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1 Introduction homogeneous layer which properties different from that of bonded
aterials. However, recent studies have indicated that in many

Interface crack problems of composite structures have been %5es an inhomogeneous interlayer exists between the bonded ma-

Important topic of fracture mechanics in recent decades. There g{go g\ hramanian and Crasi20)). This kind of interlayer may
a large number of solutions in the technical literature for iSOtropigy, developed as a result of certaiﬁ processing technid c-

orthotropic, and qnisotrop_ic bonded materials cor]taining interfa%b ider[21] and Shiau et a[.22]) o results from intentional grad-
cracks. Some typical studies that should be mentioned are thati & of the material compositiotKurihara et al.[23] and Jager

asymptotic analysis of the elastic fielda/illiams [1]), the stan- et al.[24]). For the static problems of fracture mechanics about

dard interface crack solutionéErdogan(2], Rice and Sih3], the inhomogeneous interlayer, there have been many theoretical

Willis [4] and Qu and Bassafb]), the crack-tip contact model studies(Delale and Erdo
. . . gafR5], Ozturk and Erdogaff6], Wang
(Comninou[6] Achenbach et al[7] and Rice([8)), the elastic- o5 127 and Fildis and Yahsi28]). In their studies, two kind of

plastic analysigShih and Asard9]) and so on. Hutchinson a”d.inhomogeneous interlayer models have been proposed. One of

Sfu_o [lOf] once gell(ve gn eri(tenﬂvehovec;wiw on the IStat'C behzv'ﬁ{ekm is the exponential function model and another is a so-called
of inter %Ce ctraé: tS thn tde other fan t*t ere arhe aiso afn_urtn fe Bheralized interlayer model, which is a power function. These
papirs Sﬁ‘]’o ed Coh el yp%m'g rac ur? dmec anics or inter dels have physical background and make the problem of stress
cracks. Sih and CheflL1] studied several dynamic responses Ofsijjatory singularity(Williams [1]) overcome. However, as for
composite materials with interface cracks, such as antiplane shgap, nic fracture mechanic of interface cracks, there are few stud-
of interface rectangular cracks in layered orthotropic dissimil s considered the effect of an inhomogeneods interlayer
materials, orthotropic layered composite debonded over a pennyy, is haper, we examine the torsional impact response of a
shaped_ region subj_ected to sudde_n s_he_ar,' dlf‘fract_lon of i enny-shaped interface crack in a layered composite. Although
harmonic waves by interface cracks in dissimilar media. Takei aggf problem is rather a theoretical problem, it also has the engi-

co-workers(12] and Li a_nd T"."[B] considered the elastodynar_nicneering background, such as the sudden appearance of a penny-

' ANUPIAEhed interface crack in a component under torsional loading.
shear loading. Ueda and co-workdti] reported the torsional o™ ain difference between our present paper and literature

impact response of a penny-shaped crack on a bimaterial intﬁgfeda, Shindo, and AstunilL4]) is that a graded material inter-
face. Beyond these, considerable experimental works on the gge\ s introduced. Our main objective is to investigate whether
namics of interface cracl(sk_ambros and _Rosal_<[§.5] ?”d Singh, the graded material interlayer is helpful in reducing the dynamic
Lambros, and Rosakigl6]) and numerical simulations of dy- gyess intensity factor of an interface crack in a bonded materials
namic interfacial crack growtiiXu and Needlemarj17] and ,nq 6w the material inhomogeneity and interlayer thickness in-
Needleman and Rosakis8]) were also carried out. Rosakis andy ,ence the dynamic stress intensity factor. The methods used in
Ravichandrarj19] recently made a rather comprehensive revieW, haner are the Laplace and Hankel integral transforms and the

on dynamic failure mechanics. ; : ; :
. singular integral equation technique.
The researches mentioned above usually assumed that the dlls9 9 q q

similar materials were bonded directlyimaterial$ or with a thin .
2 Formulation of the Problem
1Current address: Department of Mechanical Engineering, University of Dela- As shown in F|g 1, consider two dissimilar ha|f-spaces
ware, Newark, DE 19716. iale iAo P ;
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1999; final revision, June 22, 2000. Editor: A. Needleman. Discussion on the pa , i3 respectively, wherg is the mass density andis the shear
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Wo(r,h™,t)=wg(r,h",t), O0=sr<om, (9)
(ng)z(r,hi,t):(ng):;(r,th,t), O=r<ee, (10)

