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Abstract

High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simula-

tion of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many

CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approxima-

tions on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment

on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes

based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are present-

ed.
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There are two ways to improve the resolution of
solutions in computational fluid dynamics: one is to
refine the mesh grid system, the other is to construct
difference approximation with high order accuracy.
Selection of methods to improve the resolution of so-
lutions depends on the problem to be solved. From
the point of view of the scales of flow structures, we
can divide the practical problems into two classes: the
flow problem with large scale structures and the prob-
lem with wide range of scales. For the first class of
problems the grid generation techniques have made
great successes. We can use structured grid system
for simple flow configuration and unstructured grid
system for complex flow configuration. Development
of unstructured grid generation techniques can greatly
improve the resolution for the first class of problems.
However, because of the complex grid point distribu-
tion for the unstructured grid generation, it is diffi-
cult to construct high order accurate approximation.

We are interested in improving the resolution of
solutions for the second class of problems. One exam-
ple is the simulation of the turbulent flows. With the
recent development of computer technology, many
turbulent model problems with low Reynolds number
have been solved, but it is difficult even to directly
simulate the simple model turbulent flows with high

Reynolds number. To solve many model turbulent
flows we have to develop high order accurate differ-
ence methods.

For many typical model turbulent flows, like
shear flow, channel flow and turbulent boundary lay-
er> the physical parameters have large gradient in the
small narrow sub-domains. To solve this kind of
problem we have to refine the mesh grid in the sub-
domain, for examples; near the wall region, to cap-
ture the fine structures. There are two ways to obtain
schemes on refined mesh in the near wall region, the
method of coordinate transformation and construction
of scheme on non-uniform mesh. In Ref.[1] Rai and
Moin solved a fully developed incompressible turbu-
lent channel flow with fifth order accurate traditional
upwind biased difference approximation on non-uni-
form meshs and in Refs.[2,3] compact schemes on
non-uniform mesh were used to simulate the com-
pressible turbulent channel flows. Both analysis and
practice show that it is better to use schemes on non-
uniform meshes to simulate problems like boundary
layer. Higher order accurate schemes based on non-u-
niform meshes can be obtained by using coefficient
match method, Lagrange interpolating polynomial,
Hermite interpolating polynomial, residual correction
method, and direct Taylor expansion. In section 2
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some methods of scheme construction on non-uniform
mesh are presented, and the accuracy analysis and
numerical experiments are given in section 3.

1 Scheme construction on non-uniform mesh

Consider the following model equation and its se-
mi-discrete difference approximation
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There are many ways to construct the difference ap-
proximations on non-uniform mesh, and in this sec-
tion we will briefly represent some.

1.1 Coefficient match method

Now we consider the scheme construction of tra-
ditional difference approximation on non-uniform
mesh, which means that the derivative can be directly
expressed by the linear combination of the point func-
tion. Supposing we have a point function
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The nth derivative of function u( x) can also be ex-
pressed by the linear combination of point function
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After series expansion we have
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To obtain the approximation with required accuracy>
the following equations must be satisfied:
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Here we have m + 1 equations. J + J =m+1is the
minimum number of grid points to obtain the consis-
tent difference approximation. Using more mesh grid
pointss we can obtain a higher order accurate approx-
imation. Using the given grid point distribution from
The sim-
plest second order accurate difference approximations
are

Eq. (5), we can obtain the coefficients a;.
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for the first derivative and
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for the second derivative. Using this method we can
obtain any order accurate traditional difference ap-
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proximation for any order derivatives.

1.2 Method with Lagrange interpolating polynomial

Using the given mesh grid distribution we can
construct Lagrange interpolating polynomial
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we can take v”’(z) as the difference approximation
for the mth derivative of function u(x) at the point
2. Rai and Moin obtained the fifth order accurate up-
wind biased scheme with Lagrange interpolating poly-
nomial and solved the incompressible turbulent chan-

nel flow ). Details can be found in Ref. [4].
1.3 Method with Hermitian relation

The generalized Hermitian relation is expressed
as
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J=0, J>=0, a2
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where u;() is the original point function, and u;"" is
the difference approximation of kth derivative. After
Taylor series expansion and solving the obtained sys-
tem of linear algebraic equations, we can define the

