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Fracture statistics of brittle materials: Weibull or normal distribution
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The fit of fracture strength data of brittle materials &i, SiC, and ZnQ to the Weibull and normal
distributions is compared in terms of the Akaike information criterion. FgNgithe Weibull distribution fits
the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the
difference is not large enough to make a clear distinction between the two distributions. There is not sufficient
evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use
of the Weibull distribution for strength data is questioned.
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Brittle materials, such as ceramics, rock, and concreteprobability density function of the three-parameter Weibull
etc., have been widely used in engineering for their excellendistribution (o) =dF(o)/do is given by
resistance to heat, corrosion, and wear. But brittle materials
also break easily, and their strength, i.e., the maximum stress m(o—op\ ™t o—ap\™
they can withstand, varies unpredictably from component to (0)= g_o( ) exr{ _< )
component even if a set of nominally identical specimens are
tested under the same conditions. Therefore, the Strength ofia most app"ca’[ionsqth is usua”y taken as zero.
brittle material is not a well defined quantity and has to be On the other hand, if brittle materials are manufactured
described with respect to fracture statistjds-3]. Further-  and handled without special care, their strengths usually ex-
more, the assessment of reliability of brittle materials alschibit more or less symmetrical distributions, so the normal
requires a probability approach. distribution could be a natural one to apply to these {&ta

As is well known, the Weibull distribution with a flexible For the normal distribution, its probability density function is
two-parameter analytic formula has been found to success-

@

0]

fully describe a large body of fracture or fragmentation data, 1 (0_3)2
especially for brittle materials, which is therefore suggested flo)= 2ma exg — ox2 | 2

to be considered first. As Weibull mentioned in his pioneer-
ing papers, however, the Weibull distribution should be con- - o
sidered as an empirical one on an equal footing with otheY_Vhere‘T and a are the mean and standard deviation, respec-
distribution functiong4]. The normal or Gaussian distribu- UVelY: _ , o
tion is another widely used function. Other possible candi- In_order to find the unknpwn par_ameters Ina Q|str|but|on
dates, which can be used for probability density function Ogunctlon, the usual way is the linear r_egres&deast-
failure, involve the lognormal, power law, and Type | ex- square}spr_ocedure. Howeyer, the_begt estimate of these_ pa-
treme value distributions, etf5,6]. In general, we attempt to rameters is by the maximum likelihood method, which

. . . . hows the smallest coefficient of variatigiie ratio of the
identify an appropriate model for the data using the SO'Ca”e,itandard deviation and mean of a random quanfitge like-

goodness-of-fit tests. However, for small sample sizes, it ighqqq of 4 given probability density function is defined as
difficult to distinguish between the Weibull and normal dis- | _ N Lf(a), and thus its log-likelihood function is In
i= i)

tributions. In this paper, we will propose a simple quantita-_EN | : ;
. . o ! =2;_41Inf(g;), whereN is the number of strength experi-
g\éfwgg:]h?hdé w;'icbr:"fzr:] db?\c;jrifgl tgr 2'3]2"rggvt::‘ted'dﬁgﬁgﬁ?ments. Thus, estimates of these parameters can be found by
. . . ) maximizing the log-likelihood functior{5]. For the two-
tions, and find out which model is better.

It is often supposed that a small volume in a brittle mate_parameter Weibull distributioflet o, =0 in Eq. (1)], the

rial is like a chain of many links, and if any link breaks, then equation for determiningn from N measured strengths is

the whole material will fail. Based on this weakest-link prin- N
ciple and an empirical function, the cumulative probability of 2 o™n o
failure of a brittle material subjected to a load i.e., the = I
Weibull strength distribution can be represented ) N—:E+Ni221 Ino, 3
=1—-exp[(c—ow)og]™, Whereo, is a normalized mate- 2 ol
=1