Note that the standard Laplace transformfdt) is

f*(p)=f f(t)e Pidt (11)
0
whose inversion is
L — — - 1 ;
———— f(t)=z— | f*(p)ePdp (12)
a / 27 Jg,

Material-1 M) and Br denotes the Bromwich path of integration. Applying the
transform(11) to Egs.(4) and(5) results in the transformed equa-
tions

Pw Lawr wEAwE et
_ + =—W =
Fig. 1 A penny-shaped crack on the interface of a graded aZ Tror r2 a2 i Wi, =13 (19)

material interlayer and a homogeneous material - . . . . )
Wy 1 Owy; Wy W5 up'(Z) dWy  pop”t
7t = vl 7+ = Wz -
ar roor r Jz uo(z) 9z uo(2)

(14)
and the mass densiy For the inhomogeneous interlayer, due t; . . . .
the mathematical cg}r;plexity introducgd by the inertig term, it %/Ioreover, introducing the pair of Hankel transforms of the first
necessary to assume that the shear modulus and the mass deﬂgqt?/r’
can vary independently. Such an idealization can offer consider-
able simplifications to the analysis. After compared the several Vi(s,z,p)=J wi (r,z,p)Jd (sr)rdr, (15)
models for expressing the variation of the shear modulus, such as 0
the exponential formu(z)=u,exp(2 (Delale and Erdogan -
[25]), and the power formu,(2) = u1(1+ az)* (Wang et al[27)), W (r,z,p)= f Vi(s,z,p)Jd;(sr)sds (16)
we found that the variations 0

©

o= u(1+ az)?, (1) whereJ,( ) is the Bessel function of the first kind, then applying
Eq. (15) to the Eqs(13) and(14) yields
p2=(p1+p3)/2, (2
; i ; i #Vi(s,z,p) [ , pip’ :
are mathematically tractable, and still physically representative ——————| 8%+ —|Vi(s,2,p)=0, i=13 (17)
enough. In Eq.1), the parameter can be determined by the Jz Mi
continuity condition of the shear modulug,(0)=x,; and 2
po(h)= s, that isa= (3 g;—1)/h. I°Vy(s,2,p) N 2a dVy(s,z,p)
Assume a penny-shaped crack of diameteri®located at the az? ltaz Jz
interface of Material-1 and Material-2 and subjected to a torsional 2
impact Ioadir!gP(r). For the present problem, in the cylindrical —| g2+ P2P 5| Va(s,2,p)=0. (18)
polar coordinates r(6,z), only the displacement ug); ma(1+az)

%Wi(r'z’t) nonvanishes, where sqbscnptsl,zs refgar to mate- Considering the displacement conditions thatandw, vanish
rials 1, 2, and 3, and whetds the time. The nonvanishing stressat|zl_)OO the solutions of Eqs17) and(18) can be expressed as
componentsr,, and 7, , are as follows: ’ q p

(9Wi &Wi Wi ] Vl(sv z, p) = Al(si p)exq ylz) (19)
o mnl G m2s @ Va(5.2,0) = Aq(s,p)exsl ~ 732) (20)
The governing equation of motion gives S
Aw 1w wi Pw_p dw, Va(s,2,p)=Ao(s,p)(1+a2) Y4 (1+a2) MTI}

v et e TR @

S
+As(s,p)(1+az) YKy (1+az) W}’ (21)

W, . 1ow, W, Wy, w'(2) dwWp,  py  9°W,
oz roor 1 9 pa(2) 9z pa(z) ot where
5

2 2 2

p1P [ 5 P3P 1 pap
b . y1=\/$°+ = V3= =, B=\z77t - 2

The boundary conditions are given as follows: %1 M3 4 wa

where u5(2) is the derivative ofu,(z) with respect taz
(22)

andl g( ), Kg( ) are the modified Bessel function of the first kind
wy(r,00,t)=w,(r,0",t), r=a, (7) and the second kind, respectively.
From Eq.(16), we can obtain the displacements in the Laplace
gwain. Subsequently, the shear stresses in the Laplace transform
omain 7}, and 77, can be obtained from Eq3). Then the un-
known functionsA;, A,, Az, A, can be determined from the

(Te)1(r,07,t)=(Tg)2(r,0%,t), r=a, (8) boundary and the continuity conditions.

