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Abstract

For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must

be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their

high accuracy and small stencil of grid points computational fluid dynamics CFD workers pay more attention to compact schemes recent-

ly. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary

points is very important. According to authors’ experience and published results some aspects of boundary condition treatment for far field

boundary are presented and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treat-

ment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The

computed results with presented method are satisfactory.

Keywords

For correct simulation of unsteady complex flow
fields with multi-scale structures it is required that all
the physical scales we are interested in must be cap-
tured well. There are two ways to improve the reso-
lution. One is to refine the mesh grid system and the
other is to use high order accurate schemes. Because
of limitation of computer resources it is preferred to
use high order accurate schemes to solve the complex
flow fields like turbulence. Many good high order
schemes have been developed. Because of high accu-
racy and small stencil CFD scientists pay more atten-
tion to the compact difference schemes ' ™* . Within
the compact schemes the upwind compact schemes
have smaller aliasing errors.

With given method the treatment of boundary
conditions is a key problem for correct simulation. It
influences the accuracy of solutions and the stability of
method.

In numerical simulation of complex flow fields
there are two kinds of boundary conditions. One of
them is the physical conditions. For discretization of
this kind of condition attention should be paid to ac-
curacy of discretization and stability. The other kind

complex flow fields numerical simulation boundary conditions upwind compact scheme.

of boundary condition is not required by physics.
They are additional due to discretization of the partial
differential equations. For the high order accurate
schemes larger stencil of grid points requires more ad-
ditional conditions not only at the boundary but also
at the near boundary points.

As it is noted for simulating the complex flow
field like turbulence it is preferred to use the high or-
der schemes. For the typical turbulent problems the
computational domain is limited. Before simulating
the chosen physical problems we have to define the
computational domain. The computational domain
should be defined so that treatment of the boundary
conditions does not disturb the flow structures we are
interested in. With chosen method and properly de-
fined computational domain the success of simulation
directly depends on the treatment of the boundary
conditions at the boundaries and at the near boundary
points especially for the compact schemes. It is re-
quired that the disturbance from the outside or pro-
duced at the boundaries and near boundary points
should not be propagated into the interior domain of
the computation. The boundary conditions treated in
this way are considered as the non-reflected boundary
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conditions.

People start to study the boundary conditions
from the middle of the last century. Kriess obtained a
sufficient condition of stability for a two-level explicit
scheme for the initial-boundary problem! . In 5
Gustafsson et al. obtained a sufficient condition of
stability for multi-level implicit scheme and their re-
sult is called GKS theory. In 4 Lele discussed
boundary conditions for the compact schemes and
Poinsot and Lele in 6  presented non-reflection
boundary condition for solving the complex flow
fields. According to the upwind compact finite differ-
ence schemes authors of this paper give a much sim-
pler non-reflection boundary condition. When the
non-reflection treatment is introduced usually the ap-
proximation at the near boundary points is not consis-
tent for the compact difference approximation. Con-
sistent boundary conditions for the third and fifth or-
der accurate upwind compact difference approxima-
tion at the near boundary points are presented in this

paper.

Usually people use the high order accurate sym-
metrical difference approximation to simulate the
complex multi-scale flow fields. Their thought is that
the upwind schemes are too dissipative and some fine
flow structures may be smeared out. Our experience
shows that the high order accurate upwind schemes
can also give good resolution for the complex flow
fields. In the present paper we first give a numerical
example to show the efficiency of upwind compact
schemes for simulating the complex flow structures
and then present far field non-reflection boundary
conditions for simulating the complex flows and the
consistent treatment at the near boundary points for
the third and fifth order accurate upwind compact dif-
ference approximations. In the end of this paper some
numerical experiments are presented.

1 Aliasing error and dissipative scheme

When functions are represented in terms of a fi-
nite number of basis functions nonlinear operations
generate modes that are not in the set of modes being
represented. A discrete representation mistakes these
high order modes for modes in the set. There are two
kinds of errors after the nonlinear operations. One of
them is that the effect of some high order modes are

not taken into account. This part of errors is called

1 Kriess O.H. AGARD-LS-64 1973.

nonlinear truncation errors. The other one is that the
contribution from these high order modes is improper-
ly added to the modes in the set. The second is called
aliasing errors.

