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Introduction than the original equations since there is only one time scale in the
former equations while there are two time scales in the later equa-

Yions. Thus, the stochastic averagi i
. . Pt . . , ging method is a powerful ap-
hamics, usually wo failure models are studied: first-pas¢suge proximate procedure to deal with quasi-Hamiltonian systems.

eXCL.'rS'O') failure and fatigue fa_ulure. In recent years, fatigue fail The first-passage failure of mechanical and structural system

uirze |s_|_t}r]eat¢a]cd t?S th? ﬁr?p%gat'%' of a domiln;allr(mitn(éracfﬂ;irtota Cm'?@ually occurs rarely. It is a long-term behavior and the stochastic
size. Thus, Taligue tailure becomes a specia ot hirs 'passazg?eraging method is suitable for studying it. The classical stochas-
failure. The first-passage failure is among the most difficult prOl?i- averaging method has been applied by many researchers to
lems in the theory of random vibration or stochastic Str“Cturiudy the first-passage problem of single-degree-of-freedom oscil-

dynamics. At present, a mathematical exact solution is possu? ffors with linear restoring force and with nonlinear restoring

only if the random phenomenon in question can be treated ag.fce ([7-17)). Recently, the stochastic averaging method for

diffusive Markov process. Still, known solutions are limited to th%uasi-HamiItonian systems has been develdpeg—20). Except

one-dimensional casgl,2)). _ ar response prediction, it has been applied to study the stochastic
The state space of a mechanical or structural system mode

; . . OUCLH3hility and bifurcation([20—23), the first-passage failure of
generally two-dimensional or higher. For such a system subjectif,sj_non-integrable Hamiltonian systeffi24]) and the nonlin-
Gaussian white noise excitation, the response is a vector diffusiyg <iochastic optimal contrdl25—29).
Markov process, and a backward Kolmogorov equation goveming| the present paper, the stochastic averaging method for quasi-
the conditional reliability function and a set of generalizeg,agrable Hamiltonian systems is first reviewed briefly. Then the
Pontryagin equations governing the conditional moments of fir§l ckward Kolmogorov equation governing the conditional reli-
passage time can be set up. However, these equations can usugfiiiy function and the generalized Pontryagin equations govern-
be solved only numerically. For this purpose, a variety of numefig the conditional moments of first-passage time are derived
cal m_ethods, such as finite element procedure and generalized gg{l the averaged equations of quasi-integrable Hamiltonian sys-
mapping approach have been develofj&d-6]). Unfortunately, at tems, and the initial and boundary conditions are formulated. Fi-
present, the problems can be solved in this way are limited to tgly, two examples are worked out and the results obtained by
or three dimensional. _ o _ using the proposed procedure are compared with those from digi-
The response quantities of a quasi-Hamiltonian syseefimear (5| simulation and with those obtained by using the procedure for

or nonlinear conservative system subject to light dampings agglasi-non-integrable Hamiltonian syste(fiz4]).
weakly random excitationscan be divided into two categories:

rapidly varying processes and slowly varying processes. Usual . . . . .
the slowly varying processes are much more significant for chapiochastic Averaging of Quasi-Integrable Hamiltonian
acterizing the long-term behavior of the system. Stochastic av&ystems

aging is a method to derive the equations governing the slowlyThe stochastic averaging method for quasi-integrable Hamil-
varying processes from the original equations of the system. Thjan systems has been developed for nonresonant and resonant
vector of slowly varying processes after averaging @@proxi- cases, and for white noise and wide-band excitati¢t,23).
mately diffusive Markov process and the dimension of the avefyere only the method for nonresonant case and for white noise
aged equations is usually much less than that of the original eqig&citation is briefly reviewed. Consider a quasi-Hamiltonian sys-
tions. Furthermore, the averaged equations are much more regui# of n-degree-of-freedom governed by the following equations

of motion:

In the theory of random vibration or stochastic structural d
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ij=12,...n; k=12,...m H,. It is seen from these equations tt@t are rapidly varying
processes whilél, are slowly varying processes. According to the

where Q; and P; are generalized displacements and momentghasminskii theorem ([30]), H, converge weakly to an
respectively; H=H(Q,P) is twice differentiable Hamiltonian; n-dimensional vector diffusion processessas0 in a time inter-
cij =Cj;(Q,P) are functions representing quasi-linear damping caal 0<t<T, whereT~0(s1). For simplicity, the same symbols
efficients;f; = f;(Q,P) are functions representing excitation amH, are used to denotecomponents of this diffusion process.
plitudes; & is a small positive parametek,(t) are Gaussian  The Ifo stochastic differential equations for thisdimensional
white noises in the sense of Stratonovich with correlation fungector diffusion process can be obtained by applying time averag-

tions E[ W, (t)W,(t+ 7)]=2D,8(7). ing to Eq.(6). The result is
Equation(1) can be modeled as the following set of #imchas- _ —
tic differential equations: dH,=a;(H)dt+ o (H)dB(t) %
oH r=12,...n; k=12,...m
dQ=—5-dt (2a) ;= . .
JP; where H=[HH,...H,]"; B,(t) are independent unit Wiener
_ _ processes;
IH IH ik i
dP=-— a_Q.'i'scijﬁ_SDklfjlﬁ dt+ &0 dBy(t) dH oH, 1 PH,
i i j (2b) a,(H)=¢ —mija—Pjﬂ—Pi‘i‘zUikUka
ij=1,2,...n; k=1,2,...m !
. o _ _ dH, dHg
whereB,(t) are the independent unit Wiener processes aad bis(H)=ow(H) ol H) =&l owojko5- -5 (8)
=2fDfT. The double summation terms on the right-hand side of P P;[
Eq. (2b) are known as the Wong-Zakai correction terms. These N
L . 1 (to
terms usually can be split into two parts: one having the effect of (- D= lim= f [-]dt.
modifying the conservative forces and another modifying the T |

damping forces. The first part can be combined withH/9Q); to N : ; ; :

. - ; ote thatH, are kept constant in performing the time averaging.
form an overall effective conservative forcesdH/dQ; with a The timeraveragi%g in Eq8) maF;/ be replgced by space ag\]/erq
modified HamiltonianH=H(Q,P) and with 9H/JP;=dH/dP;.  aging. For example, suppose that the Hamiltonian is separable and
The second part can be combined witle cj; JH/JP; to constitute equal to the sum ofi independent first integers, i.e.,
an effective damping forces —em;jgH/dP; with m;

=m;; (Q,P). With these accomplished, Ec(Qa) and(Zb) can be
rewntten as H(a,p)= 2, Hi(dy.p) ©)
dQ —ﬁdt (3a) and for eactH, there is a periodic orbit with period, . Then the
P, averaged drift and diffusion coefficients of E@) can be obtained
as follows:
dpP (aH + o dt+ dBy(t) dH; oH, 1 #*H
i~ 9 Smljor,P et o-lk k _ i oHr
Q (3b) A= P =M, op, T 27w Gp2
i,j=1,2,...n; k=12,...m N
H
Assume that the Hamiltonian system with Hamiltonilnis xH (1/ J )dq#
integrable and nonresonant. That is, in the Hamiltonian system n=1 P (10)
there existn independent first integraléconserved quantiti¢s n
Hi,H,, ... H,, which are in involution. The words “in involu- =2 IH; dHs I (1 aH, q
tion” implies that the Poisson bracket of any two of Prs(H)= TkTSKop, 9P, Ay P90

H.,H,, ... H, vanishes. In principlen pairs of action-angle
variablesl; ,6; can be introduced for an integrable Hamiltoniarwhere§[ - ]I} _,(--)dq, represents an-fold loop integral and
system ofn-degrees-of-freedom. Non-resonance means that the /

n
frequencies,w;=d#, /dt, do not satisfy the following resonant _ _ B
relation: I I T=T(H) _}1 Tu= H
ki'w;=0(e) (4) In the case where action-angle variablesé; are availableH,
can be replaced bl and averaged Tt&q. (7) by

dqﬂ (12)

whereki' are integers wittE[_, k| <4.

