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The nonlinear free surface amplitude equation, which has been derived from the inviscid 
uid by solving the

potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder,

is investigated successively in the fourth-order Runge{Kutta approach with an equivalent time-step. Computational

results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and

imaginary parts of the amplitude, the single-mode selection rules of the surface waves in di�erent forced frequencies,

contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition,

the comparison of the surface wave modes is made between theoretical calculations and experimental measurements,

and the results are reasonable although there are some di�erences in the forced frequency.
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1. Introduction

Faraday[1](1831) put a vessel �lled with di�er-

ent 
uids on a vertically vibrating plate, and the free

surface of the 
uid formed various beautiful surface

waves. He realized that these surface waves have

a frequency equal to a half that of the excitation.

However, Faraday could not give an explanation to

this phenomenon theoretically. Benjamin & Ursell[2]

(1954) established the linear theory of this problem

and derived a so-called Mathieu equation, which gov-

erned each surface wave mode and included the e�ect

of surface tension. Skalak & Yarymovych[3] (1962)

and Ockendon & Ockendon[4] (1973) demonstrated

the weakly nonlinear Faraday resonance by using the

perturbation expansion method. A review of this sub-

ject was given by Miles[5;6] (1984a, 1993) and Miles &

Henderson[7] (1990). The e�ect of viscosity was dis-

cussed by Kumar & Tuckerman[8] (1994) and Cerda

& Tirapegui[9] (1998).

Much of the current interest in the Faraday res-

onance arises from the possibility that it is used as

a system with many degrees of freedom and espe-

cially as a pattern forming system (Christiansen et

al
[10] (1995)). The papers concerning Faraday reso-

nance, which had been published before 1984, dealt

with the wave motions with only one spatial mode as-

sumed to be excited. Most of the recent papers are

involved with two or more spatial modes that are in-

teracted with each other mainly due to the that fact

that chaotic motions possibly occur in the process of

wave excitation (Ciliberto & Gollub[11] (1985), Gollub

& Meyer[12] (1983)).

However, the theory of single-mode excitation is

not yet complete; it is not involved with some phe-

nomena, such as the structures of the surface wave

and its evolution with time. The characteristics of

standing waves formed in a circular cylindrical vessel

are very di�erent from those in a rectangular vessel. In

a circular cylindrical vessel, radial waves expand out-

wards from center, so they cannot keep their shapes

and amplitudes unchanged. E and Gao[13�15] (1996,

1998) carried out the 
owing visualization about free
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surface wave patterns in a circular cylindrical vessel,

which was excited by vertical vibration, and obtained

many beautiful free surface pattern pictures.

Recently, Jian & E[16�19] (2003) proposed a math-

ematical formulation associated with the 
owing visu-

alization in Refs.[13{15], from which the second order

free surface displacements and their contours were ob-

tained by using the two-time scale singular perturba-

tion expansion. The numerical results indicate that

the contours of free surface waves are in good agree-

ment with the above experimental 
owing visualiza-

tion.

In this article, we continue to discuss the charac-

teristics of the amplitude equation derived in Refs.[16{

19]. Some comparisons have been made between the-

oretical calculations and experimental measurements.

2.Amplitude equation and free

surface displacement

We consider the surface waves excited by the ver-

tical vibration of a circular cylindrical basin �lled with


uid, as shown in Fig.1. We take cylindrical coordi-

nate system (r, �, z) moving with the vessel, such that

the undisturbed free surface is at z =0, and base of

the vessel is located at z = �h < 0. Here, h de-

notes the depth of 
uid. If the vessel motion is as-

sumed to be at a vertical acceleration �z0, then the


uid moves relatively to the vessel as if it moves at

a gravitational acceleration (g � �z0) in a stationary

vessel, where z0 = A cos(2!0t) is the excited displace-

ment of the vessel in the vertical direction, �z0 is the

second derivative of z0 with respect to time t, while A

and 2!0 are the amplitude and angular frequency of

the external forcing.

Fig.1. Physical model of the liquid-�lled circular

cylinder.

In order to resolve this problem, Refs.[16{18] de-

veloped the following nonlinear complex amplitude

equation of the free surface displacement:

i
dp(�)

d�
=M1p

2(�)�p(�) +M2e
2i�� �p(�); (1)

where i is the unit of imaginary number, p(�) is called

the slowly variable complex amplitude and �p(�) de-

notes the complex conjugate of p(�), � is a slowly vary-

ing time scale, M1 and M2 are constants. In addition,

we assume that the frequency 
 of the free surface

wave is close to half the frequency 2!0 of forced os-

cillation, and let !0 � 
 = "2�. The parameter "

quanti�es the acceleration due to the vertical oscilla-

tion relative to gravity, named as "2 = 4A!2
0=g, and

is assumed to be much less than unity.