There are two ways to overcome the errors pro-
duced in the nonlinear operations. One of them is to
refine the mesh grid system but it is limited by com-
puter resources. The other one is to construct high
order accurate schemes
difference schemes. For the symmetrical schemes
there are mainly dispersion errors. For the upwind

for example the compact

schemes there are dispersive and dissipative errors.
From analysis of modified wave numbers we can see
that in wide range of wave numbers the dispersion er-
rors for both the symmetrical and upwind schemes
with the same order of accuracy of approximation are
almost the same. From linear analysis we can also see
that the dissipativity of the upwind compact schemes
in the range of wave numbers for correct representa-
tion of dispersion effect is negligible. The dissipation
is large only for the components with high wave num-
bers. The large dissipativity for high wave numbers is
useful for reduction of the aliasing errors.

The numerical experiment in Ref. 7 shows
that with the same mesh grid system the fifth order
accurate upwind compact scheme has smaller aliasing
errors than the spectral method does. In Ref. 8 the
fifth order accurate upwind compact difference ap-
proximation is used to simulate the homogeneous
isotropic turbulence. The variation of turbulent kinet-
ic energy with initial turbulent Mach number Mz ¢ =
0 =0.5 is given in Fig. 1. The computed results
with upwind compact scheme UCFDS5 agree well
with the results with the tenth order Pade scheme
with the same mesh grid system in Ref. 9 . From
the computed results we can also see that the fifth or-

der WENO scheme is too dissipative.
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Fig. 1. Variation of normalized turbulent kinetic energy Re; =

72 Mt 0 =0.5 .
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This numerical example shows that the high or-
der accurate upwind compact schemes can be used to
simulate the multi-scale complex flow fields like tur-
bulence. Because of limitation of computer resources
recently the direct numerical simulation DNS can be
used only for the flows with low Reynolds number to
study the mechanism of turbulence.

2 Non-reflection and consistent boundary
conditions

From analysis and numerical experiment we
know that the high order accurate compact schemes
are a kind that can be chosen to correctly simulate the
multi-scale complex flow fields. For DNS first we
have to define the computational domain and the
boundaries of computation. The boundaries should be
defined so that the targeted flow structures in the
subdomain should not be affected by the disturbance
produced at the boundaries that is the correlation of
the flow parameters between the boundary points and
the points in the subdomain in which the flow struc-
tures we are interested in should be small.

There are two kinds of boundaries of computa-
tion. One is the physical boundary like the wall of
channel flow. The physical boundary conditions
should be given at the wall boundary. The other kind
is like the downstream boundary for the flow around
the flat plat or the boundary far from the wall which
is defined by CFD workers. The physically properly
chosen boundaries do not provide small influence of
boundary condition treatment. At this kind of bound-
ary the physical parameters cannot be defined before
computation. Treatment of this kind of boundary
condition should be stable and does not affect the in-
ner flow structures much. Practice shows that so
called non-reflection boundary treatment can usually
give good results. In this paper we consider how to
define the conditions at this kind of far field bound-
ary.

For simplicity consider the following Euler equa-
tions
oUu | 9
ol _y 1
where U is the vector of conservative variables f the
flux vector. The simplest fourth order accurate sym-
metrical compact difference approximation is

1 2 1

where

1 - _
O=5 0.+, f; 8= F fi—fin

CAen Of
F; Ax Ey

J

Usually the gradient of the fluid parameters at
far field boundaries is small and it can be assumed to
be equal to zero. For example F; j=JN =0. In

this case Eq. 2 turns into

2 1 0,
FEN- g FN2 = 0N 3
After Taylor series expansion we can see that F; Ax

%%gf . It means that the difference expression 3
is not consistent. It is assumed that the gradient of
fluid parameters is small at the boundary. From the
point of view of accuracy the inconsistency does not
influence much the accuracy of solution. But inconsis-
tency of approximation may lead to the change of the
property of the equations or lead to instability of solu-
tions. It is suggested to use consistent difference ap-
proximation.