Introduce transformations dl,=a,(1)dt+ & (1)dB(t) (12)
H=H,(QP), r=12...n ©) r=12,...n; k=1,...m
The 1to stochastic differential equations fét, are obtained from \herel =[lly. .. 1,1
Egs.(3a) and(3b) by using lfodifferential rule as follows:
b 1 2 ) € 2m oH al, 1 P, 4o
- o o oh, = 2y Mi7p, 3P, 2 Tk7IKGP 7P
dH,=¢ mij&_Pja_PiJr Eoikcrjkm dt 0 I 13y
dH, b, I | o s 9 de
+81/2(9 o dB(1) s(D=0an()asdl)= (27T)n Uiko'jké_Piﬁ_Pj
ii=12,...p k=12, ...m in which 8=[6,6, . .. 6,]"; /37 -1d# denotes am-fold integral.

Note that averaged E¢7) or (12) is much simpler than original
whereP; are replaced by, in terms of Eq.(5). Now the system Eg. (1). The dimension of the former equation is only a half of
is governed by Eqg3a) and(6) and the state variables a@ and that of the later equation. Equatioitg) and (12) contain only
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slowly varying proces$i(t) andl(t), respectively, and they are c

suitable for studying the long-term behavior of the system, such as wi(Ho)= [ T'p(T[H)dT, 1=12,.... (20)

the first-passage failure. 0
The equations governing the conditional moments of first-passage
time can be obtained from E¢L5) in terms of relationship$19)

Backward Kolmogorov Equation and Generalized 2and(20) as follows:

Pontryagin Equations 1 Py 1 Iy s1
- S 5 brs(Ho) —————+a:(Ho) ==—(+Dw
For most mechanical/structural systems Hamiltorttamepre- 2 dH,odH ¢ dH,q 21
sents the total energy of the system, &hdthe energy of theth =12 N 12012 (21)

degree-of-freedom of the systeid, may vary betweeid,, and

o, whereH,, is a constant, such &sfor a Duffing oscillator with |t is easily seen from Eq(20) that uy,=1. The boundary condi-

hardening spring, between andH,,, such asH for a Duffing  tions associated with E¢21) are obtained from Eqg17) and

oscillator with softening spring, or betweéfy, andH,,, where (18) in terms of Eqs(19) and (20). They are

H., is a constant, such ad for a pendulum. The state of the .

averaged system of a quasi-integrable Hamiltonian system varies mi(I'o)=finite (22)

randomly in then-dimensional domain defined by the direct prod- (T)=0 (23)

uct of theH, intervals and the safety domaii is a bounded Fiile '

region with boundaryl’ within the n-dimensionalH, domain. Note that both boundary conditiori$7) and(22) are qualitative

Suppose that the lower boundary of a safety domain for eeda  rather than quantitative. They can be made to be quantitative by

at zero(it is always possible to make so by using coordinatgsing Eqgs.(15) and(21), respectively, based on the limiting be-

transformation Then the boundary consists of, (at least one havior of the drift and diffusion coefficients in Egd5) and(21)

of H, vanisheg and critical boundanf'.. The first-passage fail- at boundaryl’y and it will be illustrated with the followingj ex-

ure occurs whei(t) crossed’. for the first time, and it is char- amples.

acterized by the conditional reliability function, the conditional The conditional reliability function is obtained from solving

probability density or conditional moments of first-passage timbackward Kolmogorov Eq(15) together with initial condition

where the word “conditional” means under the given initial con{16) and boundary conditiond7) and(18). The conditional prob-

dition in the safety domain. ability density of first-passage time is obtained from the condi-
The conditional reliability function, denoted I&®(t|H,), is de- tional reliability function by using Eq(19). The conditional mo-

fined as the probability ofi(t) being in safety domaitf) within ments of first-passage time are obtained either from the

time interval (0t] given initial stateH,=H(0) being in(}, i.e.,  conditional probability density of first-passage time by using defi-

nition (20) or directly from solving generalized Pontryagin Eq.
R(t|Ho)=P{H(7) e Q,7e (0t][Hoe Q}. (14)  (21) together with boundary conditior@2) and (23).

