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Three types of streamline topology in a Kdrmén vortex street flow are shown under the variation
of spatial parameters. For the motion of dilute particles in the Kdrman vortex street flow, there
exist a route of bifurcation to a chaotic orbit and more attractors in a bifurcation diagram for
the proportion of particle density to fluid density. Along with the increase of spatial parameters
in the flow field, the bifurcation process is suspended, as well as more and more attractors
emerge. In the motion of dilute particles, a drag term and gravity term dominate and result in

the bifurcation phenomenon.
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1. Introduction

The motions of particles in a nonuniform flow have
wide technological applications, such as to fore-
cast chemical reactions and environmental pollu-
tion. Due to particle motion in the low Reynolds
number category, the equation of motion for a small
rigid sphere in a nonuniform flow field is deduced
[Maxey & Riley, 1983]. When the background flow
is mainly dominated by large scale structures, the
fluid viscosity is not included in the governing flow
equation [Chung & Troutt, 1988]. Related studies
show that even when the background flow fields are
very simple, the motions can have abundant phe-
nomena. In a periodic Stuart vortex flow, depending
on the values of parameters, the particles asymptot-
ically concentrate along periodic, quasiperiodic or
chaotic open trajectory [Ganan-Calvo & Lasheras,
1991; Tio et al., 1993]. In a cellular flow field, aerosol
particles also merge into isolated asymptotic tra-
jectories, which are described by slow manifolds
[Maxey, 1997; Rubin et al., 1995]. Moreover, the
method due to the Lagrange view of particles can
also be applied to investigate effects of particle dis-
persion on streamwise braid vortices in a plane
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mixing layer [Marcu & Meiburg, 1996; Marcu et al.,
1996].

In a plane wake flow behind a circular cylinder,
a regular vortex street structure was investigated at
Re = 60 — 5000. Along with the advance of experi-
mental techniques, even at Re = 0(10%), the regular
vortex street is obtained by using the phase-average
method [Hussain & Hayakawa, 1987]. In particular,
the phenomena relating to organized vortex struc-
ture, such as, reconnection of vortex street [Okude,
1981] and emergence of three-dimensional vortex
structure [Willimson, 1988|, arouse wide interest
for the transition of a plane wake flow. Recently,
particle focusing in narrow bands near the periph-
eries of the vortex structures for the particle disper-
sion in a plane wake flow is observed experimentally
[Tang et al., 1992]. By considering Stokes drag, the
phenomenon of particle focusing is studied on two-
dimensional centre manifolds [Burns et al., 1999).
The regular Karmén vortex street flow as a model
to approach the plane wake flow and investigate the
above phenomena plays an important role.

For the motion of particles in regular vortex
street flow, Karmdn vortex spacing influences the
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topological structure of background flow field. At
the same time, a density ratio as a basic parame-
ter may have a wide range. In this paper, we will
consider streamline topology and dilute particle dy-
namics in the Kdrmén vortex street flow in a range
of density ratio. In Sec. 2, it is shown that for
the Kdrmén vortex street flow, there exist three
types of global topological structure depending on
the spatial parameters in flow field. Dilute particle

dynamics in the Kdrmén vortex street flow related
to the density ratio is investigated in Sec. 3. Effects
of spatial parameters in flow field on dilute particle
dispersion are determined in Sec. 4. Finally, a brief
summary is given in Sec. 5.

2. Streamline Topology

The stream function of Kérman vortex street flow
[Milne-Thomson, 1979] is

(1)
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where T' is the strength of vortices, [ and h are the streamwise and transverse spacing of vortices, respec-
tively. The dimensionless quantities denoted by asterisks are introduced as z* = z/l, y* = y/l, h* = h/l,
w* = u/Us, I* = T'/(Usol) and U* = ¥/(Ugl). The stream function (1) can be represented as

r* ! ch 2rw(y* — h*/2) — cos 2mwz™

F*y*

v (z*, y

)= ir " ch 2m(y* + h*/2) + cos 2mwx* 2

thwh™. (2)

From now on, the asterisks “*” for the dimensionless quantities in this section are omitted for convenience.
The stream function (2) has symmetries: U(z +1/2, —y) = —¥(z, y), ¥(z + 1, y) = ¥(=z, ).

