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Fracture statistics of brittle materials: Weibull or normal distribution
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The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO! to the Weibull and normal
distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits
the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the
difference is not large enough to make a clear distinction between the two distributions. There is not sufficient
evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use
of the Weibull distribution for strength data is questioned.
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Brittle materials, such as ceramics, rock, and concr
etc., have been widely used in engineering for their excel
resistance to heat, corrosion, and wear. But brittle mater
also break easily, and their strength, i.e., the maximum st
they can withstand, varies unpredictably from componen
component even if a set of nominally identical specimens
tested under the same conditions. Therefore, the strength
brittle material is not a well defined quantity and has to
described with respect to fracture statistics@1–3#. Further-
more, the assessment of reliability of brittle materials a
requires a probability approach.

As is well known, the Weibull distribution with a flexible
two-parameter analytic formula has been found to succ
fully describe a large body of fracture or fragmentation da
especially for brittle materials, which is therefore sugges
to be considered first. As Weibull mentioned in his pione
ing papers, however, the Weibull distribution should be c
sidered as an empirical one on an equal footing with ot
distribution functions@4#. The normal or Gaussian distribu
tion is another widely used function. Other possible can
dates, which can be used for probability density function
failure, involve the lognormal, power law, and Type I e
treme value distributions, etc.@5,6#. In general, we attempt to
identify an appropriate model for the data using the so-ca
goodness-of-fit tests. However, for small sample sizes,
difficult to distinguish between the Weibull and normal d
tributions. In this paper, we will propose a simple quanti
tive method, which can be used to highlight the differen
between the Weibull and normal or other favorite distrib
tions, and find out which model is better.

It is often supposed that a small volume in a brittle ma
rial is like a chain of many links, and if any link breaks, the
the whole material will fail. Based on this weakest-link pri
ciple and an empirical function, the cumulative probability
failure of a brittle material subjected to a loads, i.e., the
Weibull strength distribution can be represented asF(s)
512exp(2@(s2sth)/s0#

m), wheres0 is a normalized mate
rial strength,s th is the threshold stress~below which no
failure will occur!, andm is the Weibull modulus@4#. Here,
the Weibull modulus is a measure of the degree of stren
dispersion, and is also called the shape factor. Then,
1063-651X/2002/65~6!/067102~4!/$20.00 65 0671
e,
nt
ls
ss
o
re
f a
e

o

s-
,
d
-
-
r

i-
f

d
is

-
e
-

-

f

th
he

probability density function of the three-parameter Weib
distribution f (s)5dF(s)/ds is given by

f ~s!5
m

s0
S s2s th

s0
D m21

expF2S s2s th

s0
D mG . ~1!

In most applications,s th is usually taken as zero.
On the other hand, if brittle materials are manufactur

and handled without special care, their strengths usually
hibit more or less symmetrical distributions, so the norm
distribution could be a natural one to apply to these data@5#.
For the normal distribution, its probability density function

f ~s!5
1

A2pa
expF2

~s2s̄ !2

2a2 G , ~2!

wheres̄ anda are the mean and standard deviation, resp
tively.

In order to find the unknown parameters in a distributi
function, the usual way is the linear regression~least-
squares! procedure. However, the best estimate of these
rameters is by the maximum likelihood method, whi
shows the smallest coefficient of variation~the ratio of the
standard deviation and mean of a random quantity!. The like-
lihood of a given probability density function is defined
L5) i 51

N f (s i), and thus its log-likelihood function is lnL
5(i51

N ln f(si), where N is the number of strength exper
ments. Thus, estimates of these parameters can be foun
maximizing the log-likelihood function@5#. For the two-
parameter Weibull distribution@let s th50 in Eq. ~1!#, the
equation for determiningm from N measured strengthss i is

(
i 51

N

s i
mln s i

(
i 51

N

s i
m

5
1

m
1

1

N (
i 51

N

ln s i , ~3!

wherem can be obtained by an iterative procedure, and th
s0 is calculated by
©2002 The American Physical Society02-1
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s0
m5

1

N (
i 51

N

s i
m. ~4!

Similarly, for the normal distribution, it is relatively eas
to get the equations for determinings̄ anda from a sample
of N measurementss i , such as

s̄5
1

N (
i 51

N

s i , ~5!

and

a25
1

N (
i 51

N

~s i2s̄ !2. ~6!

