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First-Passage Failure of
Quasi-Integrable Hamiltonian
Systems
The first-passage failure of quasi-integrable Hamiltonian systems (multidegre
freedom integrable Hamiltonian systems subject to light dampings and weakly ran
excitations) is investigated. The motion equations of such a system are first reduce
set of averaged Itoˆ stochastic differential equations by using the stochastic averag
method for quasi-integrable Hamitonian systems. Then, a backward Kolmogorov equ
governing the conditional reliability function and a set of generalized Pontryagin eq
tions governing the conditional moments of first-passage time are established. Finall
conditional reliability function, and the conditional probability density and moments
first-passage time are obtained by solving these equations with suitable initial and bo
ary conditions. Two examples are given to illustrate the proposed procedure and
results from digital simulation are obtained to verify the effectiveness of the proced
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Introduction
In the theory of random vibration or stochastic structural d

namics, usually two failure models are studied: first-passage~first-
excursion! failure and fatigue failure. In recent years, fatigue fa
ure is treated as the propagation of a dominant crack to a cri
size. Thus, fatigue failure becomes a special kind of first-pass
failure. The first-passage failure is among the most difficult pr
lems in the theory of random vibration or stochastic structu
dynamics. At present, a mathematical exact solution is poss
only if the random phenomenon in question can be treated
diffusive Markov process. Still, known solutions are limited to t
one-dimensional case~@1,2#!.

The state space of a mechanical or structural system mod
generally two-dimensional or higher. For such a system subjec
Gaussian white noise excitation, the response is a vector diffu
Markov process, and a backward Kolmogorov equation govern
the conditional reliability function and a set of generaliz
Pontryagin equations governing the conditional moments of fi
passage time can be set up. However, these equations can u
be solved only numerically. For this purpose, a variety of num
cal methods, such as finite element procedure and generalize
mapping approach have been developed~@3–6#!. Unfortunately, at
present, the problems can be solved in this way are limited to
or three dimensional.

The response quantities of a quasi-Hamiltonian system~a linear
or nonlinear conservative system subject to light dampings
weakly random excitations! can be divided into two categories
rapidly varying processes and slowly varying processes. Usu
the slowly varying processes are much more significant for ch
acterizing the long-term behavior of the system. Stochastic a
aging is a method to derive the equations governing the slo
varying processes from the original equations of the system.
vector of slowly varying processes after averaging are~approxi-
mately! diffusive Markov process and the dimension of the av
aged equations is usually much less than that of the original e
tions. Furthermore, the averaged equations are much more re
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than the original equations since there is only one time scale in
former equations while there are two time scales in the later eq
tions. Thus, the stochastic averaging method is a powerful
proximate procedure to deal with quasi-Hamiltonian systems.

The first-passage failure of mechanical and structural sys
usually occurs rarely. It is a long-term behavior and the stocha
averaging method is suitable for studying it. The classical stoch
tic averaging method has been applied by many researche
study the first-passage problem of single-degree-of-freedom o
lators with linear restoring force and with nonlinear restori
force ~@7–17#!. Recently, the stochastic averaging method
quasi-Hamiltonian systems has been developed~@18–20#!. Except
for response prediction, it has been applied to study the stoch
stability and bifurcation~@20–23#!, the first-passage failure o
quasi-non-integrable Hamiltonian systems~@24#! and the nonlin-
ear stochastic optimal control~@25–29#!.

In the present paper, the stochastic averaging method for qu
integrable Hamiltonian systems is first reviewed briefly. Then
backward Kolmogorov equation governing the conditional re
ability function and the generalized Pontryagin equations gove
ing the conditional moments of first-passage time are deri
from the averaged equations of quasi-integrable Hamiltonian
tems, and the initial and boundary conditions are formulated.
nally, two examples are worked out and the results obtained
using the proposed procedure are compared with those from
tal simulation and with those obtained by using the procedure
quasi-non-integrable Hamiltonian systems~@24#!.

Stochastic Averaging of Quasi-Integrable Hamiltonian
Systems

The stochastic averaging method for quasi-integrable Ham
tonian systems has been developed for nonresonant and res
cases, and for white noise and wide-band excitations~@19,23#!.
Here, only the method for nonresonant case and for white n
excitation is briefly reviewed. Consider a quasi-Hamiltonian s
tem of n-degree-of-freedom governed by the following equatio
of motion:

Q̇i5
]H̄

]Pi

Ṗi52
]H̄

]Qi
2«ci j

]H̄

]Pj
1«1/2f ikWk~ t ! (1)
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i , j 51,2, . . . ,n; k51,2, . . . ,m

where Qi and Pi are generalized displacements and momen
respectively; H̄5H̄(Q,P) is twice differentiable Hamiltonian;
ci j 5ci j (Q,P) are functions representing quasi-linear damping
efficients;f ik5 f ik(Q,P) are functions representing excitation am
plitudes; « is a small positive parameter;Wk(t) are Gaussian
white noises in the sense of Stratonovich with correlation fu
tions E@Wk(t)Wl(t1t)#52Dkld(t).

Equation~1! can be modeled as the following set of Itoˆ stochas-
tic differential equations:

dQi5
]H̄

]Pi
dt (2a)

dPi52S ]H̄

]Qi
1«ci j

]H̄

]Pj
2«Dkl f j l

] f ik

]Pj
D dt1«1/2s ikdBk~ t !