(TBZ)l(r!O_lt)z(792)2(r10+1t)=P(r)H(t)l O$r<a, (6)

where H(t) is the Heaviside unit step function. The continuity,
conditions of the displacement and the shear stress acrossg
interfaces give
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3 Derivation of the Singular Integral Equation
In Laplace domain, the boundary conditions become

P(r)

(T;z)l(rvo_lp):(721)2(r10+1p):Tl Osr<a, (23)

wi(r,07,p)=w3(r,0%,p), r=a, (24)

and the continuity conditions across the interfaces become

(Tzz)l(rvo_lp):(722)2(r10+1p)v r>a, (25)
w3 (r,h~,p)=wi(r,h*,p), Osr<eo, (26)
(Th)a(r,h™,p)=(75)3(r,h*,p), O=sr<w.  (27)

To reduce the mixed boundary conditiof@8) and(24) into an

integral equation, we first define the following dislocation density

function on the interface of Material-1 and Material-2:

19
g(r.p)=——-[rw3(r,0",p)—rwi(r,0",p)]. (28)

ror

From the continuity conditions and the dislocation density fun

tion, we can obtain

(Tzz)Z(r101p):M2(o)fo R(ulrrp)g(urp)Udu (29)

where

R(u,r,p):f:D(s,p)Jl(sr)Jo(su)sds

(30)

and

d21(S 3ot dygp) — dpo(SUay+dyy)
(d13—d21)(SUgpt dyp) — (SOgy+dy) (dio—dyp) '(

D(s,p)=

The coefficientdd;; in Eq. (31) are as follows:
S s
dll=S|ﬁ m y d12:SKB m ,

[z ot ol
d21—_ E+B aIB m |ﬁ_1 m m,

dam=| 8okl g ol e
=_[Z aK ol — | =K | o | =
#2 Alal] "\ [al/]al
da;=(1+ah)~ %3 (1+ah)i
* g [of
dao=(1+ah) YK (1+ah)i
» ’ [of
1 S
d41:—(§+,8 a(l+ah)™34, (1+ah)m)
S | Sa
+(1+ah) M5 4| (1+ah) — |,
la|/ |
1 s
dip=—|5+8 a(l+ah) ¥, (1+ah)m)
S | S«
f(1+ah)’1/2KB_l((1+ah)m>m.
Note that
A=limD(s,p)=— 3. (33)

S—®©

R(u,r,p) can be further expressed as

Journal of Applied Mechanics

R(u,r,p)=Ry(u,r,p)+Rs(u,r,p) (34)
where
Rn(u,r,p):f [D(s,p)—A]Ji(sr)Jo(su)sds  (35)
0
Rs(u,r,p)=)\JmJl(sr)Jo(su)sds
0
3 N 1 —u—r+2rM(u,r)
lu(u—r) u(u?-r?) ., (36)
and
=8
—E| = u<r,
o
M(u.r)= uz (r\ u-r? [r 37)
r? (u) r2 (G' u=r.

=( ) andK( ) are complete elliptic integrals of the second and
irst kind, respectively. From the boundary conditi@3), we ob-
tain a singular integral equation with a generalized Cauchy kernel,

Ja P(r)
0

H2(0)p’
where

AL +R
—u T o(U,r,p)

0<r<a,

(38)

g(u,p)du=

N u+r—2rM(u,r)
Ro(U,r,p)ZURn(Uvr,p)Jr;T- (39)

The single-valued condition can be given from the definition of
a(u,p),

a
J ug(u,p)du=0.
0

(40)

4 Dynamic Stress Intensity Factor

Normalized the interval by the following transformation of
variables:

a a
U:§(1+§), I’:E(1+77). (41)
The integral Eqs(38) and (40) can be rewritten as
fl AR }G L R
. 775_7] 0(617]1p) (gip) 67 Mz(o)pl ( )
1
ﬁl(l+ £)G(&,p)dé=0, (43)
where
— a_|a a
Ro(fﬂ?:p):ERO{E(:H‘@:E(]-"‘W;D} (44)
a
G(&p)—g[z(lw.p}, (45)
— a
P(n)=P[5<1+ ol (46)

Considering the singularity at the crack tip, we assume that

G(p) 1

P Vig
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G(é.p)=

(47)
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Following the numerical method developed by Erdogan for sin- 0.60-

gular integral equationgErdogan[29]), expandingG(&,p) in ps/p=1.0,h/a=1.0
forms of Chebeshev polynomials 0.55
_ ” Hy/ gty
G(£,p)=2) BiTy(8), (48) 0501 112
n=0 Q
; . o 0.45- "
we can obtain a system of equations, *r :
n — frr 3
G(&.p)  P(7) = 0404
El o Ro(& 7y P | g (49 ¥ R
0.35 1
(1+&)— :
_21 G(¢.p)=0, j=12,...n—1,  (50) 030
=
where¢;, n; are the roots of Chebeshev polynomial of the first 0.00 4 . T T '
kind and the second kind, respectively, 0 2 4 6 8
2i—1 ) cyt/a
&=co on 7| i=1,2,...n,
. Fig. 2 The effect of the ratio of shear modulus on the normal-
771:00{]5 77), j=12,...p-1 (1) ized dynamic stress intensity factor