rial strength, oy, is the threshold stresgbelow which no

failure will occun, andm is the Weibull modulug4]. Here,

the Weibull modulus is a measure of the degree of strengtivherem can be obtained by an iterative procedure, and then
dispersion, and is also called the shape factor. Then, the, is calculated by
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1 N TABLE 1. The AIC values calculated, wherAAA=A,
O'Bn:N z U'im. (4) _min(Amrzp :Amfsp)~
i=1
o o o ) Specimen N Ay A A AA
Similarly, for the normal distribution, it is relatively easy 2 bl !
to get the equations for determinimgand a from a sample SigN, 55 63578  637.77 64278  7.00
of N measurements;, such as Sic 75 77831  779.83 77968  1.37
ZnO 109 681.29 682.90 671.53 —9.76
N
— 1
7=y ; o, (5)

lated by the two-parameter and three-parameter Weibull dis-
and tributions, respectively For convenience sake, therefore, we
shall cite the two-parameter Weibull distribution in the dis-
, 1 —, cussion below without special indication.
at=y ;1 (oi—0)" (6) As shown in Table I, for the $N, ceramic, the Weibull
distribution fits the data better than the normal distribution,

Next, to compare strength data with distribution func-Put for the ZnO ceramic, the behavior is just the opposite
tions, some measure of the goodness of fit between the funEl3- In the case of SiC ceramic, it seems to tend to the
tions and data is required. The likelihood ratio statistics ap\Veibull distribution, but the difference is not large enough
pears to be the most promising for use in obtainingfor us to make a clear distinction petween the two distribu-
confidence bound$7]. Following very similar consider- tions. All these features can be v_|sually o.bserved fr_om.the
ations, the likelihood approach can be extended to makin lots of thelrstrength den.sny functllons., as illustrated in Figs.
comparisons between models by the Akaike information cri--—3. especially for the §N, ceramic(Fig. 1) and the ZnO
terion (AIC), which starts by linking the likelihood to a dis- ceramic(Fig. 3.

tance between the true and estimated distributions, and is It is of interest to scrutinize the influence of the “outlier”
defined as points in both small and large strength sidese Figs. 1-8

on the fit of data. For the §\, ceramic, if the smallest
A=—2InL+2k, (7)  strength was deleted from the ffA=4.71; and if the small-

est two data were removed A= 1.90. Similarly for the SiC
where In_ is the maximum log-likelihood for a given model, ceramic, i_f the smallest one or two strengt_h data was deleted
k is the number of parameters to be fitted in the model, andfom the fit, AA=—0.90 and—2.65 respectively. In the case
the additional factor 2 is a sop to historical preceddgis  Of ZnO ceramic, if the smallest strength was removed from
This represents a rough way of compensating for additiondn® fit, AA=—11.94; otherwise if the largest strength was
parameters and is a useful heuristic measure of the relatiieletedAA=—7.29. Further if both the smallest and largest
effectiveness of different model®]. For example, if the Strength data were taken out of the #A=—09.50. It is
three-parameter Weibull distribution with=3 prevails over ~OPvious to see that the “outlier” data play an important role
other distributions, such as the normal or two-parametel? the choice of distributions although S|m|lar.concILIIS|c.)ns as
Weibull distribution withk= 2, it must demonstrate a signifi- Q|scussed above could b_e obtained. The Weibull distribution
cantly better fit to the strength data, that &A= A, A,z is more §U|table for' the flt. of smaller strength data. .
=2 [10,11], whereAA is the difference in AIC valuesA, _ T_he size effect is a direct consequence of th_e Weibull
and A5, are calculated using the normal and the three distribution. In other words, the larger the specimen, the
parameter Weibull distribution functions respectively.

Recently, strength data of three ceramic materials, i.e., 001 . . . . . .
silicon nitride (S§N,), silicon carbide(SiC), and zinc oxide
(Zn0O), have been tested. More details about the experiment:
were discussed in Refl2]. The data are often arranged in
ascending order and each strength is assigned to a failur
probability estimate oF (o) = (i —0.5)/N, wherei is theith f(o)
specimen andN is the total number of specimens. Then, the
related probability density between(, o ;) can be calcu- 0.0001
lated by f(o) =1[N(oys1— o) ], which will be used for
the comparison to the fitting distribution functions below.

