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Abstract. The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is
studied. The equation of motion of the system is first reduced to a set of averaged Itô stochastic differential equa-
tions by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional
reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-
passage time are established. Finally, the conditional reliability function, and the conditional probability density
and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized
Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with
several sets of parameter values are obtained and the analytical results are verified by using those from digital
simulation.

Keywords: Duffing oscillator, combined harmonic and white noise excitations, stochastic averaging, first-passage
time, reliability.

1. Introduction

The first-passage time is related to the state transition of multi-steady-state physical systems
and to the reliability of structural systems under random excitation. Thus, it is significant to
evaluate the probability and/or statistics of the first-passage time. On the other hand, the first-
passage time is among the most difficult problems in the theory of stochastic dynamics. At
present, a mathematical exact solution is possible only if the random phenomenon in question
can be treated as a diffusive process. Still, known solutions are limited to one-dimensional
case [1, 2]. A powerful way to study the first passage time of higher dimensional systems
is the combination of the stochastic averaging method and diffusion process method of first-
passage time. This combination approach has been successfully applied by many researchers
[3–15].

Physical and engineering systems are often subjected to combined harmonic and random
excitations. Linear and quasi-linear systems under combined harmonic and white-noise or
wide-band random excitations have been studied by using the classical stochastic averaging
method for obtaining the conditions of moment stability [16–19] or for obtaining the response
probability density [20, 21]. Recently, a stochastic averaging method using generalized har-
monic functions has been developed for studying the response of strongly nonlinear oscillators
under combined harmonic and white-noise excitations [22].

In the present paper, the later version of the stochastic averaging method and the diffusion
process method of first-passage time are applied to study the first-passage time of Duffing



292 W. Q. Zhu and Y. J. Wu

oscillator under combined harmonic and white-noise excitations. The effects of damping,
white noise intensity and detuning parameter on the probability and statistics of first passage
time are examined. The analytical results are compared with those from digital simulation.

2. Averaged Itô Equations

Consider a Duffing oscillator subject to external harmonic excitation and external and para-
metric white- noise excitations. The equation of motion of the system is of the form

Ẍ + ω2X + αX3 = −βẊ + E cos �t + ξ1(t) + Xξ2(t), (1)

where ω, α, β, E and � are positive constants denoting the natural frequency of degenerate
linear oscillator, intensity of nonlinearity, damping coefficient, amplitude and frequency of
harmonic excitation, respectively; ξk(t) (k = 1, 2) are independent Gaussian white noises in
the sense of Stratonovich with intensities 2Dk. β, E and Dk are assumed of the same small
order. The conservative Duffing oscillator (without damping and excitations) has a family of
periodic solutions in whole phase plane (x, ẋ) surrounding (0, 0) with instantaneous period

ν−1(a, ϕ) = [(ω2 + 3αa2/4)(1 + λ cos 2ϕ)]−1/2 =
∞∑

n=0

C2n(a) cos 2nϕ,

C2n(a) = 1

2π

2π∫
0

ν−1(a, ϕ) cos 2nϕ dϕ,

λ = αa2/4(ω2 + 3αa2/4). (2)

The averaged Itô equations for system (1) can be obtained by using the procedure developed
in [22]. Two cases are considered in the following:

Case 1: Primary external resonance. In this case,

�/ω(a) = 1 + σ, (3)

where ω(a) = 1/C0(a) is averaged frequency of conserved Duffing oscillator and σ is a
small parameter denoting detuning. By using the generalized Van der Pol transformations,
Equation (3) is converted into

dA

dt
= F1(A,�,�t) + h11(A,�)ξ1(t) + h12(A,�)ξ2(t),

d�

dt
= F2(A,�,�t) + h21(A,�)ξ1(t) + h22(A,�)ξ2(t), (4)

where

F1 = − A

g(A)
[βAν(A,�) sin � + E cos �t]ν(A,�) sin �,

F2 = − 1

g(A)
[βAν(A,�) sin � + E cos �t]ν(A,�) cos �,
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h11 = − A

g(A)
ν(A,�) sin �, h12 = − A2

g(A)
ν(A,�) sin � cos �,

h21 = − 1

g(A)
ν(A,�) cos �, h22 = − A

g(A)
ν(A,�) cos2 �. (5)

Equation (4) can be modeled as the following Itô stochastic differential equations by adding
Wong–Zakai correction terms:

dA = m1(A,�,�t) d + σ1r(A,�) dBr(t),

d� = m2(A,�,�t) d + σ2r(A,�) dBr(t), r = 1, 2. (6)

where

mi = Fi + Dk

(
h1k

∂hik

∂A
+ h2k

∂hik

∂�

)
,

bij = σirσjr = 2Dkhikhjk, i, j, k = 1, 2. (7)