Solving the system of linear algebraic Eq49) and (50), the
unknown functionG(¢,p) can be obtained.
If the mode Il stress intensity factor in Laplace domain is

defined by
lim 2(r—a)(7%),(r,0p), 52 0.65 -
K (p)= o ( )(752)2(r,0,p) (52) 0/ =10, 13/ =113
0.60
then by using the properties of Chebeshev polynomials, we obtain h/a
0.55 0.2
\ a G(l P
Kii(p)=Au2(0) (53) 0504
p e = 0.5
The dynamic stress intensity factor in time domain can be ob- o 45 12'8
tained by =~
— = 0.40]
=\ f SILD) g 54 X
Kin( #2(0 227 )y p erap. (54) 0.35 4
5 Results and Discussion 0.30
Suppose that the crack surface torsional loadingPis) 0.004 : i . ,
=—ror/a. In this problem, the variables ape;/u,, h/a, and 0 2 4 6 8
palp,. To investigate the influences of these parameters on the( ) ¢/
dynamic stress intensity factor, we analyzed some real composite Cxlsa
materials, such as AD5/Ni, TiC/C, SiO,/Ni, SIiC/C, and so on,
and found that the parametes /., may vary in a wide range but 0.50+
the parameteps/p; may vary in a relatively narrow range. Fi- =10, mes w3
nally, we chose the following combinations for the analysis: Pl =18 sl ™
malpmy=1/12,1/3,3,12;p53/p,=0.5,1.0,2.0,4.0h/a=0.2,0.5,1.0, 0.45 h/a
2.0.
Solving Egs.(49) and(50), and accomplishing the Laplace in- f'g
version(54) by the numerical procedure developed by Miller and [® 5404 0'5

Guy[30], the mode Il dynamic stress intensity factors in different o
cases are obtained. The results of the normalized dynamic stres:— 0.2
intensity factorK,;, (t)/ 7¢\ya as a function oft,,t/a are shown in =
Figs. 2—4, wherec,;=Juq,/p; is the shear wave velocity in >  0.35-
material-1. A general feature of the curves is observed to be that

the stress intensity factors rise rapidly and reach a peak, then

oscillate about their static values with decreasing magnification. 0.304

This general feature has been reported for homogeneous material

and layered composite materials. 0.004 ' . . .
Figure 2 shows the variations of the normalized dynamic stress 0 2 4 6 8

intensity factor with time for various ratios of the shear modulus
m3lwq while ps/p,;=1.0 andh/a=1.0. It can be seen that the
K, (t) factor tends to monotonically decrease with the increasing
of uz/u,. The differences between the peak values of curves ap@. 3 The effect of the interlayer thickness on the normalized
the static values also decrease with increagin@u,. This ten- dynamic stress intensity factor

(b) ¢, t/a

306 / Vol. 69, MAY 2002 Transactions of the ASME

Downloaded 09 Jun 2010 to 159.226.231.78. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.50 Acknowledgment

C. Li would like to thank Prof. G. J. Weng for providing him
the opportunity to work at Rutgers University and giving him
many suggestions in the revised manuscript. The work of C. Li
was supported by the National Science Foundation of USA under
CMS-9625304. Z. Duan was supported by the National Natural
Science Fund of China under the Key Project No. 19891180. Z.
Zou was supported by the National Natural Science Fund of China
under the project No. 19772029.