(2b)
i , j 51,2, . . . ,n; k51,2, . . . ,m

whereBk(t) are the independent unit Wiener processes andssT

52fDfT. The double summation terms on the right-hand side
Eq. ~2b! are known as the Wong-Zakai correction terms. The
terms usually can be split into two parts: one having the effec
modifying the conservative forces and another modifying
damping forces. The first part can be combined with2]H̄/]Qi to
form an overall effective conservative forces2]H/]Qi with a
modified HamiltonianH5H(Q,P) and with ]H/]Pi5]H̄/]Pi .
The second part can be combined with2«ci j ]H̄/]Pj to constitute
an effective damping forces 2«mi j ]H/]Pj with mi j
5mi j (Q,P). With these accomplished, Eqs.~2a! and ~2b! can be
rewritten as

dQi5
]H

]Pi
dt (3a)

dPi52S ]H

]Qi
1«mi j

]H

]Pj
Ddt1«1/2s ikdBk~ t !

(3b)
i , j 51,2, . . . ,n; k51,2, . . . ,m.

Assume that the Hamiltonian system with HamiltonianH is
integrable and nonresonant. That is, in the Hamiltonian sys
there existn independent first integrals~conserved quantities!
H1 ,H2 , . . . ,Hn , which are in involution. The words ‘‘in involu-
tion’’ implies that the Poisson bracket of any two o
H1 ,H2 , . . . ,Hn vanishes. In principle,n pairs of action-angle
variablesI i ,u i can be introduced for an integrable Hamiltonia
system ofn-degrees-of-freedom. Non-resonance means that tn
frequencies,v i5du i /dt, do not satisfy the following resonan
relation:

ki
uv i50~e! (4)

whereki
u are integers with( i 51

n uki
uu,4.

Introduce transformations

Hr5Hr~Q,P!, r 51,2, . . . ,n. (5)

The Itô stochastic differential equations forHr are obtained from
Eqs.~3a! and ~3b! by using Itôdifferential rule as follows:

dHr5«S 2mi j

]H

]Pj

]Hr

]Pi
1

1

2
s iks jk

]2Hr

]Pi]Pj
Ddt

1«1/2
]Hr

]Pi
s ikdBk~ t !

(6)
r ,i , j 51,2, . . . ,n; k51,2, . . . ,m

wherePi are replaced byHs in terms of Eq.~5!. Now the system
is governed by Eqs.~3a! and~6! and the state variables areQi and
Journal of Applied Mechanics
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Hr . It is seen from these equations thatQi are rapidly varying
processes whileHr are slowly varying processes. According to th
Khasminskii theorem ~@30#!, Hr converge weakly to an
n-dimensional vector diffusion processes as«→0 in a time inter-
val 0<t<T, whereT;0(«21). For simplicity, the same symbol
Hr are used to denoter components of this diffusion process.

The Itô stochastic differential equations for thisn-dimensional
vector diffusion process can be obtained by applying time ave
ing to Eq.~6!. The result is

dHr5ar~H!dt1s̄ rk~H!dB̄k~ t !
(7)

r 51,2, . . . ,n; k51,2, . . . ,m

where H5@H1H2 . . . Hn#T; B̄k(t) are independent unit Wiene
processes;

ar~H!5« K 2mi j

]H

]Pj

]Hr

]Pi
1

1

2
s iks jk

]2Hr

]Pi]Pj
L

t

brs~H!5s̄ rk~H!s̄sk~H!5« K s iks jk

]Hr

]Pi

]Hs

]Pj
L

t

(8)

^@•#& t5 lim
T→`

1

T E
T

t01T

@•#dt.

Note thatHr are kept constant in performing the time averagin
The time averaging in Eq.~8! may be replaced by space ave

aging. For example, suppose that the Hamiltonian is separable
equal to the sum ofn independent first integers, i.e.,

H~q,p!5(
r 51

n

Hr~qr ,pr ! (9)

and for eachHr there is a periodic orbit with periodTr . Then the
averaged drift and diffusion coefficients of Eq.~7! can be obtained
as follows:

ar~H!5
«

T R S 2mr j

]H j

]Pj

]Hr

]Pr
1

1

2
s rks rk

]2Hr

]Pr
2 D

3)
m51

n S 1Y ]Hm

]Pm
Ddqm

(10)

brs~H!5
«

T R S s rkssk

]Hr

]Pr

]Hs

]Ps
D3)

m51

n S 1Y ]Hm

]Pm
Ddqm

wherer@•#Pm51
n (••)dqm represents ann-fold loop integral and

T5T~H!5)
m51

n

Tm5 R )
m51

n S 1Y ]Hm

]Pm
Ddqm . (11)

In the case where action-angle variablesI i , u i are available,Hr
can be replaced byI r and averaged Itoˆ Eq. ~7! by

dIr5ār~ I !dt1s% rk~ I !dB% k~ t !
(12)

r 51,2, . . . ,n; k51, . . . ,m

whereI5@ I 1I 2 . . . I n#T;

ār~ I !5
«

~2p!n E
0

2pS 2mi j

]H

]Pj

]I r

]Pi
1

1

2
s iks jk

]2I r

]Pi]Pj
Ddu

(13)

brs~ I !5s% rk~ I !s% sk~ I !5
«

~2p!n E
0

2pS s iks jk

]I r

]Pi

]I s

]Pj
Ddu

in which u5@u1u2 . . . un#T; *0
2p@•#du denotes ann-fold integral.