For construction of upwind schemes after flux
splitting Eq. 1 can be rewritten as
oU | of " | of
= 4 + =
ot ox ox 0 4
where the term with " describes the motion of fluid
components from the left to the right and the term

with f~ describes the motion from the right to the
left.

The third order accurate upwind compact differ-
ence approximation of the convection terms in Eq.
4 s expressed as

e G TS N Qs
gFj + 3Fﬂl = 661‘ + 681 [ 5
where Fji Ax= of " ox ;. In Ref. 6 itis re-

quired that the disturbance on the boundary does not
propagate into the computational domain. Their gov-
erning equations are transformed into the characteris-
tic form. The terms in the characteristic equations
describing the movement from inner points into out-
side of the computational domain are discretized by
the first order accurate difference approximation and
the terms describing the movement from outside into
the computational domain are set to zero. When the
upwind schemes are used the non-reflection boundary
conditions can be treated easily. We can simply let
the term Of ~ 9x equal zero in Eq. 4 at the bound-
ary /] = JN and the upwind difference approxima-
tions can be used to discretize the term Of " ox.
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With this assumption we have

F,y=0. 6
Now we have got a simple non-reflection boundary
condition at the boundary J = JN.

With this assumption the difference relation 5
for the split flux f; at the point JN =1 has the form
2 - 5 1 .
3FpNa = gc?i g0, Sinere 7
It is obvious that relation 7 is an inconsistent differ-

ence approximation for f; . A consistent difference

approximation is

Fiy, = ajf;\]—l' 8
This treatment is consistent and the characteristic
direction is taken into account. Like in Ref. 6 the
approximation is the first order. As it has been noted
that the gradient of fluid parameters is assumed to be
small near the far field boundary the accuracy of ap-
proximation is accepted.

The difference approximation 5 for the compo-
nent f ; at the point j = JN — 1 is normal and no spe-
cial treatment is needed. The following simple differ-
ence approximation can be used for the component f*
at the point j = JN

1 _ _
Fj\/ - 2 381f1\/ - aff;\l—l . 9

This treatment is consistent and the characteristic

direction is taken into account.

In the same way we can construct the non-reflec-
tion boundary conditions and the consistent difference
approximations at and near the left boundary.

We can also easily construct non-reflection
boundary conditions and the consistent difference ap-
proximation at and near the boundary points for the
fifth order accurate upwind compact difference
scheme. For the left going component relation 6
can also be used as the non-reflection condition at the
point j = JN but the point j = JN — 1 is not the nor-
mal point for the fifth order upwind compact differ-
ence approximation. In this case we have to use ap-
proximation 8 or construct the higher order consis-
tent approximation by the following expression

aFj_ + BF )y = 0, af -y + bf iy + ef )y
10
where the free parameters need to be defined. From
10 we can construct the fifth order approximation
but in order that the approximation is consistent we
have to reduce the order of approximation by adjust-

ing the parameters. Considering 6 together with

8. f;n=0 after Taylor series expansion the follow-

ing consistent difference approximation at the point
j=JN —1 can be obtained

4 5 - 1 .-
?F]N—l =0, Efj}\ffl + jfjwfz . 11

The third order accurate upwind compact differ-
ence approximation at the point j = JN — 1 and the
approximation 9 at the point j = JN for the compo-
nent f' can be used for the fifth order upwind
scheme.

3 Numerical experiment

The above presented method for construction of
the non-reflection boundary difference approximation
at the far field boundaries and the consistent differ-
ence approximations at the near boundary points are
used to simulate one-dimensional two-dimensional
and three-dimensional practical problems. Only some

2-D and 3-D results are presented here.
3.1 Two-dimensional vortex propagation

The two-dimensional compressible Navier-Stokes

N-S equations are used to simulate the vortex prop-
agation. The purpose is to see the efficiency of pre-
sented method for treatment of difference approxima-
tion at the boundary and near boundary points. The
convection terms of the N-S equations are discretized
with the fourth order accurate upwind compact differ-
ence approximation and the viscous terms are dis-
cretized with the symmetrical fourth order accurate
and the three stage TVD

R-K method is used in advance of time.

compact approximation

The fluid parameters in computation are Ma =
1.2 Re =2000. The initial distribution of the fluid
parameters consists of a uniform field plus a perturba-
tion. The uniform field is
u=1 =0 T=1 p=1 12
and the perturbations for the velocity components are
u; r = Myexp 1-+> 2
u; =0

where 7 is the radius r = x>+ y?