Km(t)/ To]a_

us/ 1,=3.0, h/a=1.0 References

0.304 [1] Williams, M. L., 1959, “The Stresses Around a Fault or Crack in Dissimilar
’ Media,” Bull. Seismol. Soc. Am.49, pp. 199-204.
[2] Erdogan, F., 1965, “Stress Distribution in Bonded Dissimilar Materials With
0.00 Cracks,” ASME J. Appl. Mech.32, pp. 403—-410.
' 6 é ",' 6 8 [3] Rice, J. R., and Sih, G. C., 1965, “Plane Problems of Cracks in Dissimilar
Media,” ASME J. Appl. Mech.,32, pp. 418-423.
c t/a [4] Willis, J. R., 1971, “Fracture Mechanics of Interfacial Crack,” J. Mech. Phys.
21 Solids, 19, pp. 353—-368.
. . . [5] Qu, J., and Bassani, J. L., 1993, “Interfacial Fracture Mechanics for Aniso-
Fig. 4 The effect of the ratio of mass density on the normal- tropic Bimaterials,” ASME J. Appl. Mech.60, pp. 422—431.
ized dynamic stress intensity factor [6] Comninou, M., 1977, “The Interface Crack,” ASME J. Appl. Mech4, pp.
631-636.
[7] Achenbach, J., Keer, L., Khetan, R., and Chen, S., 1979, “Loss of Adhesion at
the Tip of an Interface Crack,” J. Elas®, pp. 397-424.
. . o . [8] Rice, J., 1988, “Elastic Fracture Mechanics Concepts for Interface Cracks,”
dency is somewhat different from that of two dissimilar materials ~ ASME J. Appl. Mech. 55, pp. 98—103.
bonded directly without an interlayétUeda, Shindo, and Astumi  [9] Shih, C., and Asaro, R., 1988, “Elastic-Plastic Analysis of Cracks on Bimate-

ials Interfaces. Part I: Small Scale Yielding,” ASME J. Appl. M .
[14]). In the latter problem the peak values If (t) factor de- hoga1g oo rart b small seale YIeling ppl. Mecs5, pp

crease with th_e increasing @f3/p,, but the intersections exist [10] Hutchinson, J. W., and Suo, Z., 1992, “Mixed Mode Cracking in Layered
during the oscillating procedure. Materials,” Adv. Appl. Mech.,29, pp. 63-191.
Figures 8a) and 3b) display that theK,,(t) factor is also af- [11] Sih, G. C., and Chen, E. P., 198flechanics of Fracture 6: Cracks in Com-

: ; ; : posite Materials Martinus Nijhoff, The Hague.
fected by the ratio of interlayer thickness to crack radits. For . [12] Takei, M., Shindo, Y., and Astumi, A., 1982, “Diffraction of Transient Hori-

w3l p1<1, the dynamic stress intensity factors decrease with in- = ;ontal Shear Waves by a Finite Crack at the Interface of Two Bonded Dissimi-
creasingh/a. The largerh/a is, the more the peak value goes lar Elastic Solids,” Eng. Fract. Mech16, pp. 799—-807.

beyond its Corresponding static value. This phenomenon is dél.?)] Li, D. H., and Tai, W. H., 1991, “Elastodynamic Response of an Interface

; i i _ i Crack in a Layered Composite Under Antiplane Shear Impact Load,” Eng.
picted in Fig. 3a) for us/u,=1/3. Forus/u,>1, the opposite Fract. Mech.39, pp. 687—693.

phenomenpn can b? Obs_erved from. Figo) Jor M3 /H1=3 that  [14] Ueda, S., Shindo, Y., and Astumi, A., 1983, “Torsional Impact Response of a
the dynamic stress intensity factors increase with incredsiag Penny-Shaped Crack on a Bimaterial Interface,” Eng. Fract. Mei®).pp.

The effect of the mass density ratia /p, on the variation of 1059-1066.

. . . . ; : ; 5] Lambros, J., and Rosakis, A. J., 1995, “Shear Dominated Transonic Interfacial
the dynamlc stress intensity factor is shown in Flg' 4. This eﬁec[ll Crack Growth in a Bimaterial—I Experimental Observations,” J. Mech. Phys.

has not been reported before for layered composite materials. Itis sgligs, 43 pp. 169-188.
observed that the peak value Kf, (t) factor increases when the [16] Singh, R. P.,, Lambros, J., and Rosakis, A. J., 1997, “Investigation of the
ratio ps/p; increases. This phenomenon can be observed for an Mechanics of Intersonic Crack Propagation Along a Bimaterial Interface Using

arbitrary 5 /u, and different ratiosh/a, although these results gzggr‘;’g e ao0 and Photoelasticity,” Proc. R. Soc. London, Ser. A,

are not given here as the space of the paper is limited. [17] Xu, X. P,, and Needleman, A., 1996, “Numerical Simulations of Dynamic
As explained in Section 2, in this paper we only use the form  Crack Growth Along an Interface,” Int. J. FracZ4, pp. 289-324.

wo(2)=pq(1+ aZ)2 to obtain the solution. A different choice of [18] Needleman, A., and Rosakis, A. J., 1999, “The Effect of Bond Strength and