The associated velocity field is given by

" = or I shon(y — h/2) B sh2n(y + h/2) n r thh

T 8y 2 |ch2w(y— h/2) —cos 2rz  ch2w(y + h/2) + cos 27z 2 ’ )
Uy = —@ - = + ! sin 27z

Y7 8z 2 |ch2r(y ~h/2) —cos 2rz  ch2n(y + h/2) + cos 27z AT

which has singularity at the vortex centers. In the
case of removing the singularity by the Rankine
vortex [Wu & Ling, 1994], free stagnation points
in velocity field (3) consist of centers and sad-
dle points, which can be respectively described
by (0, h/2), (1/2, —(h/2)) and (0, —(1/27)In c,
(1/2, (1/2m)In ¢), where ¢ = 2/shwh + shmh +
[2/shnh +shwh]? + 1.

In the symmetry ¥(z + 1/2, —y) = =¥(z, y),
it can be shown that there exists a zero stream-
line between two neighboring centers (0, A/2) and
(1/2, —(h/2)). Under the variation of spatial pa-
rameter h, we take zero streamlines to investigate
the evolution of global topological structure. The
points yg, corresponding to zero streamlines pass-
ing through the y coordinate, satisfy

T chom(yo — h/2) ~ 1 Ty
VO w = N ) T T 2

Using the Newton—Raphson and bisection methods
[Press et al., 1992], we solve Eq. (4) and plot the
relation yg ~ h in Fig. 1.

When A = 0, the Kdarméan vortex street re-
turns to a periodic row of vortex pair (uz =
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IMig. 1. Points of zero streamlines in the ¥ coordinate.
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Fig. 2. All streamlines including corresponding embedded zero streamlines with centers marked by dots and saddle points
marked by crosses for (a) h = 0.001; (b) h = 0.1; (c) h = 0.164; (d) h = 0.3; (e) h = 0.410998; (f) A = 0.6.

I' cos 27z sh 27y / (ch?27ry — cos?2xz) and u, =
—T sin 27z ch 27y /(ch?2ry — cos?2rz)). In this
case, a zero streamline exists in yp = oo, as well as
free stagnation points are only centers. All stream-

lines including an embedded zero streamline for
1

ow0, y) ._P - sh2n(y — h/2)

h = 0.001, which approach to those for & = 0, are
drawn in Fig. 2(a). Two neighboring vortices are
divided by the zero streamline. In Fig. 1, there ex-
ists a minimum point (0.164, 0.443434) marked by
0. To understand this point, we take the derivative
of ¥(0, y) with respect to h, as follows,

8h 4 |chom(y—h/2) =1 ' ch2r(y +h/2) +1

Using the Newton-Raphson and bisection meth-

ods [Press et al., 1992], we solve Eq. (5) and plot

the solutions in Fig, 3(a). Besides a trivial solution

y = h/2 of Eq. (5), other relations £y ~ h are

o

shor(y +h/2) 2@y ] -0 | (5)
ch?®rh '

symmetrical and corresponding to the maxi-
mum and minimum of ¥(0, y) for A. The point
(0.164,0.443434) exists in the curve y ~ h marked
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Fig. 3. (a) A relation y ~ h for W4y /min(0, ¥); (b) Stream
function relating to h at (0, 0.443434),

by p, so that (0, 0.443434) is a maximum
of ¥(0,y) for h. We also plot the relation of
U (0, 0.443434) to h in Fig. 3(b). The maximum
point ¢ in the curve confirms to the above result.
Thus, the minimum point in Fig. 1 corresponds to
the maximum of ¥(0, y) for h.