Note that averaged Eq.~7! or ~12! is much simpler than origina
Eq. ~1!. The dimension of the former equation is only a half
that of the later equation. Equations~7! and ~12! contain only
MAY 2002, Vol. 69 Õ 275
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slowly varying processH(t) and I (t), respectively, and they ar
suitable for studying the long-term behavior of the system, suc
the first-passage failure.

Backward Kolmogorov Equation and Generalized
Pontryagin Equations

For most mechanical/structural systems HamiltonianH repre-
sents the total energy of the system, andHr the energy of therth
degree-of-freedom of the system.Hr may vary betweenHr0 and
`, whereHr0 is a constant, such asH for a Duffing oscillator with
hardening spring, between2` andHr0 , such asH for a Duffing
oscillator with softening spring, or betweenHr0 andHrm , where
Hrm is a constant, such asH for a pendulum. The state of th
averaged system of a quasi-integrable Hamiltonian system va
randomly in then-dimensional domain defined by the direct pro
uct of the Hr intervals and the safety domainV is a bounded
region with boundaryG within the n-dimensionalHr domain.
Suppose that the lower boundary of a safety domain for eachHr is
at zero ~it is always possible to make so by using coordina
transformation!. Then the boundaryG consists ofG0 ~at least one
of Hr vanishes! and critical boundaryGc . The first-passage fail-
ure occurs whenH(t) crossesGc for the first time, and it is char-
acterized by the conditional reliability function, the condition
probability density or conditional moments of first-passage tim
where the word ‘‘conditional’’ means under the given initial co
dition in the safety domain.

The conditional reliability function, denoted byR(tuH0), is de-
fined as the probability ofH(t) being in safety domainV within
time interval (0,t# given initial stateH05H(0) being inV, i.e.,

R~ tuH0!5P$H~t!PV,tP~0,t#uH0PV%. (14)

It is the integral of the conditional transition probability density
V. The conditional transition probability density is the transiti
probability density of the sample functions which remain inV in
time interval@0,t#. For an averaged system, the conditional tra
sition probability density satisfies the backward Kolmogor
equation with drift and diffusion coefficients defined by Eqs.~8!,
~10!, or ~13!. Thus, the following backward Kolmogorov equatio
can be derived for the conditional reliability function:

]R

]t
5ar~H0!

]R

]Hr0
1

1

2
brs~H0!

]2R

]Hr0]Hs0 (15)
r ,s51,2, . . . ,n

wherear(H0) andbrs(H0) are defined by Eqs.~8! or ~10! with H
replaced byH0 . The initial condition is

R~0uH0!51, H0PV (16)

which implies that the system is initially in the safety domain. T
boundary conditions are

R~ tuG0!5 f inite (17)

R~ tuGc!50. (18)

Equations~17! and ~18! imply that G0 is a reflecting boundary
while Gc is the absorbing boundary.

The first-passage timeT is defined as the time when the syste
reaches critical boundaryGc for the first time givenH0 being in
V. Noting that the conditional probability of the first-passage fa
ure F(tuH0)512R(tuH0), the conditional probability density o
the first-passage time can be obtained from the conditional
ability function as follows:

p~TuH0!5
2]R~ tuH0!

]t U
t5T

. (19)

The conditional moments of first-passage time are defined as
276 Õ Vol. 69, MAY 2002
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m l~H0!5E
0

`

Tlp~TuH0!dT, l 51,2, . . . . (20)

The equations governing the conditional moments of first-pass
time can be obtained from Eq.~15! in terms of relationships~19!
and ~20! as follows:

1

2
brs~H0!

]2m l 11

]Hr0]Hs0
1ar~H0!

]m l 11

]Hr0
52~ l 11!m l

(21)
r ,s51,2, . . . ,n; l 50,1,2, . . . .

It is easily seen from Eq.~20! that m051. The boundary condi-
tions associated with Eq.~21! are obtained from Eqs.~17! and
~18! in terms of Eqs.~19! and ~20!. They are

m l~G0!5 f inite (22)

m l~Gc!50. (23)

Note that both boundary conditions~17! and ~22! are qualitative
rather than quantitative. They can be made to be quantitative
using Eqs.~15! and ~21!, respectively, based on the limiting be
havior of the drift and diffusion coefficients in Eqs.~15! and~21!
at boundaryG0 and it will be illustrated with the followingj ex-
amples.

The conditional reliability function is obtained from solvin
backward Kolmogorov Eq.~15! together with initial condition
~16! and boundary conditions~17! and~18!. The conditional prob-
ability density of first-passage time is obtained from the con
tional reliability function by using Eq.~19!. The conditional mo-
ments of first-passage time are obtained either from
conditional probability density of first-passage time by using de
nition ~20! or directly from solving generalized Pontryagin E
~21! together with boundary conditions~22! and ~23!.

Examples

Example 1. Consider linearly and nonlinearly coupled tw
linear oscillators subject to external and parametric excitation
Gaussian white noises. The equations of motion of the system
of the form

Ẍ11a11Ẋ11a12Ẋ21b1~X1
21X2

2!Ẋ11v1
2X15W1~ t !1X1W3~ t !

(24)
Ẍ21a21Ẋ11a22Ẋ21b2~X1

21X2
2!Ẋ21v2

2X25W2~ t !1X2W4~ t !

where a i j , b i , and v i( i , j 51,2) are constants;Wk(t)(k
51,2,3,4) are independent Gaussian white noises with intens
2Dk ; a i j , b i , andDk are assumed of the same order of«. The
response of system~24! in both nonresonant and resonant cas
with external excitations only has been studied by using the
chastic averaging method for quasi-integrable Hamiltonian s
tems~@19#!. Here we study the first-passage failure of system~24!
in a nonresonant case.