Next, to compare strength data with distribution fun
tions, some measure of the goodness of fit between the f
tions and data is required. The likelihood ratio statistics
pears to be the most promising for use in obtain
confidence bounds@7#. Following very similar consider-
ations, the likelihood approach can be extended to mak
comparisons between models by the Akaike information
terion ~AIC!, which starts by linking the likelihood to a dis
tance between the true and estimated distributions, an
defined as

A522 ln L̂12k, ~7!

where lnL̂ is the maximum log-likelihood for a given mode
k is the number of parameters to be fitted in the model,
the additional factor 2 is a sop to historical precedents@8#.
This represents a rough way of compensating for additio
parameters and is a useful heuristic measure of the rela
effectiveness of different models@9#. For example, if the
three-parameter Weibull distribution withk53 prevails over
other distributions, such as the normal or two-parame
Weibull distribution withk52, it must demonstrate a signifi
cantly better fit to the strength data, that is,DA5An2Aw3p
>2 @10,11#, whereDA is the difference in AIC values,An
and Aw3p are calculated using the normal and the thr
parameter Weibull distribution functions respectively.

Recently, strength data of three ceramic materials,
silicon nitride (Si3N4), silicon carbide~SiC!, and zinc oxide
~ZnO!, have been tested. More details about the experim
were discussed in Ref.@12#. The data are often arranged
ascending order and each strength is assigned to a fa
probability estimate ofF(s i)5( i 20.5)/N, wherei is thei th
specimen andN is the total number of specimens. Then, t
related probability density between (sk ,sk11) can be calcu-
lated by f (sk)51/@N(sk112sk)#, which will be used for
the comparison to the fitting distribution functions below.

The results for the three brittle materials are presente
Table I. It is obvious to see that the three-parameter Wei
distribution does not greatly improve the fit although an a
ditional parameter is introduced. We cannot say it is be
than the two-parameter Weibull distribution, at least from
AIC values obtained here~in all the three cases,DA5Aw3p
2Aw2p.0, whereAw2p andAw3p are the AIC values calcu
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lated by the two-parameter and three-parameter Weibull
tributions, respectively!. For convenience sake, therefore, w
shall cite the two-parameter Weibull distribution in the d
cussion below without special indication.

As shown in Table I, for the Si3N4 ceramic, the Weibull
distribution fits the data better than the normal distributio
but for the ZnO ceramic, the behavior is just the oppos
@13#. In the case of SiC ceramic, it seems to tend to
Weibull distribution, but the difference is not large enou
for us to make a clear distinction between the two distrib
tions. All these features can be visually observed from
plots of their strength density functions, as illustrated in Fi
1–3, especially for the Si3N4 ceramic~Fig. 1! and the ZnO
ceramic~Fig. 3!.

It is of interest to scrutinize the influence of the ‘‘outlier
points in both small and large strength sides~see Figs. 1–3!
on the fit of data. For the Si3N4 ceramic, if the smallest
strength was deleted from the fit,DA54.71; and if the small-
est two data were removed,DA51.90. Similarly for the SiC
ceramic, if the smallest one or two strength data was dele
from the fit,DA520.90 and22.65 respectively. In the cas
of ZnO ceramic, if the smallest strength was removed fr
the fit, DA5211.94; otherwise if the largest strength w
deleted,DA527.29. Further if both the smallest and large
strength data were taken out of the fit,DA529.50. It is
obvious to see that the ‘‘outlier’’ data play an important ro
in the choice of distributions although similar conclusions
discussed above could be obtained. The Weibull distribut
is more suitable for the fit of smaller strength data.

The size effect is a direct consequence of the Weib
distribution. In other words, the larger the specimen,

TABLE I. The AIC values calculated, whereDA5An

2min(Aw2p ,Aw3p).