When A increases from 0 to 0.164, vy monoton-
ically decreases from oo to 0.443434 in Fig. 1. All
streamlines including an embedded zero streamline
for h = 0.1 are drawn in Fig. 2(b). In this case,
saddle points emerge below or above the centers in
opposition to the zero streamlines. The orbits pass-
ing through saddle points go around the centers and

come back, as well as go to other saddle points,
i.e. there exist homoclinic and heteroclinic orbits,

For h = 0.164, all streamlines including an embed-
ded zero streamline are drawn in Fig. 2(c). When
h increases from 0.164, yo monotonically increases
from 0.443434 in Fig. 1. All streamlines including
an embedded zero streamline for h = 0.3 are drawn

in Fig. 2(d). When h increases to 0.410998, an-
other solution of yp emerges in Fig. 1. All associated
streamlines including embedded zero streamlines
are drawn in Fig. 2(e). Zero streamlines, surround-
ing each vortex, pass through the saddle points.
So, the zero streamlines are homoclinic and hete-
roclinic orbits. When A increases beyond 0.410998,
the solution becomes two ones in Fig. 1. At the
time, there exist three zero streamlines. The orbits
passing through saddle points go around the centers
and to other saddle points, but do not come back,
i.e. there exist only heteroclinic orbits. All stream-
lines including three embedded zero streamlines for
h = 0.6 are drawn in Fig. 2(f). Upper and lower
vortices are divided by one zero streamline, as well
as surrounded by others.

In the experiment of a plane wake flow [Okude
& Matsui, 1987, it has been shown that A increases
downstream from 0.2 to 0.45 at Re = 140. We can
thus conclude that three types of streamline topol-
ogy can emerge in a plane wake flow.

3. Dilute Particle Dynamics
3.1.

The motion of a small spherical particle in a nonuni-
form flow field u is governed by the momentum
equation [Maxey & Riley, 1983; Tio et al., 1993]

Governing equations

T dV

s . i

5 4 (pp +0.50r) —
T

= d'(pp — pr)g

Du
3
d’pr Dt

3 t
1+ 2 ()22 pp j
2 0

+ + 3rdvpp(u—-V)fy

1 du___dV i
t—1 \dr dr

—I—%dgpp(u—-V) X W, (6)

N

where V is the velocity of the particle, d is the
particle diameter, p is the density, g is the gravi-
tational acceleration, v is the fluid kinematic vis-
cosity, w is the vorticity of the flow fluid, and the
subscripts F' and P refer to the fluid and particle,
respectively. The parameter f; relating to Reynolds
number (Rep = |u— V|d/v) is described [Clift et
al., 1978; Tio et al., 1993] as

Rep

fo=1+0.1315Rep > 0 80"
0 < Rep < 200. {7)
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Introducing the dimensionless quantities § =
pp/pF, € = 1/(0.5 + 6), t* =t/T, V* = V/({/T)
and g* = g/¢g (T is the particle viscous relaxation
time d?/(18ev)), we nondimensionlize Eq. (6) and

ignore the Basset history term. Thus, Eq. (6) can
be described by

av 3
dt = Bg + —€A2u e Vu -+ (Au V)fd
1
+ 5 eA(Au—V) xw, (8)
where A = Uy,T/l, B = (1 — 1.56)T?*(g/l) and

the asterisks “*” for the dimensionless quantities
|

in this section are omitted for convenience. More-
over, the Reynolds number is written as Rep =
Rep/AlAu ~ V| (Rep = Uyd/v).

The flow field u is chosen to be the Kédrmén
vortex street flow (3), where a parameter k is in-
troduced to remove the singularities. The modified
stream function (2) is described as

r ch2nm(y — h/2) — k cos 27z

Y(z, y) = —
(=, 9) ir " ch 2r{y + h/2) + k cos 27z

'y sh2nh
t S ekt & (9)

The corresponding velocity field is given by

uy =22 L [ sh 2 (y — h/2) _ sh 2w (y + h/2) I shorh
Oy 2 {ch2n(y —h/2) —kcos 2rz  ch2n(y + h/2) + k cos 2mzx 2 ch2rh+ k' .
U ._a_\I; — __Fk: I: 1 n 1 o _ ( 0)
Y or 2 |[ch2n(y—h/2) —kcos 2rz  ch2r(y+h/2) + k cos 27z SH 4T -