It is the integral of the conditional transition probability density in

(). The conditional transition probability density is the transition

probability density of the sample functions which remair{lrin Examples

time interval[O,t]. For an averaged system, the conditional tran-

sition probability density satisfies the backward Kolmogorov Example 1. Consider linearly and nonlinearly coupled two
equation with drift and diffusion coefficients defined by E(®, linear oscillators subject to external and parametric excitations of
(10), or (13). Thus, the following backward Kolmogorov equationGaussian white noises. The equations of motion of the system are

can be derived for the conditional reliability function: of the form
J R 1 &R Xy + @y Xy + agXo+ ,Bl(xi"'X%)Xl"‘ X1 =Wy (1) + X, Wy(t)
E:ar(HO) JH + Ebrs(HO) JH 9H
ro ro sO (15) ) . . . (24)
r,s=12,...n Ko+ apiXy+ apXot Ba(Xi+X5) Xo+ 05X = Wa(t) +XoWy(t)
wherea, (Ho) andb,s(Ho) are defined by Eq$8) or (10) with H ~ Where a;;, B;, and w(i,j=1,2) are constantsW(t)(k
replaced byH,. The initial condition is =1,2,3,4) are independent Gaussian white noises with intensities
2Dy; ajj, Bi, andDy are assumed of the same ordersofThe
R(0[Hg)=1, HoeQ (16) response of systerf24) in both nonresonant and resonant cases

)Q/ith external excitations only has been studied by using the sto-
chastic averaging method for quasi-integrable Hamiltonian sys-
tems([19]). Here we study the first-passage failure of systam

which implies that the system is initially in the safety domain. Th
boundary conditions are

R(t|Tg) =finite (17) in a nonresonant case. _
Let X;=Qq, X,=Q,, X;=P4, X,=P,. Equation(24) can be
R(t|I'¢)=0. (18) recast in the form of Eq(1) as follows:
Equations(17) and (18) imply thatT'j is a reflecting boundary Q -p
while T is the absorbing boundary. 1=t
The first-passage timEis defined as the time when the system sz P,
reaches critical boundarly, for the first time giverH, being in . (25)
Q. Noting that the conditional probability of the first-passage fail- P1=—03Q;—[an+ B1(Q3+Q3)P1— ai,P,
ure F(t|Hg) =1—R(t|H,), the conditional probability density of
the first-passage time can be obtained from the conditional reli- + Wy (1) + Q1 Ws(t)
ability function as follows: :
Y P,= — w3Q,~ [zt B2(Qi+QDIP,
—JR(t|Hg)
p<T|Ho>=% (19) = aP1t Wa(t) + QoWa(t).
t=T

Equation(25) can be modeled as’listochastic differential equa-
The conditional moments of first-passage time are defined as tions of the form of Eqs(3a) and (3b). Since the Wong-Zakai
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Following Eg. (15, the conditional reliability function
“ H: R(t|H10,H0) of system(24) is governed by the following back-
ward Kolmogorov equation:

JR IR R 1 PR 1 "R

b 2 bZZaHgo

R _+_ —
ot al&Hlo azaHzo 2 HoH2, (32)

o

AN Ie wherea,, a,, b;;, andb,, are defined by Eq29) with H;, H,
replaced byH o andH,g, respectively. The initial condition is Eq.
(16) with Hy=[HgH50]". One boundary condition is Eq18)
safety domain O with ' defined by Eq(30). The other qualitative boundary con-
dition, Eq.(17) with ' defined by Eq(31), can be transformed