13

12 4, the tan-

u, the radial velocity
and M, the rotation Mach number. In
computation M, =0.5 is used. The density perturba-
tion is taken as

gential velocity component
component
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,0/ r = 1*77_1Miexp 1-2 -1.
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The vortex contours at ¢ =0 are given in Fig.2
and the vortex contours at t =4.0 are given in Fig. 3.
From Fig. 3 we cannot see the upstream propagating
waves after interaction of the vortex with the bound-
ary.
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Fig. 2. Vortex contours at =0.0.
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Fig. 3.  Vortex contours at t =4.0.

The non-consistent difference approximation 7
is also used to compute the same problem and it is
found that the result is also acceptable. This is be-
cause the difference approximation is dissipative. The
same problem is also computed with condition 6
but the

with zero gradient of physical parameters
computation is unstable.

3.2 Simulation of the three-dimensional compress-
ible jet

The three-dimensional N-S equations are used to
simulate a three-dimensional round jet with incoming
Mach number Ma = 0.2 0.6 0.9 and Reynolds
number Re = 15000 based on the inlet diameter and
incoming flow velocity. The convection terms of the
N-S equations are discretized with the 5th order accu-
rate upwind compact difference approximation the
viscous terms are discretized with the 6th order accu-
rate symmetrical compact difference approximation
and a TVD R-K method is used in advance with
time. At the side boundaries and downstream bound-
ary the above presented treatment is used. The com-
puted results are satisfactory.

The complete process of flow structure develop-
ment can be obtained from K-H instability produc-
tion of azimuthal vortices the second instability and
formation of the streamwise vortices to turbulent
transition. The contours of the passive function on
meridian plan 0 w for the case Ma =0.2 are given
in Fig. 4 from which we can see the process of flow
structure development. The variation of the momen-
tum thickness in the streamwise direction is given in
Fig.5 from which we can see the sudden change near
the point x2=3 where the second instability starts and
2210 where the flow translation starts. By using the
data of direct numerical simulation the effect of com-
pressibility on formation and development of three-di-
mensional coherent structures is discussed in details.
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Fig. 5. Variation of momentum thickness with + d Ma =0.2
d-diameter .
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4 Summary

Recent progress of the far field non-reflecting
boundary conditions is presented briefly. The empha-
sis of this paper is on development of new simpler
non-reflecting far field boundary conditions for up-
wind compact difference approximations. It is sug-
gested to use consistent difference approximation at
the near boundary points. Numerical experiments
show that the computed results are satisfactory with
the presented boundary condition treatment.

References

1 Fu D. X. etal. On efficiency and accuracy of numerical methods
for solving the aerodynamic equations. 3rd. International Sympo-
sium on Computational Fluid Dynamics Nagoya Japan 1989.

Fu D. X. et al. Upwind compact scheme and application. 5 th
Int. Symposium on Computational Fluid Dynamics Sendai Japan
1993.

Tolstykh A. 1. The third order compact approximation for incom-
pressible flows. In Proc. 3 rd International Symposium on Compu-
tational Fluid Dynamics Vol.1 Nagoya Japan 1989.

Lele S. K. Compact finite difference schemes with spectral-like
resolution. J. Compt. Phys. 1992 103 16.

Gustafsson B. Numerical boundary conditions. Lectures in Ap-
plied Mathematics 1985 22 279.

Poinsot T. J. et al. Boundary conditions for direct simulations of
compressible viscous flows. J. Compt. Phys. 1992 101 104.
Li X. L. etal. Aliasing error analysis for upwind compact scheme
and comparison with spectral method. Computational Physics in
Chinese 2003 14 4 17.

Li X. L. et al. DNS of compressible homogeneous turbulence.
Science in China A in Chinese 2002 32 8 716.

Samtaney R. et al. Direct numerical simulation of the decaying
compressible turbulence and shocklet statistics. Phy. Fluids
2001 13 5 1415