Only when k == 1, the velocity field satisfies the Euler equation. Since the error increases with deviation of
k from 1, we take k& = 0.99 as an approximation in this simulation.
The particle motion is described by a four-dimensional, nonlinear autonomous dynamical system of

the form
T =V,
'g"—"v‘yv
o 3 1 (11)
e = é-sA u e Vg + (Auy — Vz) fa+ “EAW(AUU Vi)

.3
Vv, = ~2~6A2u o Vuy, + (Auy —

The parameters in Egs. (11) can be taken as
U = 4 m/s and d =
et al., 1992]. Since air is chosen as the fluid me-
dia in the flow, the properties of fluid in Egs. (11)
are described as p = 1.225 kg/m® and v = 1.45 x
10~5 m?/s [Panton, 1984]. Moreover, the parame-
ters concerning the Kdrmdn vortex street flow are
chosen as [ = 0.1 m, h = 03 and ' = 1. In
the following, we investigate the motion of par-
ticles under the variation of density ratio 4. Ini-
tial values of particles are taken as points in the
flow field and their corresponding flow field velocity.
Using a fourth-order Runge-Kutta algorithm, we
integrate Eqs. (11) with a time size = = 0.001.
After discarding transients, we plot points at = 0
as a bifurcation diagram. When the time size is
changed to 7 = 0.01, the bifurcation diagram is
still preserved. -

In order to understand the. dllute particle
dynamlcs, we analyze. orders of ma,gmtude of

Vi fa— 5 .&‘A:Lu(Au,m - V,)—B

5 x 107° m from [Tang

parameters in Eq. (8). For giving physical values in
the calculation, the parameter fy appear to be on
the order 1. When § is taken as the order 10° — 10*
and d is fixed as the order 10™° m, the param-
eters £, T, A and B appear to be on the order
1073 — 1074, 1073 s — 1072 5, 1072 — 107! and
104 — 1072, respectively. In this case, the stress
tensor term of fluid (3/2)eA%u ¢ Vu and lift force
term (1/2)e A(Au — V) xw have smaller orders than
the drag term (Au — V) fy and gravity term Bg in
Eq. (8). Therefore, Eq. (8) is dominated by the drag
term and gravity term .

~ Moreover, concerning the stability of pa,rtlcle
orbits, we take only the drag and gravity terms
in BEq. (8) to obtain an approximate fundamen-
tal matrix Ul. By using the straightforward tech-
nique [Shimada & Nagashima, 1979; Wolf et al
1985], a complete Lyapunov spectrum is determined
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Fig. 4. A bifurcation diagram with A = 0.3 for a continuous range of § showing the vertical position of particles at 2 = 0. The
dense bifurcation zone § € [7000, 10000] above the street is enlarged and redrawn in the bottom-right corner of the figure.

as follows bifurcates to a period-4 orbit. In § = 7.0 x 103 —
e Tim L log UL, e§AUE eIAUL eJAUL el 7..9 x 10%, the attractor evolves as a pc:ariod—zl or-
fovoo t le?Aednednel bit. In § = 7.9 x 10% — 1.0 x 10%, the period-4 orbit
bifurcates to a period-8 orbit and further to a quasi-

— lim L =1 Jog |UL el AUL es AUL e5AUL el | periodic or chaotic orbit. At § = 1.0 x 10%, a crisis

happens, so that the quasi-periodic or chaotic orbit

(12) disappears. Moreover, at § = 7.3 x 103, a period-3

orbit emerges as another attractor above the street.

where A and || o || are an exterior product and a  In § = 7.3 x 103 —7.9 x 10, the period-3 orbit bifur-

norm with respect to the Riemannian metric, re-  ¢ates further to a quasi-periodic or chaotic orbit. At

spectively. After each time integration, the set of 5 _ 7.9 x 108, a crisis happens, so that the quasi-

bases {e}, eb, e}, e5} is exchanged by using the

Gram~Schmidt reorthonormalization procedure. In

the calculation of the complete Lyapunov spectrum,
the time size is taken as 7 = 0.001.

n—oo NT |l AebAeAel

periodic or chaotic orbit disappears. The bifurca~
tion procedure of period-3 orbit differs from that
for the three-dimensional Lorenz equation [Lorenz,
1963]. For the attractor in the street, a period-1
- orbit emerges at § = 3.3 x 10%. It preserves in
3.2. Numerical results §=33x10% —12x 104