i into a quantitative one by using E¢32) and considering the
/ \r limiting behavior of drift and diffusion coefficients in EQ9) at
163 02 boundaryl', defined by Eq(31). It is
Fig. 1 Safety domain € and its boundary on plane H,; and H, IR IR Bs ) D, IR
for system (24) o le?Hlo D,— ayHog ng H5g w% Hzo) P
H3,\ #°R
+{ D2H20tDams | —me (33)
correction terms in this case vanish, the modified Hamiltonian 2 20
as_sociated Wi_th the ltequations is the same as that associateg, boundarnyTo; ;
with Eq. (25), i.e.,
_ JR B IR
H=H;+H, (26) . _ _ P2 e =3
. o~ | PamenHag 207 Hio o7 Hio T
Hi=5 (P{+0fQY), i=12. (27) JR HZ,| &R
+Dozg=+| DiHiot Dagms | = (34)
The Hamiltonian system with Hamiltoniakl is integrable. 20 w1/ dHio
Th_us, system(25) i_s a quas_i-integrable Hamiltopi_an system. BW(])r boundarylgy;
using the stochastic averaging method for quasi-integrable Hamil-
tonian systems, the following averaged Hquations can be ob- IR IR IR
X ; : .
tained in the nonresonant case: B = DlaHlO DzﬂHzo (35)
dHr:ar(Hl1H2)dt+al’k(HlvH2)dBk(t) (28) for boundaryr03
r=1,2, k=1,2,3,4 Equation(32) is a two-dimensional parabolic partial differential
equation and can be solved numerically together with the initial
where and boundary conditions by using the Peaceman-Rachford scheme
By B1 D, of the finite difference method to yield the conditional reliability
a;=—ayH;— ——5Hi— —5HH,+ D+ —H, function of systen(24). The conditional probability density of the
201 w2 w1 first-passage time of syste(@4) is then obtained from the condi-
B B D tional reliability function by using Eq(19).
ay= — agHy— =5 H2— “oHiHy+ Dyt —5 Hy Similarly, the generalized Pontryagin equations for the condi-
205 w1 w2 tional moments of the first passage time of syst@#) can be
2 derived from the averaged Iteq. (28) as follows:
— — 1
b= =2D;H,;+Ds— 29
11= O1k0 1k 1M1 Swi (29) Eb 02#|+1+1b (72'“'*1_,_51 Py
- H2 271 gH3, 2777 gH3, Tt aHy
D2y= 02k k=2D,H,+ D4w_§ N Ay 41
_ % Hyg
b15=bxn=0yo2=0.
=—(+Dm (36)

It is seen from Eq(27) thatH; vary from 0 toce. So, the state of

averaged systeni28) varies randomly in the first quadrant Ofwhereal, a,, by, andb, are defined by E¢29) with H, andH.,
plane H;,H). Suppose that the limit state of the systenHis replaced byH,,andH.,, respectively. One boundary condition is

=H;+Hy=Hc, i.e, (23) with T, defined by Eq(30). The other qualitative boundary
I'.: Hi+H,=H., H,,H,=0. 30 condition, Eq.(22) with T'y defined by Eq.31), can be trans-
or e e _ ( _) formed into quantitative one by using E§6) and considering the
The safety domain of the system is the inside of a right trianglgniting behavior of the drift and diffusion coefficients in E@9)
with boundaried”, in Eq. (30) andI" defined by at boundant,. It is
F'o=To1+ oyt Foa, bHD Ho\ Py LSO P
For: H;=0, O<H,<H, 31) 2120 42w§ ﬁHgo 1 9H1o 27 @220
I'go: H,=0, O<H;<H D J
02 H2 1<H¢ —ﬁ—22H§0+ —gHzo) M|+1:_(|+1)Ml (37)
FOS: H]_:HZ:O 2(,02 w3 (9H20
(see Fig. 1 for boundaryl g, ;
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Fig. 2 Reliability function of system  (24) for given initial con-
dition. @;;=0.01, @4,=0.03, B,;=0.1, w;=1.0, @»;=0.04, ay
=0.04, B,=0.4, w,=0.707, 2D,=0.03, 2D,=0.01, H,=0.3. The
other parameters are 2 D3;=2D,=0, Hip;=H,,=0 for A and A ’;
2D3;=2D,=0, H;y=0.09, H»,=0.03 for B and B ’; 2D3;=0.1, 2D,
=0.01, Hyg=Hy,=0 for C and C '. ——analytical result by using
the present proposed procedure;  — — — —analytical result by us-
ing the procedure proposed in  [24]; O ¢ A from digital simu-
lation.