. ) . .. .
coefficients a jh . The simple Hermitian relation at

three grid points x; 5 x;» x; 41 1S

1
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from which we can obtain the simpler compact differ-

ence approximations. In the case & = jh» we can ob-

tain
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0. Higher order accurate compact difference approxi-
mations are obtained in this way 7.
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1.4 Residual correction

Usually we can obtain a higher order difference
approximation in a simpler way by using the known
We constructed the
fourth order accurate compact scheme on uniform
mesh with residual correction method in 1992867,
Lerad et al. using the same method constructed the
fourth order traditional scheme on uniform mesh in
19961787, Recently we presented the new high order
accurate difference approximations with residual cor-
rection.

lower order approximation.

Considering a first order accurate approximation
for the first derivative, after Taylor series expansion

we have
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Defining F = 9f/0x and discretizing the residual
term in Eq. (15,
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we can easily obtain the second order Pade scheme
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Considering that the approximation at three grid
pointss and the difference approximations Eq. (6)
for the first derivative and the approximation of Eq.
(7) for the second derivative are known, after Taylor
series expansion of Eq. (6) for F(f;), we have
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Define of/0x = F and &°f/02° = 9> (F)/oz2? =
SC(F). Using Eq. (7) for SCF) and neglecting the
term with OCh*) for the first derivative, we can ob-
tain a fourth order accurate compact difference ap-
proximation on non-uniform mesh
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It can be seen that Eq. (18) is obtained by using the
known lower order approximation without solving the
algebraic equation.

In the same way we can construct the third order
upwind compact difference approximation for the case
¢ >0 as expressed in Eq. (18), but with

6, 2+30,
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and the third order upwind compact difference ap-
proximation for the case of ¢ <0 with coefficients
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We can also construct the fourth order accurate
compact approximation for the second derivative.

1.5 Direct Taylor series expansion

The super compact difference approximations on
uniform mesh were constructed in Ref. [9] and on
nonuniform mesh in Ref. [10]. Using the Taylor ex-
pansion series we can give the basic equation
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we get a simpler super compact difference approxima-
tion on non-uniform mesh

1 _
- §L(0]+1)F]+1

= 2Cad’ + @) fer (25)

where a and 8 are free parameters, and f;m/ h]ﬁ-‘ ap-

proximates ( 9f*/02*); with the accuracy order of
N —k +1. The super compact difference approxima-
tion gives more information, has smaller stencil of
grid points and higher accuracy compared with
schemes with the same order of approximation, but a
system of equations has to be solved.

2 Accuracy analysis

The accuracy of schemes is analyzed in two ways
in this paper. First we consider the influence of the
stretch ratio of the grid size on accuracy with Fourier
analysis for the case of 0, = 0, and then we will dis-
cuss the accuracy of methods based on non-uniform
mesh, and coordinate transformation with uniform
mesh in the computational domain by numerical ex-
periments.

2.1 TFourier analysis

As mentioned above, the scheme keeps high or-
der accuracy under the condition of

6, =1+ O0Ch).
If this condition is not satisfied, the order of accuracy
will be reduced. Supposing we have the relation
0, =0+#1,
considering a single Fourier mode, after putting the
single mode into the difference approximation, we
For the

second order symmetrical difference approximation
Eq. (6); we have K.= K, +iK;,

can obtain the modified wave number-!!".
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where K, represents the dissipation characteristics of
the numerical solutions, and K; represents the spread
direction of numerical waves. For the third order ac-
curate upwind compact difference approximation, we

have
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Figure 1 gives the variations of K; and K, as
functions of a with different parameters 8 for the sec-
ond order symmetrical approximation Eq. (6), com-
pared with the exact solution. It can be seen from
Fig.1(a) that the accuracy is reduced for the case of
071, the scheme is SLW (slow) for the case of 0=
1.2, and MXD C(mixed) for the case of =0.811,
which can tell us that the property of the scheme can
be changed from one class of schemes into another ac-
cording to the group velocity by changing the parame-
ter 8. It can be seen from Fig. 1(b) that the scheme
is non-dissipative for the case of 8 =1, dissipative for
the case of § =0.8, and anti-dissipative for the case
of @ =1.2, which can tell us that the scheme may
change its dissipativity with the change of the param-
eter 4.