In Fig. 5, we plot some typical examples for dif-

In Fig. 4, along with the increase of density ratio, ] _
ferent values of §. A period-1 orbit above the street

a bifurcation diagram of y versus ¢ is drawn. When 5 :
§ < 6.5 x 102, the velocity of particle dispersion is for § = 1.0%x10°, as well as all corresponding stream-

very slow, so most of the particle trajectories are  Lines are drawn in Fig. 5(a). On the period-1 orbit,
preserved near the street. When § > 6.5 x 102, the particles move from left to right. In Fig. 6, for
besides the particle dispersion, global trajectories the period-1 orbit, the maximal Lyapunov exponent
of particles converge to two attractors: one above is —0.230, so the orbit is stable. In order to display
the street, the other in the street. For the attrac- the dispersion of particles in the flow field, we also
tor above the street in § = 6.5 x 102 — 4.4 x 10%,  plot the basin of attraction in Fig. 7(a}. In the mo-
it evolves as a period-1 orbit. At § = 4.4 x 103,  tion of particles, the points corresponding to those -
the period-1 orbit bifurcates to a period-2 orbit. In  in the basin of attraction suspend on the period-
§ = 4.4 x 103 — 7.0 x 103, the attractor evolves as a 1 orbit. At the same time, the points correspond-
period-2 orbit. At § = 7.0 x 103, the period-2 orbit  ing to those outside the basin of attraction escape
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Fig. 5. Typical trajectories in Plg 4 for (a) § = 1.0 X 103 and all streamlines; (b) § = 3.5 x 10%; (c) § = 6.0 x 10°;
(d) § = 7.5 x 10%; (e) § = 9.5 x 10°.

from the central region of flow. For § = 3.5 x 103,  right. In Fig. 6, for the period-1 orbit, the maxi- |
in Fig. 5(b), two period-1 orbits distribute a,bove. mal Lyapunov exponent is ~0.254, so the orbit is
and in the street, respectively. On the period-1 or-  stable. But, on the orbit in the street, the parti-

bit above the street, the particles move from left to cles move in an opposite direction, i.e. from right
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Fig. 6. Variation of the maximal Lyapunov exponent Amax with 8. Besides the period-3 orbit for § = 7.5 x 103 labeled by a
triangle, the attractors above and in the street are marked by dots and crosses, respectively.

to left. The maximal Lyapunov exponent is —1.144,
so the orbit is stable. For the two period-1 orbits,
the corresponding basins of attraction are plotted
in Fig. 7(b). One is similar to that in Fig. 7(a}, the
other is distributed in two local zones. The basin
for the orbit in street is surrounded by that for the
orbit above street. For § = 6.0 x 103, a period-2
orbit above the street and a period-1 orbit in the
street are drawn in Fig. 5(c). On the period-2 or-
bit above the street, the particles move from left to
right. In Fig. 6, for the period-2 orbit, the maxi-
mal Lyapunov exponent is —0.604, so the orbit is
stable. But, on the orbit in the street, the parti-
cles move in an opposite direction, i.e. from right
to left. The maximal Lyapunov exponent is —1.268,
so the orbit is stable. The corresponding basin of
attraction is plotted in Fig. 7(c), which is similar to
Fig. 7(b). For & = 7.5 x 10°, a combined period-4
orbit with a period-3 above the street and a period-
1 orbit in the street are drawn in Fig. 5(d). On the
period-4 and period-3 orbits above the street, the
particles move from left to right. But, on the or-
bit in the street, the particles move in an opposite
direction, i.e. from right to left. In Fig. 6, for the
period-4, period-3 and period-1 orbits, the maximal
Lyapunov exponent are —1.003, —0.245 and —1.356,
respectively, so the orbits are stable. The corre-
sponding basin of attraction is plotted in Fig. 7(d).
The geometry of basin is different from the above