Let X15Q1 , X25Q2 , Ẋ15P1 , Ẋ25P2 . Equation~24! can be
recast in the form of Eq.~1! as follows:

Q̇15P1

Q̇25P2 (25)
Ṗ152v1

2Q12@a111b1~Q1
21Q2

2!#P12a12P2

1W1~ t !1Q1W3~ t !

Ṗ252v2
2Q22@a221b2~Q1

21Q2
2!#P2

2a21P11W2~ t !1Q2W4~ t !.

Equation~25! can be modeled as Itoˆ stochastic differential equa
tions of the form of Eqs.~3a! and ~3b!. Since the Wong-Zakai
Transactions of the ASME
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correction terms in this case vanish, the modified Hamilton
associated with the Itoˆ equations is the same as that associa
with Eq. ~25!, i.e.,

H5H11H2 (26)

Hi5
1

2
~Pi

21v i
2Qi

2!, i 51,2. (27)

The Hamiltonian system with HamiltonianH is integrable.
Thus, system~25! is a quasi-integrable Hamiltonian system. B
using the stochastic averaging method for quasi-integrable Ha
tonian systems, the following averaged Itoˆ equations can be ob
tained in the nonresonant case:

dHr5ar~H1 ,H2!dt1s̄ rk~H1 ,H2!dB̄k~ t !
(28)

r 51,2, k51,2,3,4

where

a152a11H12
b1

2v1
2 H1

22
b1

v2
2 H1H21D11

D3

v1
2 H1

a252a22H22
b2

2v2
2 H2

22
b2

v1
2 H1H21D21

D4

v2
2 H2

b115s̄1ks̄1k52D1H11D3

H1
2

v1
2 (29)

b225s̄2ks̄2k52D2H21D4

H2
2

v2
2

b125b215s̄1ks̄2k50.

It is seen from Eq.~27! that Hi vary from 0 to`. So, the state of
averaged system~28! varies randomly in the first quadrant o
plane (H1 ,H2). Suppose that the limit state of the system isH
5H11H25Hc , i.e.,

Gc : H11H25Hc , H1 ,H2>0. (30)

The safety domain of the system is the inside of a right trian
with boundariesGc in Eq. ~30! andG0 defined by

G05G011G021G03,

G01: H150, 0,H2,Hc (31)
G02: H250, 0,H1,Hc

G03: H15H250

~see Fig. 1!.

Fig. 1 Safety domain V and its boundary on plane H1 and H2
for system „24…
Journal of Applied Mechanics
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Following Eq. ~15!, the conditional reliability function
R(tuH10,H20) of system~24! is governed by the following back
ward Kolmogorov equation:

]R

]t
5a1

]R

]H10
1a2

]R

]H20
1

1

2
b11

]2R

]H10
2 1

1

2
b22

]2R

]H20
2 (32)

wherea1 , a2 , b11, andb22 are defined by Eq.~29! with H1 , H2
replaced byH10 andH20, respectively. The initial condition is Eq
~16! with H05@H10H20#

T. One boundary condition is Eq.~18!
with Gc defined by Eq.~30!. The other qualitative boundary con
dition, Eq. ~17! with G0 defined by Eq.~31!, can be transformed
into a quantitative one by using Eq.~32! and considering the
limiting behavior of drift and diffusion coefficients in Eq.~29! at
boundaryG0 defined by Eq.~31!. It is

]R

]t
5D1

]R

]H10
1S D22a22H202

b2

2v2
2 H20

2 1
D4

v2
2 H20D ]R

]H20

1S D2H201D4

H20
2

2v2
2D ]2R

]H20
2 (33)

for boundaryG01;

]R

]t
5S D12a11H102

b2

2v1
2 H10

2 1
D3

v1
2 H10D ]R

]H10

1D2

]R

]H20
1S D1H101D3

H10
2

2v1
2D ]2R

]H10
2 (34)

for boundaryG02;

]R

]t
5D1

]R

]H10
1D2

]R

]H20
(35)

for boundaryG03.
Equation~32! is a two-dimensional parabolic partial differentia

equation and can be solved numerically together with the ini
and boundary conditions by using the Peaceman-Rachford sch
of the finite difference method to yield the conditional reliabili
function of system~24!. The conditional probability density of the
first-passage time of system~24! is then obtained from the condi
tional reliability function by using Eq.~19!.