Introducing new variable

& = στ − �, (8)

Equation (6) is transformed into

dA = m1(A,�,( + &) dt + σ1r(A,�) dBr(t),

d& = [−m2(A,�,( + &) + (�/ω(A) − 1)ν(A,�)] dt − σ2r(A,�) dBr(t). (9)

Averaging the drift and diffusion coefficients in Itô equation (9) with respect to � leads to

dĀ = m̄1(Ā, &̄) dt + σ̄1r(Ā) dBr(t),

d&̄ = m̄2(Ā, &̄) dt + σ̄2r(Ā) dBr(t), r = 1, 2, (10)

where

m̄1(Ā, &̄) = −βĀ(ω2 + 5αĀ2/8)/2(ω2 + αĀ2) + E sin &̄

×
〈
ν(Ā,�) sin � sin

(
� + �

∞∑
n=1

1

n
Cn(Ā) sin n�

)〉
�

/
(ω2 + αĀ2)

− αD1Ā(3ω2 + 3αĀ2/2)/4(ω2 + αĀ2)3

+ D1(ω
2 + 7αĀ2/8)/2Ā(ω2 + αĀ2)2

+ D2ω
2Ā(ω2 + αĀ2/2)/8(ω2 + αĀ2)3

+ D2Ā(ω2 + 7αĀ2/8)/4(ω2 + αĀ2)2,

m̄2(Ā, &̄) = E cos &̄

×
〈
ν(Ā,�) cos � cos

(
� + �

∞∑
n=1

1

n
Cn(Ā) sin n�

)〉
�

/
Ā(ω2 + αĀ2)

+ [�C0(Ā) − 1]〈ν(Ā,�)〉�,
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b̄11(Ā) = σ̄1r σ̄1r

= D1(ω
2 + 5αĀ2/8)/(ω2 + αĀ2)2 + D2A

2(ω2 + 3αĀ2/4)/4(ω2 + αĀ2)2,

b̄22(Ā) = σ̄2r σ̄2r

= D1(ω
2 + 7αĀ2/8)/Ā2(ω2 + αĀ2)2

+ 2D2(3ω
2/8 + 11αĀ2/32)/(ω2 + αĀ2)2,

b̄12(Ā) = b̄21(Ā) = σ̄1r σ̄2r = 0. (11)

Case 2: Primary parametric resonance. In this case,

�/ω(a) = 2 + σ. (12)

Introduce new variable

& = στ − 2�. (13)

A similar derivation leads to the following averaged Itô equations:

dĀ = m̄1(Ā, &̄) dt + σ̄1r(Ā) dBrt,

d&̄ = m̄2(Ā, &̄) dt + σ̄2r(Ā) dBrt, r = 1, 2, (14)

where

m̄1(Ā, &̄) = −βĀ(ω2 + 5αĀ2/8)/2(ω2 + αĀ2) + E sin &̄

×
〈
ν(Ā,�) sin � sin

(
2� + �

∞∑
n=1

1

n
Cn(Ā) sin n�

)〉
�

/
(ω2 + αĀ2)

− αD1Ā(3ω2 + 3αĀ2/2)/4(ω2 + αĀ2)3

+ D1(ω
2 + 7αĀ2/8)/2Ā(ω2 + αĀ2)2

+ D2ω
2Ā(ω2 + αĀ2/2)/8(ω2 + αĀ2)3

+ D2Ā(ω2 + 7αĀ2/8)/4(ω2 + αĀ2)2,

m̄2(Ā, &̄) = 2E cos &̄

×
〈
ν(Ā,�) cos � cos

(
2� + �

∞∑
n=1

1

n
Cn(Ā) sin n�

)〉
�

/
Ā(ω2 + αĀ2)

+ [�C0(Ā) − 2]〈ν(Ā,�)〉�,

b̄11(Ā) = σ̄1r σ̄1r

= D1(ω
2 + 5αĀ2/8)/(ω2 + αĀ2)2 + D2Ā

2(ω2 + 3αĀ2/4)/4(ω2 + αĀ2)2,
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Figure 1. Safety domain.

b̄22(Ā) = σ̄2r σ̄2r

= 4D1(ω
2 + 7αĀ2/8)/Ā2(ω2 + αĀ2)2

+ 8D2(3ω
2/8 + 11αĀ2/32)/(ω2 + αĀ2)2,

b̄12(Ā) = b̄21(Ā) = σ̄1r σ̄2r = 0. (15)