De�ning p1 (�) and p2 (�) as the real and imagi-

nary parts of p (�) and dividing Eq.(1) into real and

imaginary parts, respectively, yields the following si-

multaneous nonlinear ordinary di�erential equations:

dp1(�)

d�
=M1p2(�)[p

2
1(�) + p22(�)]

+M2[p1(�) sin(2�� )� p2(�) cos(2�� )]; (2)

dp2(�)

d�
=�M1p1(�)[p

2
1(�) + p22(�)]

�M2[p1(�) cos(2��) + p2(�) sin(2�� )]: (3)

The displacement of free surface can be expressed in

the following form:

�(r; �; t; � ) = "�1 + "2�2; (4)

where �rst-order and second-order free surface dis-

placements �1 (r, �, t, �) and �2 (r, �, t, �) have

the forms, respectively,

�1(r; �; t; � ) =
�

i

Jm(�r) sinh(�h=R)

� [p(�)ei
t � �p(�)e�i
t] cosm�; (5)

�2(r; �; t; � ) =[Y1(r) + Y2(r) cos(2m�)]

� (p2(�)e2i
t + �p2(�)e�2i
t); (6)

where � = �mn are the positive real roots of

dJm(�mnr)=drjr=1 = 0, Jm(r) is the mth order Bessel

function of �rst kind, R is radius of the vessel, Y1(r)

and Y2(r) are the functions of the variable r.

3.The characters of the ampli-

tude equation

The amplitude equations (2) and (3) can be solved

in the fourth-order Runge{Kutta approach with an

equivalent time-step, and the initial amplitude is cho-

sen to be approximate to the wave height of free sur-

face. For example, when �= 0, p1(0)=0, p2(0) =
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�0:00025. In order to compare the experimental re-

sults of Refs.[13{15] with our theoretical analysis, the

choices of parameters are similar to those used in ex-

periments. For instance, the internal radius of the cir-

cular cylindrical container is 7.5cm, the depth of 
uid

is 0.5{2.0cm, the externally excited amplitude and fre-

quency of the vessel are in a range of 0.114{0.414mm

and 10{60Hz respectively.

When M1={5, �= 5, solving Eqs.(2) and (3)

yields the evolution of amplitude p1(�) with the slowly

varying time � for di�erent values of M2, as shown in

Fig.2 (the time t in Fig.2 is equal to the time � in

Eqs.(2) and (3)). It can be seen from Fig.2 that when

the excitation parameter M2 increases, the amplitude

p1(�) changes with time from a quasi-periodical am-

plitude to a modulated one, which �nally results in the

formation of a sort of high frequency periodical mo-

tion. However, if the parameter M2 increases further,

(for example, when M2 is greater than 7) the surface

waves will be destabilized and their amplitudes trend

to be in�nite. From the investigations in Refs.[16{19],

the parameter M2 is related to the forced frequency.

Fig.2. Evolution of amplitude p1 (�) with time � from equations (2) and (3). (M1={5, �=5, initial

conditions are p1(0) = 0 and p2(0) = �0:00025).
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A clear physical explanation of these numerical re-

sults is that with the increase of the forced frequency

M2, the parameter " may become so large that the

assumption that it is much less than unity cannot be

hold true, thereby the amplitude equations (2) and

(3) may not be used to describe the motion of surface

wave any more.

The phase-plane trajectories corresponding to

Fig.2, which are determined by amplitudes p1(�) and

p2(�) from Eqs.(2) and (3), are displayed in Fig.3.

From Fig.3, it is seen that the phase-plane trajectories

are shaped into closed spiral lines, ringed regions, cir-

cular regions and limit cycles with periodical solution.

Similarly, quasi-periodical surface waves, modulated

amplitude and high frequency periodical solution can

be found in Fig.3.

Fig.3. Phase-plane trajectories determined by amplitudes p1(�) and p2(�).
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4.The characteristics of the sur-

face waves

If the forced amplitude is �xed, di�erent forced

frequencies will produce di�erent surface wave modes.