Hio\ i1 B
DH;g+Ds—>|———+| Dy— ayHig— —5H?
( 1M10 32(»%) (9Hio 17— a11M10 2w§ 10
D3 Iy +1 Ipi+1
4+ —Hqn| ——= =—(1+1 38
wi 10) 3H10 ZaHZO ( )lu’| ( )
for boundaryl,;
I +1 Ity +1
—+ =—(I+ .
D, IH 10 D, IH 50 (I+ D (39)

Equation (36) is a two-dimensional elliptical partial differential

25

Hi

0.05

0.1

Fig. 4 Mean first-passage time of system  (24) as function of
Hio for given Hyy. 2D3=2D,=0, H,,=0 for A and A'; 2D;
=2D,=0, Hy=0.08 for B and B '; 2D3;=0.1, 2D,=0.01, Hy=0
for C and C '. The other parameters and symbols are the same
as those in Fig. 2.

results are in excellent agreement. Note that the conditional reli-
ability function is a monotonously decreasing function of time.
Some results for the reliability function, the probability density,
and the mean of first-passage time of syst@d) as functions of

the initial condition are shown in Figs. 5—7. It is seen that both the
reliability and mean first-passage time are monotonously decreas-
ing functions ofH q and/orH .

As indicated above, systeli24) is a quasi-integrable Hamil-
tonian system. However, the procedure for evaluating the condi-
tional reliability function and the statistics of first-passage time for
quasi-non-integrable Hamiltonian systems developef®24# can
also be applied to systert24). It is interesting to see if this

| method yields good results.
Treat system(24) as a quasi-non-integrable Hamiltonian sys-

equation and can be solved numerically together with boundar

conditions by using the five-point scheme of the finite differenc m, the averaged ltequation is of the form

method to yield the conditional moments of first-passage time of dH=a(H)dt+E(H)dE(t) (40)
system(24).
Some numerical results for the conditional reliability functionwhereH is defined by Eqs(26) and (27),
the conditional probability density and the conditional mean of the
first passage time of systef24) obtained by using the above a(H)=D,+D —l(ﬁ B, i+_
procedure are shown in Figs. 2—4. Similar results from digital 1RE2 g PP 2 2
simulation are also shown for comparison. It is seen that the two 1 5. D
3 4
ol autanT 5 ?) H
0.1 1 72 (41)
g 'D D
009 | b(H):EZ(H):—(—ﬁJr—;‘ H2+(D;+D,)H.
0.08 | 3\w] w3
007 . The conditional reliability functionR(t|H,) of system(40) is
006 bl governed by the following one-dimensional backward Kolmog-
TR orov equation:
p(T) 0.05
0.04 R atHo) R4 Loy R (42)
X : —=a(Fg) - —*+ 5 0) 52
0.03 3 ." (912 (9H0 2 (9H0
0.02 i o wherea(Hg) andb(Hg) are defined by Eq41) with H replaced
001 - @i by Ho. The boundary conditions are
0t . R(t|Ho) =0 43)
30
R(t|0)=finite. (44)
Fig. 3 Probability density of first-passage time of system (24) The later condition is qualitative and can be made to be quantita-

tive by using Eq.(42) and the limiting behavior of(H,) and

for given initial condition. The parameters and symbols are the
b(Hy) nearHy=0. Itis

same as those in Fig. 2.

278 / Vol. 69, MAY 2002 Transactions of the ASME



- s v 4;’33"‘03%
%.;z{: 0"3:;?‘};‘:’:’3’0’0” % s é-g
R 7.20.30.0,% % 90 % 0. O NGNS 1
0.6 KIS ) ¥
B 0. 0.2% % 00 &1
R W@:@&QQ:Q&QQQQQQQ FoiRe=2
931 AXXEAY XA Fo3
BB NRNRIAN
S e e ) 0
00 SR IR

Fig. 5 Reliability of system (24) at t=2 (second ) as function of H;gand H,g.
2D;=0.1, 2D,=0.01. The other parameters are the same as those in Fig. 2.

The one-dimensional boundary-initial value problem, Ed®),

(LR: D,+Dy— E(ﬁ'ﬁﬁz)( i2+ iz) LR (45) (43), (49, and(46), can be solved by using the finite difference
ot 6 0 w3)|dHo method of Crank-Nicolson type. The conditional probability den-
The initial condition is sity of first-passage time can be obtained frdR(t|H,) as
R(O|Hq)=1. (46) follows:

Fig. 6 Probability density of first-passage time of system (24) as function of
Hyo and t for given Hyp=0.2D3;=0.1, 2D,=0.01. The other parameters are the
same as those in Fig. 2.