3. Backward Kolmogorov Equation and Generalized Pontryagin Equations

A(t) is the displacement amplitude of system (1). It is reasonable to assume that the first-
passage failure occurs once A(t) exceed certain critical value Ac for the first time. In phase
plane (a, γ ), the safe domain �s is inside of the two parallel lines a = 0 and a = ac (Figure 1).
The conditional reliability function, denoted by R(t | a0, γ0), is defined as the probability of
(A(t), &(t)) being in safety domain �s within interval (0, t] given initial state (a0, γ0) being
in �s , i.e.,

R(t | a0, γ0) = P
{
(A(τ), &(τ)) ∈ �s, τ ∈ (0, t] | (a0, γ0) ∈ �s

}
. (16)

It is the integral of the conditional transition probability density in �s . The conditional trans-
ition probability density is the transition probability density of the sample functions which
remain in safety domain �s in all time interval (0, t]. For diffusion process [Ā, &̄]T , the
conditional transition probability density is governed by the backward Kolmogorov equation
with drift and diffusion coefficients defined by Equation (11) for Case 1 or Equation (15)
for Case 2. Thus, the conditional reliability function is governed by the following backward
Kolmogorov equation:

∂R

∂t
= α1

∂R

∂a0
+ α2

∂R

∂γ0
+ 1

2
β11

∂2R

∂2a0
+ β12

∂2R

∂a0∂γ0
+ 1

2
β22

∂2R

∂γ 2
0

, (17)

where

αi = αi(a0, γ0) = m̄i (Ā, &̄)
∣∣
Ā=a0,&̄=γ0

,

βij = βij (a0) = σ̄ir(Ā)σ̄jr (Ā)
∣∣
Ā=a0

. (18)

The initial condition associated with Equation (17) is

R(0 | a0, γ0) = 1, a0 < ac (19)
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and the boundary conditions are

R(t | 0, γ0) = finite, (20)

R(t | ac, γ0) = 0, (21)

R(t | a0, γ0 + 2nπ) = R(t | a0, γ0). (22)

The conditional probability of first-passage failure is

Pf (t | a0, γ0) = 1 − R(t | a0, γ0). (23)

The conditional probability density of the first-passage time T is then the derivative of
Pt(t | a0, γ0), i.e.,

p(T | a0, γ0) = ∂Pf

∂t

∣∣∣∣
t=T

= − ∂R

∂t

∣∣∣∣
t=T

. (24)

The conditional moments of the first passage time are defined as

µn(a0, γ0) =
∞∫

0

T np(T | a0, γ0) dT = n

∞∫
0

T n−1R(T | a0, γ0) dT , n = 1, 2, . . . . (25)

It can be shown by using Equations (17), (24) and (25) that the conditional moments of the
first-passage time are governed by the following generalized Pontryagin equations:

1

2
β11

∂2µn

∂a2
0

+ β12
∂2µn

∂a0γ0
+ 1

2
β22

∂2µn

∂γ 2
0

+ α1
∂µn

∂a0
+ α2

∂µn

∂γ0
= −nµn−1, n = 1, 2, . . . , (26)

where αi and βij are defined by Equation (18). The boundary conditions associated with
Equation (26) are obtained from Equations (20–22) as

µn(0, γ0) = finite, (27)

µn(ac, γ0) = 0, (28)

µn(a0, γ0 + 2nπ) = µn(a0, γ0). (29)

For n = 1, µ1 is the mean first-passage time and Equation (26) is reduced to Pontryagin
equation

1

2
β11

∂2µ1

∂a2
0

+ β12
∂2µ1

∂a0∂γ0
+ 1

2
β22

∂2µ1

∂γ 2
0

+ α1
∂µ1

∂a0
+ α2

∂µ1

∂γ0
= −1. (30)

To obtain the probability and statistics of the first-passage time, one has to solve backward
Kolmogorov equation (17) with initial and boundary conditions (19–22), or to solve gener-
alized Pontryagin equations (26) with boundary conditions (27–29). Generally, they can be
solved only numerically, e.g., by using finite difference method.

Note that boundary condition (20) or (27) is qualitative and has to be made to be quantit-
ative for solving Equation (17) or (26) numerically. In Case 1,

α1, α2, β22 → ∞ as a0 → 0. (31)
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Figure 2. Rectangular mesh for finite difference scheme.