ones in Figs. 7(a)-7(c). Some points near y = 1 es-
cape from the basin of attraction in the dispersion
of particles. For § = 9.5 x 103, a quasi-periodic or
chaotic orbit above the street and a period-1 orbit in
the street are drawn in Fig. 5(e). On the orbit above
the street, the particles move from left to right. In
Fig. 6, for the orbit, the maximal Lyapunov expo-
nent is 0.850, so the orbit is chaotic. But, on the
orbit in the street, the particles move in an oppo-
site direction, i.e. from right to left. The maximal
Lyapunov exponent is —1,356, so the orbit is stable.
The corresponding basin of attraction is plotted in
Fig. 7(e). For the period-1 orbit in the street, the
geometry of basin is similar to that in Fig. 7(d).
But, for the chaotic orbit above the street, escaped
points in Fig. 7(e) permeate into the basin of at-
traction in Fig. 7(d), so that the geometry of basin
is fractal. From those examples, we can conclude
that along with the increases of density ratio, ini-
tial points distributed in the central region of flow
escape more and more. At the same time, the par-
ticle trajectories bifurcate from periodic orbits to
chaotic orbits. | |

In order to explain the existence of attractors
in the flow field, we take the period-1 and period-2
orbits for § = 6.0 X 102 as an example. In Fig. 8, we
present the values of V;, Vi, uy and (Auy,—V,) fa—B
along two orbits. For the period-2 orbit above the
street, we plot it in two times of the streamwise
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Fig. 7. Basins of attraction corresponding to the typical trajectories in Fig. 5 for (a) § = 1.0 x 10%; (b) § = 3.5 X 10%;
(c) § = 6.0 x 10% (d) § = 7.5 % 10%; (e) § = 9.5 X 10°. In Figs. 7(b)-7(e), besides two local zones marked by thinner lines for

the basin of period-1 orbit in the street, the global zone presents the basin for attractors above the street.

| pericl)ldic length in Fig. 8(a). Since V; > 0 in 2z €  causes decrease of Vj from 0.050 to —0.285. At
[0, 2), the motional direction of particles is from  the same time, if leads to increase for. the term
left to right. (1) When a particle moves fromz =0 (Auy — Vy)fa — B. (2) When the particle moves

to = = 0.486, the negative term (Auy ~Vy)fa— B frqm z = 0486 to x = 0,930,_ the positive term
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Fig. 8. Distribution of Vi, Vy, uy and (Auy — Vy)fa — B
along = on (a) a period-2 orbit above the street; (b) a period-
1 orbit in the street for § = 6.0 x 103.

(Auy —V,)fa — B causes increase of V, from —0.285
to 0.404. At the same time, it leads to decrease for
the term (Auy, — Vy)fq — B. (3) When the particle
moves from z = 0.930 to = = 1.554, the negative
term (Auy — V) fa — B causes decrease of V, from
0.404 to —0.115. At the same time, it leads to in-
crease for the term (Au, — V})fu — B. (4) When
the particle moves from o = 1.554 to x = 1.946, the
positive term (Auy —V,) fa— B causes increase of V,
from —0.115 to 0.067. At the same time, it leads to
decrease for the term (Auy, — V) fa — B. (5) When
the particle moves fromm = = 1.946 to = = 2, the
negative term (Auy — V) fg — B causes decrease of
V, from 0.067 to 0.050. At the same time, it leads
to increase for the term (Auy, — V,))fg — B. Accord-
ing to the periodic boundary condition, when the
particle reaches z = 2, it goes back to z = 0.
Therefore, the combination of the drag term and
gravity term in the vertical direction has a periodic

vibration along with the variation.of the vertical ve-.

locity of particles and makes the period-2 orbit. In
Fig. 8(Db), for the period-1 orbit in the street, we plot
it in the streamwise periodic length. Since V, < 0
in z € [0, 1), the motional direction of particles is

from right to left. In a similar way to Fig. 8(a),
the term (Auy — V})fq — B brings into a periodic
vibration of particles and makes the period-1 or-
bit. In [Burns et al., 1999], by considering the drag
term, the essential dynamics takes place on the two-
dimensional centre manifolds. To compare with the
result, we find the bifurcation process disappears
when the gravity term in Eq. (8) is eliminated. From
the above observation, we can conclude that the
drag term and gravity term lead to the bifurcation
behavior in dilute particle dispersion. The motional
direction of particles and distribution of u, deter-
mine the vertical position of attractors.