Similarly, the generalized Pontryagin equations for the con
tional moments of the first passage time of system~24! can be
derived from the averaged Itoˆ Eq. ~28! as follows:

1

2
b11

]2m l 11

]H10
2 1

1

2
b22

]2m l 11

]H20
2 1a1

]m l 11

]H10

1a2

]m l 11

]H20

52~ l 11!m l (36)

wherea1 , a2 , b1 , andb2 are defined by Eq.~29! with H1 andH2
replaced byH10 andH20, respectively. One boundary condition
~23! with Gc defined by Eq.~30!. The other qualitative boundary
condition, Eq.~22! with G0 defined by Eq.~31!, can be trans-
formed into quantitative one by using Eq.~36! and considering the
limiting behavior of the drift and diffusion coefficients in Eq.~29!
at boundaryG0 . It is

S D2H201D4

H20
2

2v2
2D ]2m l 11

]H20
2 1D1

]m l 11

]H10
1S D22a22H20

2
b2

2v2
2 H20

2 1
D4

v2
2 H20D ]m l 11

]H20
52~ l 11!m l (37)

for boundaryG01;
MAY 2002, Vol. 69 Õ 277
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S D1H101D3

H10
2

2v1
2D ]2m l 11

]H10
2 1S D12a11H102

b1

2v1
2 H10

2

1
D3

v1
2 H10D ]m l 11

]H10
1D2

]m l 11

]H20
52~ l 11!m l (38)

for boundaryG02;

D1

]m l 11

]H10
1D2

]m l 11

]H20
52~ l 11!m l . (39)

Equation ~36! is a two-dimensional elliptical partial differentia
equation and can be solved numerically together with bound
conditions by using the five-point scheme of the finite differen
method to yield the conditional moments of first-passage time
system~24!.

Some numerical results for the conditional reliability functio
the conditional probability density and the conditional mean of
first passage time of system~24! obtained by using the abov
procedure are shown in Figs. 2–4. Similar results from dig
simulation are also shown for comparison. It is seen that the

Fig. 2 Reliability function of system „24… for given initial con-
dition. a11Ä0.01, a12Ä0.03, b1Ä0.1, v1Ä1.0, a21Ä0.04, a22
Ä0.04, b2Ä0.4, v2Ä0.707, 2D1Ä0.03, 2D2Ä0.01, HcÄ0.3. The
other parameters are 2 D3Ä2D4Ä0, H10ÄH20Ä0 for A and A 8;
2D3Ä2D4Ä0, H10Ä0.09, H20Ä0.03 for B and B 8; 2D3Ä0.1, 2D4
Ä0.01, H10ÄH20Ä0 for C and C 8. analytical result by using
the present proposed procedure; – – – –analytical result by us-
ing the procedure proposed in †24‡; s L n from digital simu-
lation.

Fig. 3 Probability density of first-passage time of system „24…
for given initial condition. The parameters and symbols are the
same as those in Fig. 2.
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results are in excellent agreement. Note that the conditional
ability function is a monotonously decreasing function of tim
Some results for the reliability function, the probability densi
and the mean of first-passage time of system~24! as functions of
the initial condition are shown in Figs. 5–7. It is seen that both
reliability and mean first-passage time are monotonously decr
ing functions ofH10 and/orH20.

As indicated above, system~24! is a quasi-integrable Hamil-
tonian system. However, the procedure for evaluating the co
tional reliability function and the statistics of first-passage time
quasi-non-integrable Hamiltonian systems developed in@24# can
also be applied to system~24!. It is interesting to see if this
method yields good results.

Treat system~24! as a quasi-non-integrable Hamiltonian sy
tem, the averaged Itoˆ equation is of the form

dH5a~H !dt1s̄~H !dB̄~ t ! (40)

whereH is defined by Eqs.~26! and ~27!,

a~H !5D11D22
1

6
~b11b2!S 1

v1
2 1

1

v2
2D

2
1

2 S a111a222
D3

v1
22

D4

v2
2DH

(41)

b~H !5s̄2~H !5
1

3 S D3

v1
2 1

D4

v2
2DH21~D11D2!H.

The conditional reliability functionR(tuH0) of system ~40! is
governed by the following one-dimensional backward Kolmo
orov equation:

]R

]t
5a~H0!

]R

]H0
1

1

2
b~H0!

]2R

]H0
2 (42)

wherea(H0) andb(H0) are defined by Eq.~41! with H replaced
by H0 . The boundary conditions are

R~ tuHc!50 (43)

R~ tu0!5 f inite. (44)

The later condition is qualitative and can be made to be quan
tive by using Eq.~42! and the limiting behavior ofa(H0) and
b(H0) nearH050. It is

Fig. 4 Mean first-passage time of system „24… as function of
H10 for given H20 . 2D3Ä2D4Ä0, H20Ä0 for A and A 8; 2D3
Ä2D4Ä0, H20Ä0.08 for B and B 8; 2D3Ä0.1, 2D4Ä0.01, H20Ä0
for C and C 8. The other parameters and symbols are the same
as those in Fig. 2.
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Fig. 5 Reliability of system „24… at tÄ2 „second … as function of H10 and H20 .
2D3Ä0.1, 2D4Ä0.01. The other parameters are the same as those in Fig. 2.
e
n-
]R

]t
5FD11D22

1

6
~b11b2!S 1

v1
2 1

1

v2
2D G ]R

]H0
. (45)

The initial condition is
R~0uH0!51. (46)
hanics

26.231.78. Redistribution subject to ASME l
The one-dimensional boundary-initial value problem, Eqs.~42!,
~43!, ~45!, and ~46!, can be solved by using the finite differenc
method of Crank-Nicolson type. The conditional probability de
sity of first-passage time can be obtained fromR(tuH0) as
follows:
Fig. 6 Probability density of first-passage time of system „24… as function of
H20 and t for given H10Ä0. 2D3Ä0.1, 2D4Ä0.01. The other parameters are the
same as those in Fig. 2.

Fig. 7 Mean first-passage time of system „24… as function of H10 and H20 .
2D3Ä0.1, 2D4Ä0.01. The other parameters are the same as those in Fig. 2.
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p~TuH0!5
2]R~ tuH0!

