it follows that the 3-dimensional system satisfying condition in 

Theorem 3 .2  must be a gradient conjugate system. On the other hand, from the proof of Theorem 

3 . 2 ,  under some transformations if necessary, the system restricted on its integral surface is a 2- 
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dimensional Hamiltonian system. Thus the global periodicity of the system follows from the 

intrinsic property of 2-dimensional Hamiltonlan system. 

Finally, to illustrate the application of the main theorem in this paper, we consider the Euler 

flow generated by the velocity field V: 

"dxi 
" - ~  = O,X 1 + tZX 2 ,  

d x  2 
= a x  I + ax2, (18) 

dx3 
- ~ -  = bx~ - bx~ - 2a~ 3. 

From fluid mechanics we know that the corresponding verticity field is W = ( -  2 b x  z , 

- 2 b x l ,  0 ) .  It is not difficult to check that the Lie bracket of V and W is zero, i . e .  [ V, W ] = 

0. Thus from Theorem 1 .4 ,  the group generated by W is a divergence-free, spatial, symmetry 

group of ( 18).  

After some calculation, we can derive that under the following changes of variables (let b # 

O,x 2 # O) 

YI = x ~ -  x ~ ,  Y2 = x 2 ,  Y3 = - ~ - ~ a r e t a n [ ~ - ~ - )  

the system (18) takes the form 

"dyl 3H  
= 2 a y l  - 3 y ~ '  

dy,_ 3 H  b , 
= bY1 - 2 a y z  = - - - ,  H ( y l , Y ~ - )  = 2 a y t y ' -  - --6-Y;,  (19) 

3 y l  

dy3 a 
, - - d T  = - 5 

b , 
Substituting y with x in H( Yl, Y2 ) = 2 a y l  Yz - - ~ Y ~ ,  we get a first integral of the system (18) 

In this paper, we only study one-parameter symmetry group. For the case of multi- 

parameter group, we also can study the corresponding problem similarly, but it will be more 

difficult and complex. The related issues will be the topic of our following publications. For some 

reduction results related with multi-parameter symmetry group, the readers can refer to Olver N3 . 
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