The results for the three brittle materials are presented ir 90001
Table I. It is obvious to see that the three-parameter Weibull
distribution does not greatly improve the fit although an ad-
ditional parameter is introduced. We cannot say it is better FIG. 1. Strength density functions of the;8j, ceramic. The
than the two-parameter Weibull distribution, at least from thefited parameters to the Weibull distribution are=13.89 ando,

AIC values obtained hergn all the three cased\A=A,3,  =933.56 MPa; and the fitted parameters to the normal distribution
—Awzp>0, whereA,,, andA,3, are the AIC values calcu- arec=899.42 MPa andr==80.49 MPa.
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FIG. 2. Strength density functions of the SiC ceramic. The fitted

parameters to the Weibull distribution am=9.62 and oo [iG, 4. Experimental results for three ceramics, where numerals
=376.20 MPa; and the fitted parameters to the normal distributionyre the number of experiments, and error bars refer to 90% confi-
arec=357.87 MPa andv=42.62 MPa. dence bandthe higher the number of tests, the smaller the scatter

of datg. Solid arrow lines, with the slope of 1/m, indicate the size

higher the probability that we could find a large and critical €ect extrapolated by the Weibull distribution.
defect and the smaller the mean strength of the correspond-
ing sample[14,15. This size effect can be represented asics that are applied for varistors and designed with respect to
Vio7'=V,03' if we suppose two samples of specimens withelectrical rather than mechanical properties. Thus, they con-
different sizesv; andV, as well as the same probability of tain a large number of flaws that may act as the origin of
failure. In more general terms, we haver(\V) fracture. As a consequence of a high poroéityout 5 vol %
~\"YMa(V), where\ is the scaling factor. This provides us and a pronounced-curve behavior before fracture in the
with another experimental way to check out our results menZnO ceramic, a group of pores as well as the interaction
tioned above. As seen in Fig. 4, further experimental resultbetween them would affect the final fracture rather than only
show the tendency we have discoveféd). For the SiN,  the largest one as the Weibull weakest-link model postulated.
and SiC ceramics, the Weibull distribution fits the data betterNow we attempt to give a simple statistical explanation. Let
but in the case of ZnO ceramic, there is no size effect, that isis suppose that the number of defects in a given sample is
to say, some characteristic scale may exist and the normaind the failure probability of a defect [ For the sake of
distribution is a possible choice. simplicity, the interaction between pores is neglected. The
In addition, microscopic observations showed that theréailure probability of n defects can thus be written as
are very different microstructures in these materials. In thEPN(n)={N!/[n!(N—n)!]}p”(l—p)N*”. As is well known
SizN, and SiC ceramics, cracklike flaws are sparsely distrib{17] there are two special cases for this binomial distribution
uteq, and_thgs it.is not su.rprising that their ;trengths yield theg, the limit of largeN. If p is not too smallthis seems to be
We|pull dlstr|but|on. But in the_ZnO ceramic, flaws are ap- corresponding to the case of ZnO ceramithe binomial
proximately spherical pores with sharp groo¥@g,16. As gigyrinution is approaching the normal distribution. On the
we know, the ZnO ceramic is a typical kind of electroceram—comrary’ if p<1, we have the Poisson distributidy(n)

=a"exp(—a)/n!, where a=Np. Further lethn=0, one can
il ' ' ' ' ' ' ' | easily obtainPy(0)=exp(—Np), and then the weakest-link
' n0 - model can be described in the forfA=1—-Py(0)=1
] —exp(—Np). Based on as few assumptions as possible, a
similar ~ formula Fg(o)=1—exgd—(N.s(0))], where
(N¢,s(0)) indicates the mean number of critical defects in a
specimen of sizeS was proposed15]. So obviously the
Weibull distribution is only a special case of this general
distribution function.
Finally it is worth noting that the procedure proposed here
. . . . . can be extended and applied to choose the best distribution
85 % 95 100 105 110 115 120 among three or more possible distributions, for which AIC as
o [MPa] defined in Eq.(7) has the smallest value. It has also been
used to investigate the influence of threshold stress to the
FIG. 3. Strength density functions of the ZnO ceramic. Theestimation of the Weibull statistid4.8].
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fitted parameters to the Weibull distribution are=20.92 ando In conclusion, we have introduced a simple quantitative
=104.81 MPa; and the fitted parameters to the normal distributioprocedure to ascertain a better distribution, and further ap-
areoc=102.37 MPa andv=5.17 MPa. plied it to the fit of strength data of three ceramic materials.
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