Fig. 7 Mean first-passage time of system  (24) as function of H;q and Hyg.
2D5;=0.1, 2D,=0.01. The other parameters are the same as those in Fig. 2.
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Fig. 8 Reliability function of system  (52) for given initial con-
dition. @;=0.2, a,=0.1, @3=0.1, 8,=0.05, ®=1.0; a,=04, B,
=0.1, k=2.0, 2D,=0.03, 2D,=0.01, H,=0.3. The other param-
eters are 2 D3=2D;=0, Hyp,=H,,=0 for A and A'; 2D;=2D,
=0, Hy;=0.04, H,=0.02 for B and B ’; 2D;=0.1, 2D,=0.05,
Hip=H,,=0 for C and C'. —analytical result by using the
present proposed procedure; — — — —analytical result by using
the procedure proposed in  [24]; O ¢ A from digital simulation.
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Fig. 10 Mean first-passage time of system  (52) as function of
H,o for given Hiy. 2D3=2D,=0, H,,2=0 for A and A’; 2D,
=2D,=0, H;,=0.04 for B and B ’; 2D;=0.1, 2D,=0.05, H,,;=0
for C and C'. The other parameters and symbols are the same
as those in Fig. 8.

The one-dimensional boundary value problem, EdS), (49),
and(51), can be solved by using the Runge-Kutta method.
Obviously, for evaluating the statistics of the first-passage fail-
ure of system24) the procedure for quasi-non-integrable Hamil-
o ) . ) tonian systems is much simpler than that for the quasi-integrable
Similarly, the generalized Pontryagin equations for the mQsgmiltonian system. However, the former generally yields inac-
ments of first-passage time of syste#0) can be obtained as ¢yrate results as shown in Figs. 2—4. Our experience shows that it
follows: may yield good results in some very special cases, for example,
the ratio of excitation intensity to damping coefficient for the first

P(THo) = It

(47)
t=T

1 f92/~’v|+1 Iy +1

=b(Hg) ———=— ta(Hy) =—(+1)u. (48) degree-of-freedom is the same as that for the second degree-of-
2 IHp IHo freedom. In this case syste(@4) will behave like a quasi-non-
The boundary conditions are integrable Hamiltonian system. On the other hand, the method
proposed in this paper always yields good results for sysgn
#i+1(He)=0 (49)  although the equations involved are more difficult to solve.
m+1(0)=finite. (50) Example 2. Consider a van der Pol oscillator nonlinearly

The qualitative conditior{50) can be converted into quantitativeCOUPled with a Duffing oscillator subject to external and paramet-

one by using Eq(48) and the limiting behavior o&(H,) and ric excitations of Gaussian white noises. The equations of motion
b(H,) nearHo=0. It is of the system are of the form

Xq+ (= Bt X3+ apXi+ asX2) Xy + 02X, = W (1) + X, Wa(t)
(52)

I 41
=—(I+1)u.
My (I+1D)

1
D;+Dy— g(lﬁ*ﬁz) w7+ 072)
1

(51)

Xo+ (Ba+ asX2)Xa+KXG=W,(t) + XaWi(t)

where ay, as, az, a4, B1, B2, w, k are constantsy,(t)(k
=1,2,3,4) are independent Gaussian white noises with intensity

0.08 2Dy . The response of syste(B2) with external excitations only
007t has been studied by using the stochastic averaging method for
: quasi-integrable Hamiltonian systentgl9]). Let X;=Qq, X,
0.06 =Q,, X;=P;, X,=P,, Eq. (52 can be rewritten as a quasi-
005 F-. Hamiltonian system of the form of EqY), i.e.,
o(T) 0.04 Q1=P;
003 | _ Q2=P2 (53)
0.02 [-f-fif - P1=—0?Q1—(— B1+ a1Q7+ a,Q5+ azP5) Py
0.01 + Wi (1) +Q 1 Wis(t)
0 bt Po=—KQ3— (B2+ @4QF)Po+ Wa(t) + QaWa(1).
15 20 25 30 ) - ) ]
T Equation(53) can be modeled as Itequations. Since the Wong-

Zakai correction terms for this example vanish, the modified
Hamiltonian is the same as that associated with(B8), i.e.,

Fig. 9 Probability density of first-passage time of system
for given initial condition. The parameters and symbols are the
same as those in Fig. 8.