- Loading Rate on the Conditions Governing the Attainment of Intersonic Crack
#2(z) may change the numerical values, but they should not lead g, in Along Interfaces,” J. Mech. Phys. Solidsy, pp. 24112449,

to any change in the general trends of the results. We believe itg] Rosakis, A. J., and Ravichandran, G., 2000, “Dynamic Failure Mechanics,”
can be verified in our future works by using numerical methods, Int. J. Solids Struct.37, pp. 331-348.
such as the finite element method. [20] Subramanian, R. V., and Crasto, A. S., 1986, “Electrodeposition of a Polymer
Interphase in Carbon-Fiber Composites,” Polym. Compbspp. 201-218.
[21] Lugscheider, E., 1987, “Plasma Spraying for Wear ApplicationByermal
Spray: Advances in Coating Technolo@roceedings of the National Thermal
. Spray Conference. D. L. Houck, ed., ASM International, Materials Park, OH.
6 Conclusions [22] Shiau, F. Y., Zuo, Y., Zeng, X. Y., Lin, J. C., and Chang Y. A., 1988, “Inter-

. : : B facial Reactions Between CO and GaA#tihesion in Solids, Material Re-
This paper presents the dynamlc stress intensity factors for a search Society Symposiyfroc. Vol. 119, D. M. Mattox, J. E. Baglin, R. J.

penny-shaped interface crack in bonded dissimilar homogeneous gotishail, and C. D. Batich, eds., Materials Research Society, Pittsburgh, PA,
half-spaces sandwiching an inhomogeneous interlayer. It is as- pp. 171-176.

sumed that the shear modulus in the direction perpendicular to ti@8] Kurihara, K., Sasaki, K., and Kawarada, M., 1990, *Adhesion Improvement of
crack surface is continuous throughout the space and the crack diamond films,"=GM'90-Proc. of the First International Symposium on Func-

. . ; ! . tionally Graded Materials M. Yamanouchi, M. Koizumi, T. Hirai, and I.

surfaces are subjected to torsional impact loading. A special model  spiota eds., Functionally Graded Material Forum, Sendai, Japan, pp. 65—69.
for describing material inhomogeneity parameter is introduced24] Jager, D. A, Stover, D. and H. G. Schutz, 1991, “Plasma Spraying of Graded
Laplace and Hankel transforms are applied to reduce the mixed Composites,"Thermal Spray Coatings: Properties, Processes and Applica-

: ; ; : ; tions Proceedings of the National Thermal Spray Conference. T. F. Bernecki,
boundary value problem into a singular integral equation with a ed., ASM International, Materials Park, OH.

genera_lized _CaUChy kernel. The results reveal that t_he dynan]_ifs] Delale, F., and Erdogan, F., 1988, “On the Mechanical Modeling of the Inter-

stress intensity factors are affected not only by the stiffness ratio  facial Region in Bonded Half Planes,” ASME J. Appl. MecB5, pp. 317—

but also by the interlayer thickness and the mass density ratio. It is 324 } ) ) _

observed that the influences of the stiffness ratio and the interlaygf) 9zuk, M., and Erdogan, F., 1995, "An Axisymmetric Crack in Bonded Ma-
. . . terials With an Inhomogeneous Interfacial Zone Under Torsion,” ASME J.

thickness are stronger than the influences of the mass density ra- app. Mech.,62, pp. 116-125.

tio. [27] Wang, X. Y., Zou, Z. Z., and Wang, D., 1996, “On the Griffith Crack in a

Journal of Applied Mechanics MAY 2002, Vol. 69 / 307

Downloaded 09 Jun 2010 to 159.226.231.78. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Inhomogeneous Interlayer of Adjoining Two Different Elastic Materials,” Int. [29] Erdogan, F., 1975Complex Function Technique, In Continuum Physics.
J. Fract.,79, pp. R51-R56. 11, Academic Press, San Diego, CA, pp. 523-603.

[28] Fildis, H., and Yahsi, O. S., 1996, “The Axisymmetric Crack Problem is a[30] Miller, M. K., and Guy, W. T., 1966, “Numerical inversion of the Laplace
Non-homogeneous Interfacial Region Between Homogeneous Half Spaces,” transform by use of Jacobi polynomials,” SIANSoc. Ind. Appl. Math. J.
Int. J. Fract.,78, pp. 139-164. Numer. Anal.,3, pp. 624-635.

308 / Vol. 69, MAY 2002 Transactions of the ASME

Downloaded 09 Jun 2010 to 159.226.231.78. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