Figure 2 gives the variations of K; as a function
of @ with different parameters 0 for the third order
traditional upwind difference approximation and up-
wind compact difference approximation Eq. (20). We
can see that with the same parameter 6 the third or-
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der accurate upwind compact difference approxima-
tion can give better resolution.
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Fig. 1. Variation of (a) K;and (b) K, for second order symmet-

rical approximation.
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Fig. 2. Variation of K; for third order upwind approximation

with (a) §=1.0 and (b) 6=1.2.

2.2 Numerical tests

When the variation of grid size from point to
point is not seriouss there is not much difference of
accuracy between the schemes obtained by coordinate
transformation and by construction on non-uniform
mesh. If variation of the grid size is large and high
order accurate schemes with large stencil are used to
simulate the complex flow field like the boundary lay-
er, and if the grid points are strongly one side biased,
the scheme on non-uniform mesh is preferred. Now
we consider the following two examples.

Example 1

We have a function and its derivative.
ulzx) = thCax)/th(a)s u' = dulx)/dx.
The grid distribution is obtained by the following
function
¢=thChx)/th(p), —1<<ax<1, —1<<f{<l.

In computation with @ =20, b =2, the number of
grid points is N =301. The function «(x), and its
derivative are given in Fig.3. The derivative is com-
puted by two methods. One uses non-uniform mesh,
and the other uses coordinate transformation. The er-
rors between the exact derivative and the numerical
solution obtained by fourth and sixth order compact
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Fig. 3. (a) The function « = u(x) and (b) its derivative du/
dx.
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difference approximation are given in Fig.4. We can
see that the errors of numerical derivative obtained by
approximation on non-uniform mesh and by coordi-
nate transformation are almost the same.

ErrorX 107°
N

2.0 . . 3
1.8 E—
1.6
1.7
12
1.0 R
0.8 i
0.6 }
Y |
0.2 ‘
-1.0 05 0 0.5 1o

X

()

ErrorX 1077

Errors of solution for (a) fourth order and (b) sixth order

Fig. 4.
difference approximation. (1) and (3), Non-uniform mesh; (2)
and (4), coordinate transformation.

Example 2

Suppose we have a function u(x) =sin(nz) de-
fined within [ — 1, 1], from which du/dx can be
calculated exactly. The non-uniform mesh grid is
generated by
i = tanhCby; )/ tanh(H), Q9
where b is a parameter for mesh stretching. The pa-
rameters in Eq. (29) used in computation are b =3,

7 =jH/N -1, H=2, N =160, where H is the

computational domain in x derection, and N is the

x:

number of grid points. The error is defined by ¢; =
F; —mcos(na ). The errors for fifth order upwind
compact scheme obtained by both construction on
non-uniform mesh and method with coordinate trans-
formation are given in Table 1. We can see that the
results by approximation on non-uniform mesh with
stencil strongly one side biased is much better.

853
Table 1. Errors of the fifth order scheme
g Coor. Trans. Non-uniform Mesh
j=2 +0.275 72 ~0.108 °
i=3 -0.153°* -0.972°12
j=4 +0.780°7 —-0.435° 1
Example 3

Now we briefly present some results for 2-D
boundary layer problem. The effect of mesh grid dis-
tribution is studied numerically. The flow parameters
in the computation are: The Reynolds number Re =
635000 inch, the incoming Mach number M., =
2.25, the wall temperature Tw =1.9, and the do-
main of computation is 0<<x<<5.0 inch, 0<{y<3.0
inch. The upstream boundary is located at x = 0,
where the uniform incoming boundary conditions are
given, and the leading edge of plan is at x = 0. 05
inch. To verify our calculation, the computed results
are compared with Blasius solution. The computa-
tions are also carried out on different mesh, and the
results are given in Fig. 5. The results of different
mesh scales are nearly the same, which means that
the grid number is enough. Curve 3 agrees well with
curve 1, obtained by using coordinate transformation
with uniform mesh near the wall, which can tell us
that the result is also quite good if coordinate trans-
formation with uniform mesh near the wall is used.
Curve 4 is worse compared with other results obtained
by using coordinate transformation with non-uniform
mesh.