]t U
t5T

. (47)

Similarly, the generalized Pontryagin equations for the m
ments of first-passage time of system~40! can be obtained as
follows:

1

2
b~H0!

]2m l 11

]H0
2 1a~H0!

]m l 11

]H0
52~ l 11!m l . (48)

The boundary conditions are

m l 11~Hc!50 (49)

m l 11~0!5 f inite. (50)

The qualitative condition~50! can be converted into quantitativ
one by using Eq.~48! and the limiting behavior ofa(H0) and
b(H0) nearH050. It is

FD11D22
1

6
~b11b2!S 1

v1
2 1

1

v2
2D G ]m l 11

]H0
52~ l 11!m l .

(51)

Fig. 8 Reliability function of system „52… for given initial con-
dition. a1Ä0.2, a2Ä0.1, a3Ä0.1, b1Ä0.05, vÄ1.0; a4Ä0.4, b2
Ä0.1, kÄ2.0, 2D1Ä0.03, 2D2Ä0.01, HcÄ0.3. The other param-
eters are 2 D3Ä2D4Ä0, H10ÄH20Ä0 for A and A 8; 2D3Ä2D4
Ä0, H10Ä0.04, H20Ä0.02 for B and B 8; 2D3Ä0.1, 2D4Ä0.05,
H10ÄH20Ä0 for C and C 8. analytical result by using the
present proposed procedure; – – – –analytical result by using
the procedure proposed in †24‡; s L n from digital simulation.

Fig. 9 Probability density of first-passage time of system „52…
for given initial condition. The parameters and symbols are the
same as those in Fig. 8.
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The one-dimensional boundary value problem, Eqs.~48!, ~49!,
and ~51!, can be solved by using the Runge-Kutta method.

Obviously, for evaluating the statistics of the first-passage f
ure of system~24! the procedure for quasi-non-integrable Ham
tonian systems is much simpler than that for the quasi-integra
Hamiltonian system. However, the former generally yields in
curate results as shown in Figs. 2–4. Our experience shows th
may yield good results in some very special cases, for exam
the ratio of excitation intensity to damping coefficient for the fir
degree-of-freedom is the same as that for the second degre
freedom. In this case system~24! will behave like a quasi-non-
integrable Hamiltonian system. On the other hand, the met
proposed in this paper always yields good results for system~24!
although the equations involved are more difficult to solve.

Example 2. Consider a van der Pol oscillator nonlinear
coupled with a Duffing oscillator subject to external and param
ric excitations of Gaussian white noises. The equations of mo
of the system are of the form

Ẍ11~2b11a1X1
21a2X2

41a3Ẋ2
2!Ẋ11v2X15W1~ t !1X1W3~ t !

(52)
Ẍ21~b21a4X1

2!Ẋ21kX2
35W2~ t !1X2W4~ t !

where a1 , a2 , a3 , a4 , b1 , b2 , v, k are constants;Wk(t)(k
51,2,3,4) are independent Gaussian white noises with inten
2Dk . The response of system~52! with external excitations only
has been studied by using the stochastic averaging method
quasi-integrable Hamiltonian systems~@19#!. Let X15Q1 , X2

5Q2 , Ẋ15P1 , Ẋ25P2 , Eq. ~52! can be rewritten as a quas
Hamiltonian system of the form of Eq.~1!, i.e.,

Q̇15P1

Q̇25P2 (53)
Ṗ152v2Q12~2b11a1Q1

21a2Q2
41a3P2

2!P1

1W1~ t !1Q1W3~ t !

Ṗ252kQ2
32~b21a4Q1

2!P21W2~ t !1Q2W4~ t !.

Equation~53! can be modeled as Itoˆ equations. Since the Wong
Zakai correction terms for this example vanish, the modifi
Hamiltonian is the same as that associated with Eq.~53!, i.e.,

H5H11H2 (54)

Fig. 10 Mean first-passage time of system „52… as function of
H20 for given H10 . 2D3Ä2D4Ä0, H10Ä0 for A and A 8; 2D3
Ä2D4Ä0, H10Ä0.04 for B and B 8; 2D3Ä0.1, 2D4Ä0.05, H10Ä0
for C and C 8. The other parameters and symbols are the same
as those in Fig. 8.
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H15
1
2~P1

21v2Q1
2! (55)

H25
1
2~P2

21
1
2kQ2

4!. (56)

HamiltonianH is separable and so Eq.~53! governs a quasi-
integrable Hamiltonian system. Suppose that the Hamiltonian
tem is nonresonant. The averaged Itoˆ equations can be obtaine
from Eq.~53! by using the stochastic averaging method for qua
integrable Hamiltonian systems~@19#!. It is of the same form of
Eq. ~28! with the following drift and diffusion coefficients:

a15b1H12
a1

2v2 H1
22

4a2

3k
H1H22

4a3

3
H1H21D11

H1

v2 D3

a252
4

3
b2H22

4a4

3v2 H1H21D21

8G2S 7

4D
9G2S 5

4D A
H2

k
D4

b1152D1H11
H1

2

v2 D3 (57)

b225
8

3
D2H21

64G2S 7

4D
45G2S 5

4D H2AH2

k
D4

b125b2150.

SinceHi( i 51,2) vary from 0 to` under the conditionk.0,
the safety domain of system~52! may be of the same form as tha
in Fig. 1. The backward Kolmogorov equation for the condition
reliability function, the generalized Pontryagin equations for
conditional moments of first-passage time, and their associ
initial and boundary conditions for system~52! can be formulated
and solved as for example 1. The only difference is that the d
and diffusion coefficients for this example are defined by Eq.~57!
with H1 andH2 replaced byH10 andH20, respectively.