Fig.4. Contours (left) and three-dimensional surface �gures (right) of the free surface dis-

placement at di�erent forced frequencies (the forcing amplitude A=11.4�m).
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For example, the forced amplitude is �xed at 11.4�m

and forced frequencies f are 12.85, 13.90, 14.95, 15.73

and 20.56Hz, the contours and corresponding three-

dimensional surface �gures of the free surface displace-

ments, which are determined by Eq.(4), are plotted in

Fig.4 at the �xed time t =215.9s. In Fig.4, the solid

and dashed lines denote the positions of free surface

above and below the equilibrium surface, respectively.

The parametrical couple of (m, n) in Fig.4 and the

following indicate that there are m wave-crests in cir-

cumferential direction and n zero points in radical di-

rection.

It can be shown that the shapes of the excited

modes of the surface waves become more and more

complex with increasing the forced frequency. Most

of the modes of the surface waves have not been re-

ported and only a few modes were observed in the

experiments of Refs.[13{15]. In his experiments, the

side- wall was kept stationary and only the bottom of

the vessel oscillated vertically. The viscous e�ect was

large in his experiments as compared to that in the

original work by Faraday.

Fig.5. Selection of surface wave modes caused by a small change of forced frequency. Contours (left) and

three-dimensional surface �gures (right) of the free surface displacement (the forcing amplitude A=11.4�m).
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We �nd that the mode choices of the surface waves

are very sensitive to a small change of the forced fre-

quency when the forced frequency is higher. This con-

clusion is illustrated in Fig.5 at the forced frequencies

of 13.3, 13.4, and 13.7Hz respectively. The contours

and three-dimensional surface of the free surface dis-

placement are displayed in Fig.5 with a forced am-

plitude A=11.4�m. The meanings of solid lines and

dashed lines in Fig.5 are similar to those in Fig.4.

5.The comparison with experi-

mental measurements
A comparison can be made between the theoreti-

cal and experimental contours at di�erent forcing fre-

quencies, as shown in Fig.6. Although the forcing fre-

quencies are smaller than those in the experiments of

Refs.[13-15], as predicted by our theory, these experi-

mental 
owing patterns conform with the theoretical

ones.

Fig.6. Comparison of theoretical contours of surface wave mode with those in experiment (depth of


uid h=1.0cm, radius of the vessel R=7.5cm, the forcing amplitude A=11.4�m).
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To some extent, the discrepancy is possible due

to the following two reasons. Firstly, the scales of

our computational modelling are small (for example,

the radius of container is 7.5cm, and forced ampli-

tude is just of the order of �m), so the in
uence of

the surface tension on mode selection plays a substan-

tial role (Jian[20] (2003) has proved that the theoreti-

cal forced frequencies are 12.6Hz, 21.1Hz and 26.0Hz

respectively in Figs.6(a1), 6(b1), and 6(c1)). More-

over, with the increase of the forced frequency, the ef-

fect of surface tension becomes more important. Sec-

ondly, since our modelling is established in inviscid


uids, it is diÆcult to make a quantitative compar-

ison of our present theoretical analysis with the ex-

perimental measurements due to the presence of some

parasitic dissipative mechanisms that are beyond the

idealized theoretical assumptions, such as the damp-

ing in the viscous boundary layers along the sidewalls

(Refs.[19,20] have considered the mode selection in

weakly viscous 
uids, and the theoretical forced fre-

quencies are modi�ed to 19.1Hz, 22.5Hz and 26.7Hz

respectively in Figs.6(a1), 6(b1), and 6(c1) with the

e�ect of both surface tension and weak viscosity), and

dissipation resulting from both the moving contact

line of the meniscus (Ref.[10] has identi�ed that the

damping from the moving contact line makes a consid-

erable contribution to the dissipation, which accounts

for 10%{20% of the bulk dissipation) and the surface

viscosity of surfactant �lms.

The in
uence of the surface tension and viscos-

ity in the mode selection will be discussed in other

papers, and the deviation between theoretical calcula-

tions and experimental measurements will be further

improved.

6.Conclusions

From the above analyses, we obtain the following

results:

1. The nonlinear amplitude Eqs.(2) and (3) and

free surface displacement Eq.(4) can be used to cor-

rectly describe the surface wave motion in a vertically

excited vessel.

2. The slowly varying amplitude p(�) changes

from a quasi-periodical amplitude to a modulated one

and �nally appears a high frequency periodical motion

with the increase of the forced frequency.

3. The mode selection of the surface waves is very

sensitive to a small change of the forced frequency

when the forced frequency is higher.

4. The structure of the surface waves become

complex with the increase of the forcing frequency.

Many unreported surface wave modes have been found

by numerical computation and these can be used to

explain many patterns appearing in the experiment.
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