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Abstract

In this paper, a reliable technique for calculating angular frequencies of nonlinear oscillators is developed. The new

algorithm offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. Some illustrative

examples are given.
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1. Introduction

In this paper, we will propose an heuristic approach called the method of energy balance to nonlinear
oscillators. In this method, a variational principle for the nonlinear oscillation is established, then a
Hamiltonian is constructed, from which the angular frequency can be readily obtained by collocation
method. The results are valid not only for weakly nonlinear systems, but also for strongly nonlinear ones.
Some examples reveal that even the lowest order approximations are of high accuracy.

Consider first the following generalized nonlinear oscillations without forced terms.

u00 þ x2
0uþ ef ðuÞ ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0; ð1Þ

where f is a nonlinear function of u, u0 and u00. In this preliminary report, we limit ourselves to the simplest
case, i.e., f depends upon only the function of u.

If e is a small parameter, then various perturbation techniques can be applied. In our study e needs not to
be small. There exist many new techniques to solve the above equation, for example, variational iteration
method (He, 1999a), homotopy perturbation method (He, 1999b, 2000a), linearized perturbation method
(He, 1999c), modified Lindstedt–Poincare methods (He, 2002a,b, 2001a), iteration perturbation method
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(He, 2001b), bookkeeping parameter perturbation method (He, 2001c), and other methods, a review on
new techniques for strongly nonlinear oscillations can be found in details in He (2000b).

2. Basic idea

First we consider the Duffing equation

u00 þ uþ eu3 ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0: ð2Þ

Its variational principle can be easily obtained:

JðuÞ ¼
Z t

0

�
� 1

2
u0

2 þ 1

2
u2 þ 1

4
eu4

�
dt: ð3Þ

Its Hamiltonian, therefore, can be written in the form

H ¼ 1

2
u0

2 þ 1

2
u2 þ 1

4
eu4 ¼ 1

2
A2 þ 1

4
eA4; ð4aÞ

or

1

2
u0

2 þ 1

2
u2 þ 1

4
eu4 � 1

2
A2 � 1

4
eA4 ¼ 0: ð4bÞ

In Eqs. (4a) and (4b) the kinetic energy (E) and potential energy (T) can be respectively expressed as
E ¼ u0

2
=2, T ¼ u2=2 þ eu4=4. Throughout the oscillation, it holds that H ¼ E þ T ¼ constant.

We use the following trial function to determine the angular frequency x:

u ¼ A cosxt: ð5Þ

Substituting (5) into (4b), we obtain the following residual equation:

RðtÞ ¼ x2 sin2 xt þ cos2 xt þ 1

2
eA2 cos4 xt � 1 � 1

2
eA2: ð6Þ

If, by chance, the exact solution had been chosen as the trial function, then it would be possible to make R
zero for all values of t by appropriate choice of x. Since Eq. (5) is only an approximation to the exact
solution, R cannot be made zero everywhere. Collocation at xt ¼ p=4 gives

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3

4
eA2

r
: ð7Þ

We can apply various other techniques, for examples, least square method, Galerkin method, to identify the
constant x.

Its period can be written in the form

T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3

4
eA2

r
:

,
ð8Þ

The approximate period obtained by the traditional perturbation method reads (Nayfeh, 1985)

Tpert ¼ 2p 1

�
� 3

8
eA2

�
: ð9Þ

So our theory, in case e � 1, gives exactly the same result with those obtained by perturbation method.
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What is rather surprising about the remarkable range of validity of (8) is that the actual asymptotic
period as e ! 1 is also of high accuracy.

lim
e!1

Tex

T1

¼ 2
ffiffiffiffiffiffiffiffi
3=4

p
p

Z p=2

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:5 sin2 x

p ¼ 0:9294:

The lowest order approximation given by (8) is actually within 7.6% of the exact frequency regardless of the
magnitude of eA2.

3. Some examples

3.1. Example 1

We consider the simple mathematical pendulum which can be written in the form (Hagedorn (1981))

u00 þ x2 sin u ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0; ð10Þ
where u designates the deviation angle from the vertical equilibrium position, x2 ¼ g=l, where g is the
gravitational acceleration, l the length of the pendulum.

Many of the mathematical methods employed in nonlinear problems, as mentioned by Hagedorn (1981),
may be successfully tested on the simplest mathematical system. The variational principle for Eq. (10) can
be written as

JðuÞ ¼
Z t

0

�
� 1

2
u0

2 � x2 cos u
�

dt: ð11Þ

Its Hamiltonian can be expressed in the form

H ¼ 1

2
u0

2 � x2 cos u ¼ �x2 cosA: ð12Þ

By the trial functional u ¼ A cotXt, where X is the frequency to be determined. We, therefore, have

1

2
A2X2 sin2 Xt � x2 cosðA cosXtÞ ¼ �x2 cosA: ð13Þ

If we collocate at Xt ¼ p=2, we obtain

X
x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � cosAÞ

A2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðA2=2!� A4=4!þ 
 
 
Þ

A2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

12
A2 þ 1

360
A4 � 
 
 


r
: ð14Þ

In case A ¼ p=2, the value obtained from (14) is T ¼ T0A=
ffiffiffi
2

p
¼ 1:11T0, the approximate period obtained by

Hagedorn (1981) is Tex ¼ 1:16T0, where T0 ¼ 2p=x. The 4.24% accuracy is also remarkable good in view of
the lowest order approximation.

3.2. Example 2

Consider the motion of a ball-bearing oscillating in a glass tube that is bent into a curve such that the
restoring force depends upon the cube of the displacement u. The governing equation, ignoring frictional
losses, is (Acton and Squir, 1985)

d2u
dt2

þ eu3 ¼ 0; ð15Þ
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and the auxiliary conditions are that the ball-bearing is released from rest at a displacement u0 when t ¼ 0.
Expressed mathematically, this is

uð0Þ ¼ A; u0ð0Þ ¼ 0: ð16Þ

In our study, the parameter e needs not to be small, i.e. it follows 0 < e < þ1. For this special example,
the traditional perturbation methods cannot be applied even in case 0 < e � 1, for the unperturbed
equation u00 ¼ 0 cannot lead to a period solution. Similarly we obtain the following Hamiltonian

H ¼ 1

2
u0

2 þ 1

4
eu4 ¼ 1

4
eA4: ð17Þ

Choosing the trial function u ¼ A cosxt, we obtain the following residual equation:

A2x2 sin2 xt þ 1

2
eA4 cos4 xt ¼ 1

2
eA4: ð18Þ

Collocate at xt ¼ p=4 to find the constant x:

x ¼
ffiffiffiffiffiffiffiffiffiffi
3

4
eA2

r
: ð19Þ

Its period, therefore, can be written as

T ¼ 4pffiffiffi
3

p e�1=2A�1 ¼ 7:25e�1=2A�1: ð20Þ

Its approximate period obtained by Acton and Squir (1985) reads

Tex ¼ 7:4164e�1=2A�1: ð21Þ

The maximal relative error is <2.2% for all e > 0!

4. Conclusion

In this paper, we first propose a new technique called energy balance for nonlinear oscillation. The
examples show that even the lowest order approximations obtained by the present theory are actually of
high accuracy regardless of the magnitude of e. This paper only gives the preliminary report on this theory,
and the numerical results are not explicitly justified, we feel that there still leave much space to be further
improved. Serious theory proof and further applications will be considered in other papers.
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