The procedure for evaluating the statistics of first-passage
ure of quasi-non-integrable Hamiltonian systems~@24#! can also
be applied to applied to systems~52!. The mathematical formula
tion is the same as that for example one, i.e., Eqs.~40!–~51!,
except the drift and diffusion coefficients. For this example, th
coefficients are

a~H !5D11D210.5484D4AH

k
1

4

7 S b12b21
D3

v2DH

2S 16

17

a1

k
1

16

17

a2

v2 1
5

77
a31

16

17

a4

v2DH2

(58)

b~H !5s̄2~H !50.4876D4HAH

k
1

8

7
~D11D2!H1

32

17

D3

v2 H2.

Some numerical results for the conditional reliability functio
the conditional probability density, and mean of first-passage t
of system~52! are shown in Figs. 8–10. Some figures for th
example similar to Figs. 5–7 are not given due to limited spa
The same observations as those for example 1 can be made
these figures.

Conclusions
In the present paper a procedure for evaluating the statistic

the first passage failure, i.e., the conditional reliability functi
and the conditional probability density and moments of the fi
passage time of quasi-integrable Hamiltonian systems has
proposed based on the stochastic averaging method for q
integrable Hamiltonian systems. Using the stochastic avera
method reduces the dimensions of the backward Kolmogo
Journal of Applied Mechanics
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equations governing the conditional reliability function and t
generalized Pontryagin equations governing the conditional
ments of first-passage time by a half when the associated Ha
tonian system is nonresonant. Furthermore, the backward
mogorov equation and generalized Pontryagin equations o
averaged system are nonsingular and much simpler than thos
the original system. Applications of the proposed procedure to
examples show that the proposed procedure yields quite acc
results. Thus, the proposed procedure is promising and dese
further development and application.

The results for the two examples indicate that both the relia
ity and mean first-passage time are monotonously decrea
functions of initial energy of each degree-of-freedom of the s
tem. This property will be used in the study of nonlinear stoch
tic optimal control of first-passage failure of quasi-integrab
Hamiltonian systems.

The procedure for evaluating the statistics of the first-pass
failure of quasi-non-integrable Hamiltonian systems has also b
applied to the two examples. The numerical results showed th
generally yields inaccurate result for quasi-integrable Hamilton
systems although it is much simpler than the procedure propo
in this paper. Experience shows that only in some very spe
cases it may yield good results.

It is remarked that the criteria for the failure considered in t
paper are functions of the first integrals~energies! of the indi-
vidual oscillators. The stochastic averaging method is the m
effective for this kind of first-passage failure problem. If the fa
ure criterion is given in terms of other physical quantity, such
the displacement, the first-passage failure problem will be m
more difficult to solve. For such a kind of a first-passage failu
problem of a single-degree-of-freedom quasi-Hamiltonian syst
Roberts@31# developed an integral equation for evaluating t
conditional transition probability density in the safety domain~the
integral of which is the reliability function! by using the uncondi-
tional transition probability density obtained from solving the a
eraged FPK equation. Maybe this method can be extended
multi-degree-of-freedom quasi-integrable Hamiltonian system
much more computational work is involved and some difficult
have to be solved. This will be the subject for our future resea

Acknowledgment
The work reported in this paper was supported by the Natio

Natural Science Foundation of China under Grants No. 19972
and 10002015 and the Cao Guang Biao Hi-Science-Techno
Foundation of Zhejiang University.

References
@1# Bharucha-Reid, A. T., 1960,Elements of Markov Processes and Their App

cations, McGraw-Hill, New York.
@2# Cox, D. R., and Miller, H. D., 1965,The Theory of Stochastic Processe,

Chapman and Hall, New York.
@3# Bergman, L. A., and Heinrich, J. C., 1981, ‘‘On the Moments of Time to Fi

Passage of the Linear Oscillator,’’ Earthquake Eng. Struct. Dyn.,9, pp. 197–
204.

@4# Bergman, L. A., and Heinrich, J. C., 1982, ‘‘On the Reliability of the Line
Oscillator and Systems of Coupled Oscillators,’’ Int. J. Numer. Methods En
18, pp. 1271–1295.

@5# Sun, J. Q., and Hsu, C. S., 1988, ‘‘First-Passage Time Probability of N
Linear Stochastic Systems by Generalized Cell Mapping Method,’’ J. So
Vib., 124, pp. 233–248.

@6# Sun, J. Q., and Hsu, C. S., 1990, ‘‘The Generalized Cell Mapping Method
Nonlinear Random Vibration Based Upon Short Time Gaussian Approxim
tion,’’ ASME J. Appl. Mech.,57, pp. 1018–1025.

@7# Ariaratnam, S. T., and Pi, H. N., 1973, ‘‘On the First-Passage Time for En
lope Crossing for a Linear Oscillator,’’ Int. J. Control,18, pp. 89–96.

@8# Lennox, W. C., and Fraser, D. A., 1974, ‘‘On the First Passage Distribution
the Envelope of a Non-stationary Narrow-Band Stochastic Process,’’ ASM
Appl. Mech.,41, pp. 793–797.