To satisfy boundary condition (20), it is necessary that

∂R

∂a0
,
∂R

∂γ0
,
∂2R

∂γ 2
0

→ 0 as a0 → 0. (32)

Similarly, boundary condition (27) should be replaced by

∂µn

∂a0
,
∂µn

∂γ0
,
∂2µn

∂γ 2
0

→ 0 as a0 → 0. (33)

The backward Kolmogorov equation (17) with drift and diffusion coefficients in Equa-
tion (11) and with initial condition (19) and boundary conditions (21), (22) and (32) is solved
by using the implicit finite difference method of alternate direction type. α0 and γ0 are dis-
creted as shown in Figure 2. The time axis perpendicular to plane (α0, γ0) is also discreted.
Introduce the following notations:

Rn
i,j = R(nδt | jδa0, iδγ0), (αr)i,j = αr(jδa0, iδγ0), (βrs)i,j = βrs(jδa0, iδγ0),

r.s = 1, 2; i = 1, 2, . . . ,M; j = 1, 2, . . . , N; n = 0, 1, . . . . (34)

The implicit finite difference approximation to Equation (17) with drift and diffusion coeffi-
cients in Equation (11) from nth time step to (n + (1/2))th time step is

R
n+(1/2)
i,j − Rn

i,j

δt/2
= (α1)i,j

Rn
i,j+1 − Rn

i,j−1

2δa0
+ (α2)i,j

R
n+(1/2)
i+1,j − R

n+(1/2)
i−1,j

2δγ0

+ 1

2
(β11)i,j

Rn
i,j+1 − 2Rn

i,j + Rn
i,j−1

(δa0)2

+ 1

2
(β22)i,j

R
n+(1/2)
i+1,j − 2Rn+(1/2)

i,j + R
n+(1/2)
i−1,j

(δγ0)2
. (35)
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Figure 3. Reliability function of system (1) in primary external resonance. ω = 1.0, � = 1.0, α = 0.6, E = 0.01,
D2 = 0.04, a0 = 0.24, γ0 = 0.1257. (A) D1 = 0.03, β = 0.01; (B) D1 = 0.02, β = 0.01; (C) D1 = 0.02,
β = 0.05; — analytical result; • � � result from digital simulation.

Figure 4. Probability density of first-passage time of system (1) in primary external resonance. The parameters
are the same as those in Figure 3; — analytical result; • � � result from digital simulation.

The associated boundary conditions are approximated as

R
n+(1/2)
i,N = 0, R

n+(1/2)
i,0 = R

n+(1/2)
i,1 , R

n+(1/2)
0,j = R

n+(1/2)
M,j , R

n+(1/2)
1,j = R

n+(1/2)
M+1,j . (36)

The implicit finite difference approximation to Equation (17) with drift and diffusion coeffi-
cients in Equation (11) from (n + (1/2))th time step to (n + 1)th time step is

Rn+1
i,j − R

n+(1/2)
i,j

δt/2
= (α1)i,j

Rn+1
i,j+1 − Rn+1

i,j−1

2δa0
+ (α2)i,j

R
n+(1/2)
i+1,j − R

n+(1/2)
i−1,j

2δγ0
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Figure 5. Mean first-passage time of system (1) in primary external resonance. ω = 1.2, � = 1.2, α = 0.7,
E = 0.01, D2 = 0.04, γ0 = 2.514. (A) D1 = 0.05, β = 0.05; (B) D1 = 0.05, β = 0.01; (C) D1 = 0.08,
β = 0.01; — analytical result; • � � result from digital simulation.

Figure 6. Reliability function of system (1) in primary external resonance � = 1.2 and the other parameters are
the same as those in Figure 3; — analytical result; • � � result from digital simulation.

+ 1

2
(β11)i,j

Rn+1
i,j+1 − 2Rn+1

i,j + Rn+1
i,j−1

(δa0)2

+ 1

2
(β22)i,j

R
n+(1/2)
i+1,j − 2Rn+(1/2)

i,j + R
n+(1/2)
i−1,j

(δγ0)2
. (37)
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Figure 7. Probability density of first-passage time of system (1) in primary external resonance. The parameters
are the same as those in Figure 6; — analytical result; • � � result from digital simulation.

The associated boundary conditions are approximated as

Rn+1
i,N = 0, Rn+1

i,0 = Rn+1
i,1 , Rn+1

0,j = Rn+1
M,j , Rn+1

1,j = Rn+1
M+1,j . (38)

Equations (35) and (37) are of tri-diagonal form and they together with boundary conditions
(36), (38) and initial condition R0

i,j = 1 can be solved efficiently by using the modified
standard Thomas algorithm.