4. Effects of Spatial Parameters in
Flow Field on Dilute Particle
Dispersion

In Sec. 2, we show three types of streamline topol-
ogy in the Karmdan vortex street flow at different
spatial parameters h. In Sec. 3, we present the dilute
particle dynamics for the flow field with h = 0.3. In
the following, we increase the spatial parameter h
to consider its effects on dilute particle dispersion.

For h = 0.410998, along with the increase of
density ratio, a bifurcation diagram ¥y versus ¢ is
drawn in Fig. 9. The global evolution is similar to
that in Fig. 4. However, the bifurcation of period-1
attractor above the street is delayed. The period-
1 orbit above the street bifurcates to a period-2
orbit at § = 6.6 x 10%, The period-2 orbit bifur-
cates to a period-4 orbit at § = 1.04 x 10%. In
6 = 1.04 x 10* — 1.2 x 10%, the period-4 orbit bi-
furcates further to a quasi-periodic or chaotic orbit.
A period-3 orbit above the street emerges at § =
7.0 x 103 and bifurcates in § = 7.0 x 10% — 8.3 x 10%.
At § = 8.3 x 10%, a crises happens, so that the
quasi-periodic or chaotic orbit above the street dis-
appears. Moreover, the occurrence of period-1 at-
tractor in the street is shifted earlier at § = 2.0x 103.
A bifurcation of period-3 orbit in the street emerges
in § =9.4 x 103 — 1.1 x 10%.

For h = 0.6, along with the increase of den-
sity ratio, a bifurcation diagram vy versus 4 is drawn
in Fig. 10. The global evolution is similar to that
in Fig. 9. However, the bifurcation of period-1 at-
tractor above the street is delayed. The period-1
orbit above the street bifurcate to a period-2 or-
bit at 6 = 9.1 x 103. The period-2 orbit is pre-
served in § = 9.1 x 10% — 1.2 x 10%. At the same
time, the occurrence of period-1 attractor in the
street is shifted earlier at § = 2.0 x 102, Moreover,
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Fig. 9. A bifurcation diagram with h = 0.410998 for a continuous range of § showing the vertical position of particles at
& = 0. The dense bifurcation zone § € [7000, 8300] above the street is enlarged and redrawn in the bottom-right corner of the

figure.
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Fig. 10. A bifurcation diagram with h = 0.6 for a continuous range of § showing the vertical position of particles at
z = 0. The dense bifurcation zone § € [7600, 8500] above the street is enlarged and redrawn in the bottom-right corner of

the figure.

at 6§ = 7.6 x 10%, a period-4 and a period-3 orbit
emerge above the street. They bifurcate further to
~ two quasi-periodic or chaotic orbits and disappear
at § = 8.4 x 10% and § = 8.5 x 103, respectively.
In & = 8.0 x 103 — 9.4 x 103, a similar bifurcation
process of more attractors emerges in the street. In
5 = 8.0x103—8.8x 103, a period-4 orbit preserves in
the street. In § = 8.4x 10° —9.4x 10%, a bifurcation
of period-3 orbit exists in the street. "
Thus, along with the increase of h, a period-1
orbit above the street bifurcates slower to & quasi-

I

periodic or chaotic orbit, as well as a period-1 or-
bit in the street emerges earlier. Besides the main
attractors in the flow field, more and more local
attractors also appear above and in the street.

5. Conclusion

Under the variation of spatial parameters, we have
shown three types of streamline topology in a
K4rmén vortex street flow. For the motion of dilute
particles in the Kérman vortex street flow, there
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exist a route of bifurcation to a chaotic orbit and
more attractors in a bifurcation diagram for the pro-
portion of particle density to fluid density. Along
with the increase of spatial parameters in the flow
field, the bifurcation process is suspended, as well as
more and more attractors emerge. In the motion of
dilute particles, a drag term and gravity term dom-
inate and result in the bifurcation phenomenon.