@9# Ariaratnam, S. T., and Tam, D. S. F., 1979, ‘‘Random Vibration and Stabi
of a Linear Parametrically Excited Oscillator,’’ Z. Angew. Math. Mech.,59, pp.
79–84.

@10# Spanos, P. D., and Solomos, G. P., 1984, ‘‘Barrier Crossing due to Trans
Excitation,’’ J. Eng. Mech.,110, pp. 20–36.
MAY 2002, Vol. 69 Õ 281

icense or copyright; see http://www.asme.org/terms/Terms_Use.cfm



’

a
,

e

e

I

n

s

stic
.,

on-

of
n.,

ck

141–

r

r
on-

of

r-

ar

Downlo
@11# Roberts, J. B., 1976, ‘‘First Passage Probability for Nonlinear Oscillator,’
Eng. Mech.,102, pp. 851–866.

@12# Roberts, J. B., 1978, ‘‘First-Passage Time for Oscillator With Nonlinear R
storing Forces,’’ J. Sound Vib.,56, pp. 71–86.

@13# Roberts, J. B., 1986, ‘‘Response of an Oscillator With Nonlinear Damping
a Softening Spring to Non-White Random Excitation,’’ Probab. Eng. Mech.1,
pp. 40–48.

@14# Roberts, J. B., 1986, ‘‘First-Passage Time for Randomly Excited Nonlin
Oscillator,’’ J. Sound Vib.,109, pp. 33–50.

@15# Spanos, P. D., 1982, ‘‘Survival Probability of Non-Linear Oscillators Su
jected to Broad-Band Random Disturbance,’’ Int. J. Non-Linear Mech.,17, pp.
303–317.

@16# Zhu, W. Q., and Lei, Y., 1989, ‘‘First Passage Time for State Transition
Randomly Excited Systems,’’Proc. 47th Session of International Statistica
Institute, LIII ~Invited Papers!, Book 3, pp. 517–531.

@17# Cai, G. Q., and Lin, Y. K., 1994, ‘‘On Statistics of First-Passage Failur
ASME J. Appl. Mech.,61, pp. 93–99.

@18# Zhu, W. Q., and Yang, Y. Q., 1997, ‘‘Stochastic Averaging of Quasi-No
Integrable-Hamiltonian Systems,’’ ASME J. Appl. Mech.,64, pp. 157–164.

@19# Zhu, W. Q., Huang, Z. L., and Yang, Y. Q., 1997, ‘‘Stochastic Averaging
Quasi-Integrable Hamiltonian Systems,’’ ASME J. Appl. Mech.,64, pp. 975–
984.

@20# Zhu, W. Q., Huang, Z. L., and Suzuki, Y., 2002, ‘‘Stochastic Averaging a
Lyapunov Exponent of Quasi Partially Integrable Hamiltonian Systems,’’
J. Non-Linear Mech.,37, pp. 419–437.

@21# Zhu, W. Q., and Huang, Z. L., 1998, ‘‘Stochastic Stability of Quasi-No
Integrable-Hamiltonian Systems,’’ J. Sound Vib.,218, pp. 769–789.

@22# Zhu, W. Q., and Huang, Z. L., 1999, ‘‘Stochastic Hopf Bifurcation of Qua
282 Õ Vol. 69, MAY 2002

aded 09 Jun 2010 to 159.226.231.78. Redistribution subject to ASME l
J.

e-

nd

ar

b-

of
l

,’’

n-

of

nd
nt.

-

i-

Non-Integrable-Hamiltonian Systems,’’ Int. J. Non-Linear Mech.,34, pp. 437–
447.

@23# Zhu, W. Q., and Huang, Z. L., 1999, ‘‘Lyapunov Exponents and Stocha
Stability of Quasi-Integrable-Hamiltonian Systems,’’ ASME J. Appl. Mech
66, pp. 211–217.

@24# Gan, C. B., and Zhu, W. Q., 2001, ‘‘First-Passage Failure of Quasi-N
Integrable-Hamiltonian Systems,’’ Int. J. Non-Linear Mech.,36~2!, pp. 209–
220.

@25# Zhu, W. Q., and Ying, Z. G., 1999, ‘‘Optimal Nonlinear Feedback Control
Quasi-Hamiltonian Systems,’’ Sci. China, Ser. A: Math., Phys., Astro
42~11!, pp. 1213–1219.

@26# Zhu, W. Q., Ying, Z. G., and Soong, T. T., 1999, ‘‘Optimal Nonlinear Feedba
Control of Structures Under Random Loading,’’Stochastic Structural Dynam-
ics, B. F. Spencer, Jr., and E. A. Johnson, eds., Balkema, Rotterdam, pp.
148.

@27# Zhu, W. Q., Ying, Z. G., Ni, Y. Q., and Ko, J. M., 2000, ‘‘Optimal Nonlinea
Stochastic Control of Hysteretic Systems,’’ J. Eng. Mech.,126, pp. 1027–
1032.

@28# Zhu, W. Q., Ying, Z. G., and Soong, T. T., 2001, ‘‘An Optimal Nonlinea
Feedback Control Strategy for Randomly Excited Structural Systems,’’ N
linear Dyn.,24, pp. 31–51.

@29# Zhu, W. Q., and Ying, Z. G., 2002, ‘‘Nonlinear Stochastic Optimal Control
Partially Observable Linear Strucutres, ’’ Eng. Struct.,24, pp. 333–342.

@30# Khasminskii, R. Z., 1968, ‘‘On the Averaging Principle for Stochastic Diffe
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