Let µ1
i,j = µ1(jδa0, iδγ0). The finite difference approximation to Equation (30) with drift

and diffusion coefficients in Equation (11) is

(α1)i,j
µ1

i,j+1 − µ1
i,j−1

2δa0
+ (α2)i,j

µ1
i+1,j − µ1

i−1,j

2δγ0

+ 1

2
(β11)i,j

µ1
i,j+1 − 2µ1

i,j + µ1
i,j−1

(δa0)2
+ 1

2
(β22)i,j

µ1
i+1,j − 2µ1

i,j + µ1
i−1,j

(δγ0)2
= −1. (39)

The associated boundary conditions are approximated as

µ1
i,N = 0, µ1

i,0 = µ1
i,1, µ1

0,j = µ1
M,j , µ1

1,j = µ1
M+1,j . (40)

Equation (39) and conditions (40) can be solved by using successive over-relaxation method.
Case 2 can be treated similarly. The only difference is that the drift and diffusion coeffi-

cients in Equation (15) rather than those in Equation (11) are used.
Some numerical results for the conditional reliability function, the conditional probability

density and mean of the first-passage time for system (1) for both primary external resonance
and primary parametric resonance are obtained and shown in Figures 3–14 with solid lines. To
assess the validity and accuracy of the proposed procedure, corresponding results are obtained
from digital simulation and shown in Figures 3–14 using symbols �, •, �. It is seen that
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Figure 8. Mean first-passage time of system (1) in primary external resonance � = 1.4 and the other parameters
are the same as those in Figure 5.

Figure 9. Reliability function of system (1) in primary parametric resonance. ω = 1.0, � = 2.0, α = 0.6,
E = 0.01, D2 = 0.04, a0 = 0.24, γ0 = 1.257. (A) D1 = 0.03, β = 0.01; (B) D1 = 0.02, β = 0.01;
(C) D1 = 0.02, β = 0.05; — analytical result; • � � result from digital simulation.
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Figure 10. Probability density of first-passage time of system (1) in primary parametric resonance. The parameters
are the same as those of Figure 9; — analytical result; • � � result from digital simulation.

Figure 11. Mean first-passage time of system (1) in primary parametric resonance. ω = 1.0, � = 2.0, α = 0.6,
E = 0.01, D2 = 0.04, γ0 = 3.771. (A) D1 = 0.08, β = 0.01; (B) D1 = 0.05, β = 0.01; (C) D1 = 0.05,
β = 0.07; — analytical result; • � � result from digital simulation.

the analytical results agree well with simulation results and they are slightly conservative
compared with simulation results. Figures 3, 6, 9, 12 show that the reliability function is a
monotonously decreasing function of time while Figures 5, 8, 11, 14 show that the mean first-
passage time is a monotonously decreasing function of initial amplitude. This observation is
significant in the studying stochastic optimal control of the system with objectives of max-
imum reliability and maximum mean first passage time. It is also seen from Figures 3–14
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Figure 12. Reliability function of system (1) in primary parametric resonance � = 2.2 and the other parameters
are the same as those in Figure 9; — analytical result; • � � result from digital simulation.

Figure 13. Probability density of first-passage time of system (1) in primary parametric resonance. The parameters
are the same as those in Figure 12; — analytical result; • � � result from digital simulation.
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Figure 14. Mean first-passage time of system (1) in primary parametric resonance. � = 2.2 and the other
parameters are the same as those in Figure 11; — analytical result; • � � result from digital simulation.

that all the results depend strongly on the excitation intensity and damping while from the
comparisons between Figures 3 and 6, 4 and 7, 5 and 8, 9 and 12, 10 and 13, 11 and 14 that
all the results are not very sensitive to the change in detuning parameter.

4. Conclusions

In the present paper the first-passage time of Duffing oscillator under combined harmonic and
white noise excitations has been investigated. The stochastic averaging method for strongly
nonlinear oscillators under combined harmonic and white-noise excitations has been applied
to reduce the equation of motion of the system to the averaged Itô equations for homogenous
diffusion processes Ā(t) and &̄(t). The backward Kolmogorov equation for the conditional
reliability function and the generalized Pontryagin equations for moments of first-passage
time have been established from the averaged Itô equations. These equations have been solved
numerically by using finite difference method and numerical results have been obtained for
primary external and parametric resonance cases. Analytical results have been verified by
using the results obtained from digital simulation. The results show that reliability function is
a monotonously decreasing function of time and mean first-passage time is a monotonously
decreasing function of initial amplitude. All the results depend strongly on the magnitudes of
excitation intensity and damping while they are not very sensitive to the change in detuning
parameter.
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