Specimen N Aw2p Aw3p An DA

Si3N4 55 635.78 637.77 642.78 7.00
SiC 75 778.31 779.83 779.68 1.37
ZnO 109 681.29 682.90 671.53 29.76

FIG. 1. Strength density functions of the Si3N4 ceramic. The
fitted parameters to the Weibull distribution arem513.89 ands0

5933.56 MPa; and the fitted parameters to the normal distribu

are s̄5899.42 MPa anda580.49 MPa.
2-2
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higher the probability that we could find a large and critic
defect and the smaller the mean strength of the corresp
ing sample@14,15#. This size effect can be represented
V1s1

m5V2s2
m if we suppose two samples of specimens w

different sizesV1 andV2 as well as the same probability o
failure. In more general terms, we haves(lV)
;l21/ms(V), wherel is the scaling factor. This provides u
with another experimental way to check out our results m
tioned above. As seen in Fig. 4, further experimental res
show the tendency we have discovered@12#. For the Si3N4
and SiC ceramics, the Weibull distribution fits the data bet
but in the case of ZnO ceramic, there is no size effect, tha
to say, some characteristic scale may exist and the no
distribution is a possible choice.

In addition, microscopic observations showed that th
are very different microstructures in these materials. In
Si3N4 and SiC ceramics, cracklike flaws are sparsely dist
uted, and thus it is not surprising that their strengths yield
Weibull distribution. But in the ZnO ceramic, flaws are a
proximately spherical pores with sharp grooves@12,16#. As
we know, the ZnO ceramic is a typical kind of electrocera

FIG. 2. Strength density functions of the SiC ceramic. The fit
parameters to the Weibull distribution arem59.62 and s0

5376.20 MPa; and the fitted parameters to the normal distribu

are s̄5357.87 MPa anda542.62 MPa.

FIG. 3. Strength density functions of the ZnO ceramic. T
fitted parameters to the Weibull distribution arem520.92 ands0

5104.81 MPa; and the fitted parameters to the normal distribu

are s̄5102.37 MPa anda55.17 MPa.
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ics that are applied for varistors and designed with respec
electrical rather than mechanical properties. Thus, they c
tain a large number of flaws that may act as the origin
fracture. As a consequence of a high porosity~about 5 vol %!
and a pronouncedR-curve behavior before fracture in th
ZnO ceramic, a group of pores as well as the interact
between them would affect the final fracture rather than o
the largest one as the Weibull weakest-link model postula
Now we attempt to give a simple statistical explanation. L
us suppose that the number of defects in a given sampleN,
and the failure probability of a defect isp. For the sake of
simplicity, the interaction between pores is neglected. T
failure probability of n defects can thus be written a
PN(n)5$N!/ @n!(N2n)! #%pn(12p)N2n. As is well known
@17#, there are two special cases for this binomial distribut
in the limit of largeN. If p is not too small~this seems to be
corresponding to the case of ZnO ceramic!, the binomial
distribution is approaching the normal distribution. On t
contrary, if p!1, we have the Poisson distributionPN(n)
5anexp(2a)/n!, where a5Np. Further letn50, one can
easily obtainPN(0)5exp(2Np), and then the weakest-link
model can be described in the formF512PN(0)51
2exp(2Np). Based on as few assumptions as possible
similar formula FS(s)512exp@2^Nc,S(s)&#, where
^Nc,S(s)& indicates the mean number of critical defects in
specimen of sizeS, was proposed@15#. So obviously the
Weibull distribution is only a special case of this gene
distribution function.

Finally it is worth noting that the procedure proposed he
can be extended and applied to choose the best distribu
among three or more possible distributions, for which AIC
defined in Eq.~7! has the smallest value. It has also be
used to investigate the influence of threshold stress to
estimation of the Weibull statistics@18#.

In conclusion, we have introduced a simple quantitat
procedure to ascertain a better distribution, and further
plied it to the fit of strength data of three ceramic materia

d

n

n

FIG. 4. Experimental results for three ceramics, where nume
are the number of experiments, and error bars refer to 90% co
dence band~the higher the number of tests, the smaller the sca
of data!. Solid arrow lines, with the slope of21/m, indicate the size
effect extrapolated by the Weibull distribution.
2-3
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The results show that there seems to be no sufficient
dence that the Weibull distribution is always in preferen
tothe normal or other distributions. The uncritical use of t
Weibull distribution for strength data is questioned. The ca
ful search for the optimum distribution could however pr
vide the first hint and help us to elucidate the underly
physical mechanisms of fracture.
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