1.0}
I /
0.8} L
I / e 2
a 3
y :
L 06} .
0.4}
0.2f
0 001 002 003 004
v (inch)

Fig. 5.
(1) on direct non-uniform mesh with 401 X 412; (2) on direct non-

Velocity profiles for different mesh grid distributions.
uniform mesh with 201 X 206: (3) coordinate transformation with

uniform mesh near the wall; (4) coordinate transformation on di-
rect non-uniform mesh with 201 X 206.

2.3 Remarks

Schemes based on non-uniform mesh have rea-
sonable accuracy, and it can be constructed on arbi-
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trarily distributed mesh grid points. The advantage of
using approximation on non-uniform mesh is near the
wall boundary with large gradient of flow parameters.
Ref. [4] presented a result of approximation on ran-
domly distributed grid points for the first derivative,
but it is difficult to construct schemes for two or three
dimensional problems on non-uniform mesh in all the
coordinate directions simultaneously.

The approximation based on coordinate transfor-
mation is much simpler. If the coordinate transforma-
tion is chosen to make sure that it has uniform mesh
near the wall in physical plan, we can also obtain bet-
ter resolution near the boundary wall. If coordinate
transformations are used, it is better to use the coor-
dinate transformation with continuous mapping func-
tion with continuous derivatives for simulation of
complex flow fields with wide range of scales.

From Fourier analysis we can see that the accu-
racy of schemes on non-uniform mesh is reduced.
This analysis is carried out under the suggestion ¢; =
071 (for the boundary layer problem ¢, = 0<1),
which means that the mesh size will increase to infini-
ty all the time [0, + o0 ] with the same rule. Practi-
cal applications show that the accuracy of scheme on
non-uniform mesh is reasonable.

3 Summary

Some methods of scheme construction and sever-
al schemes on non-uniform mesh with high order ac-
curacy have been presented. The effect of stretch ra-
tio of mesh increment is discussed with Fourier analy-
sis. From analysis and numerical experiments, it is
shown that in the region near the wall boundary
where the gradient of flow parameters is high, better

resolution can be obtained by using high order accu-
rate schemes on non-uniform mesh or by using coordi-
nate transformation with continuously mapping func-
tion with uniform mesh in physical plan near the
wall. The high order accurate upwind compact differ-
ence scheme on non-uniform mesh is used to simulate
practical problems, and good results are obtained.

References

1 Rai» M.M. et al. Direct numerical simulation of turbulent flow us-
ing finite difference schemes. J. Compt. Phys., 1991, 96: 15.

2 Gamet, L. et al. Compact difference schemes on non-uniform
meshes, application to direct simulations of compressible flows.
Int. J. Numer. Meth. Fluids, 1999, 29: 159.

3 Li» X.L. etal. DNS of incompressible turbulent channel flow with
upwind compact scheme on non-uniform meshes. Computational
Fluid Dynamics J.» 2000, 8: 536.

4 Fu, D.X. etal. High resolution schemes. In: Computational Fluid
Dynamics Review (ed. Hafez, M. et al. ), Chichester: John Wiley
& Sons, 1995.

5 Lele S.K. Compact finite difference schemes with spectral-like
resolution. J. Compt. Phys., 1992, 103: 16.

6 Fu» D.X. et al. Numerical simulation of physical problems and
high order accurate schemes. Journal of Computational Physics Cin
Chinese)> 1992, 19: 501.

7 Lerat, A. Third-order accurate schemes for hyperbolic systems of
conservation law. In: Proceedings of Beijing Workshop on CFD,
1996, 8: 23.

8 Cores C. et al. A compact residual-based scheme for solving the
compressible Euler and Navier-Stokes equations. In: Proceedings
of the First International Conference on Computational Fluid Dy-
namics, Kyoto, 2000, 373.

9 Ma, Y. W. et al. Super compact finite difference method
(SCFDM) with arbitrary high accuracy. Computational Fluid Dy-
namics, 1995, 5: 259.

10 Ma, Y. W. et al. Super compact finite difference method with uni-
form and non-uniform grid system. In: Proceedings of 6th Interna-
tional Symposium on Computational Fluid Dynamics, Lake Tahoe,
Nevada, 1995, 33: 1435.

11 Fu, D.X. et al. A high order accurate difference scheme for com-

plex flow fields. J. Compt. Phys., 1997, 134: 1.