(52)
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Hy=3(P?+ 0?Q?) (55) equations governing the conditional reliability function and the
generalized Pontryagin equations governing the conditional mo-
H,=3(P3+ 3kQ%). (56) ments of first-passage time by a half when the associated Hamil-
tonian system is nonresonant. Furthermore, the backward Kol-
HamiltonianH is separable and so E(3) governs a quasi- mogorov equation and generalized Pontryagin equations of an
integrable Hamiltonian system. Suppose that the Hamiltonian s¥greraged system are nonsingular and much simpler than those for
tem is nonresonant. The averaged diguations can be obtainedthe original system. Applications of the proposed procedure to two
from Eq.(53) by using the stochastic averaging method for quaséxamples show that the proposed procedure yields quite accurate
integrable Hamiltonian systemg19]). It is of the same form of results. Thus, the proposed procedure is promising and deserves
Eq. (28) with the following drift and diffusion coefficients: further development and application.
H The results for the two examples indicate that both the reliabil-
H,H,+Dy+ —;D3 ity and mean first-passage time are monotonously decreasing
@ functions of initial energy of each degree-of-freedom of the sys-
7 tem. This property will be used in the study of nonlinear stochas-
W=

a, da, day
a,=pB1H1— ﬁHi_ WHle_ 3

tic optimal control of first-passage failure of quasi-integrable
Hamiltonian systems.
) k 4 The procedure for evaluating the statistics of the first-passage
r (Z failure of quasi-non-integrable Hamiltonian systems has also been
applied to the two examples. The numerical results showed that it
1 generally yields inaccurate result for quasi-integrable Hamiltonian
b11=2D;H,+ —5Ds (57)  systems although it is much simpler than the procedure proposed
in this paper. Experience shows that only in some very special
cases it may yield good results.
64F2(z) H It is remarked that the criteria for the failure considered in this
2 . . . - . .
Hz\/ D4 paper are functions of the first integralsnergiey of the indi-

4 4&4
a2:7§B2H27WH1H2+D2+— —D

2

b22:— D2H 2+
3 451“2(5) vidual oscillators. The stochastic averaging method is the most
4 effective for this kind of first-passage failure problem. If the fail-
ure criterion is given in terms of other physical quantity, such as
bio=bp=0. the displacement, the first-passage failure problem will be much
SinceH;(i=1,2) vary from 0 to= under the conditiork>0, more difficult to solve. For such a kind of a first-passage failure
the safety domain of systet62) may be of the same form as thatProblem of a single-degree-of-freedom quasi-Hamiltonian system,
in Fig. 1. The backward Kolmogorov equation for the conditiondroberts[31] developed an integral equation for evaluating the
reliability function, the generalized Pontryagin equations for thgonditional transition probability density in the safety doméire
conditional moments of first-passage time, and their associaiBéegral of which is the reliability functionby using the uncondi-
initial and boundary conditions for syste(®2) can be formulated tional transition probability density obtained from solving the av-
and solved as for example 1. The only difference is that the drifaged FPK equation. Maybe this method can be extended to a
and diffusion coefficients for this example are defined by Multi-degree-of-freedom quasi-integrable Hamiltonian system but
with H, andH,, replaced byH o andH,,, respectively. much more computational work is involved and some difficulties
The procedure for eva|uating the statistics of first_passage fd“ave to be solved. This will be the Subject for our future research.
ure of quasi-non-integrable Hamiltonian syste(i®4]) can also
be applied to applied to systerts2). The mathematical formula-
tion is the same as that for example one, i.e., E¢8)—(51), Acknowledgment
except the drift and diffusion coefficients. For this example, there The work reported in this paper was supported by the National
coefficients are Natural Science Foundation of China under Grants No. 19972059
and 10002015 and the Cao Guang Biao Hi-Science-Technology
D3 Foundation of Zhejiang University.
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