Acknowledgment

This work was supported in part by the Na-
tional Key Program for Developing Basic Science
(G1999032801-11.

References

Burns, T. J., Davis, R. W. & Moore, E. F. [1999] “A per-
turbation study of particle dynamics in a plane wake
flow,” J. Fluid Mech. 384, 1-26.

Chung, J. N. & Troutt, T. R. [1988] “Simulation of par-
ticle dispersion in a axisymmetric jet,” J. Fluid Mech.
186, 199-222.

Clift, R., Grace, J. R. & Weber, M. E. [1978] Bubbles,
Drops and Particles (Academic, NY).

Ganan-Calvo, A. M. & Lasheras, J. C. [1991] “The dy-
namics and mixing of small spherical particles in a
plane, free shear layer,” Phys. Fluids A3, 1207-1217.

Hussain, A. K. M. F. & Hayakawa, M. [1987] “Educ-
tion of large-scale organized structures in a turbulent
plane wake,” J. Fluid Mech. 180, 193-220.

Lorenz, E. N. [1963] “Deterministic nonperiodic flow,”
J. Atoms. Sci. 20, 130-141.

Marcu, B. & Meiburg, E. [1996] “The effect of streamwise
braid vortices on the particle dispersion in a plane
mixing layer. I. Equilibrium and their stability,” Phys.
Fluids A8, 715-733.

Marcu, B., Meiburg, E. & Raju, N. [1996] “The effect
of streamwise braid vortices on the particle disper-
sion in a plane mixing layer. II. Nonlinear particle
dynamics,” Phys. Fluids A8, 734-753.

Maxey, M. R. & Riley, J. J. [1983] “Equation of motion
for a small rigid sphere in a nonuniform flow,” Phys.
Fluids 26, 883-889.

Maxey, M. R. [1987] “The motion of spherical particles
in a cellular flow field,” Phys. Fluids 30, 1915-1928,

Milne-Thomson, L. M. [1979] Theoretical Hydrodynam-
ics, 5th edition (The Macmillan Press Ltd).

Okude, M. [1981] “Rearrangement of the Karman vortex
street modes,” Trans. Jpn. Soc. Aero. Space Sci. 24,
05-105.

Okude, M. & Matsui, T. [1987] “Correspondence of ve-
locity fluctuations to flow patterns in a Karman vor-
tex street at low Reynolds numbers,” Trans. Jpn. Soc.
Aero. Space Sci. 30, 80-90.

Panton, R. L. [1984] Incompressible Flow (John Wiley).

Press, W. H., Teukolsky, S. A., Vetterling, W. T. &
Flannery, B. P. [1992] Numerical Recipes in C, 2nd
edition (Cambridge University Press.)

Rubin, J., Jones, C. K. R. T. & Maxey, M. [1995] “Set-
ting and asymptotic motion of aerosol particles in a
cellular flow field,” J. Nonlin. Sci. 5, 337-358.

Shimada, I. & Nagashima, T. [1979] “A numerical ap-
proach to ergodic problem of dissipative dynamical
system,” Prog. Theor. Phys. 61, 1605-1616.

Tang, L., Wen, F., Yang, Y., Crowe, C. T., Chung,
J. N. & Troutt, T. R. [1992] “Self-organizing particle
dispersion mechanism in a plane wake,” Phys. Fluids
A4, 2244-2251.

Tio, K.-K., Ganan-Calvo, A. M. & Lasheras, J. C. [1993]
“The dynamics of small, heavy rigid spherical parti-
cles in a periodic Stuart vortex flow,” Phys. Fluids
A5, 1679-1693.

Willimson, C. H. K. [1998] “The existence of two stages
in the transition to three-dimensional of a cylinder
wake,” Phys. Fluids 31, 3165-3168.

Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A.
[1985] “Determining Lyapunov exponents from a time
series,” Physica D16, 285317,

Wu, Z.-B. & Ling, G.-C. [1994] “Theoretical study on
topological structure of Kdrmédn vortex street flow
field,” Acta Aerodyn. Sin. 12, 355-362 (in Chinese).



