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Two-time scale perturbation expansions were developed in weakly viscous uids to investigate surface wave motions

by linearizing the Navier{Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The

uid �eld was divided into an outer potential ow region and an inner boundary layer region. A linear amplitude

equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived

for the weakly viscid uids. The condition for the appearance of stable surface waves was obtained and the critical curve

was determined. In addition, an analytical expression for the damping coeÆcient was determined and the relationship

between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth

of uid, etc.) was presented. Finally, the inuence both of the surface tension and the weak viscosity on the mode

formation was described by comparing theoretical and experimental results. The results show that when the forcing

frequency is low, the viscosity of the uid is prominent for the mode selection. However, when the forcing frequency is

high, the surface tension of the uid is prominent.

Keywords: vertically forced oscillation, weakly viscid uid, surface wave modes, singular perturbation

expansions, damping coeÆcient
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1. Introduction

The study of surface waves on a uid via verti-

cal vibration in a closed cylindrical vessel has a long

history. The earliest experiment to describe these phe-

nomena dates back to Faraday.[1] He put a vessel �lled

with di�erent uids on a vertically vibrating plate, and

the free surface of the uid formed various beautiful

surface waves. He realized that these surface waves

have a frequency equal to one-half that of the excita-

tion and belong to subharmonic resonance. Benjamin

and Ursell[2] were the �rst to consider the linear sta-

bility analysis for ideal liquids of the plane surface.

They showed that the linear dynamics of the ampli-

tudes of the surface modes is governed by Mathieu's

equation, which allows for harmonics as well as sub-

harmonics. Miles[3�5] has studied nonlinear e�ects,

adopting a variational approach. A review of this sub-

ject is given by Miles and Henderson.[6] Faraday reso-

nance has proven to be an ideal (experimental, compu-

tational, and analytical) laboratory to study nonlinear

systems, bifurcation, and pattern formation, creating

a wealth of studies.

Recent experiments with viscous liquids show

stripes,[7] a regular triangular pattern,[8] and compet-

ing hexagons and equilateral triangles[9] at the free

surface, in contrast to the earlier experiments with low

viscosity uids (see, for instance, Refs.[10{12]), show-

ing square patterns at the onset. These experimental

observations suggested the importance of viscosity in

pattern formation under parametric excitation.

E and Gao[13�15] carried out the ow visualiza-

tion on surface wave patterns in a circular cylindrical

vessel subjected to vertical external vibrations. They

obtained very beautiful photographs of free surface

patterns in wider driven frequencies, and most of them

have not been reported before.

Recently, an approximate theoretical treatment

associated with the experiments of E[13�15] was pro-

posed by Jian and E,[16;17] from which the second-
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order free surface displacements and their contours

were obtained by the two-time scale singular pertur-

bation expansion in ideal uids. In the following, the

inuence of surface tension was considered by Jian[18]

and the theoretical result is much closer to the ex-

perimental results than that without surface tension.

Although in the numerical results the contours of free

surface waves agreed well with the experimental visu-

alization, the forced frequency showed large di�erence.

The poor agreement between theory and experiment

is not surprising, as so many physical processes were

involved in experiments that it was impossible to sort

them out.

Due to the viscid dissipation in actual physical

modelling, the determination of the damping coeÆ-

cient is an essential problem. Our purpose in this pa-

per is to derive the damping coeÆcient analytically,

which is often obtained empirically. Hill[19] studied

the Faraday resonance of interfacial waves in a two-

layer weakly viscous system in a rectangular domain.

He applied a perturbation technique to determine an

approximate expression for the damping coeÆcient

analytically in the vicinity of the boundary layer. Fol-

lowing this method, in this paper, we divide the whole

stream �eld into outer potential ow region and inner

boundary layer region. Both of the solutions for these

two domains are derived by the method of multiple-

scale expansion. The damping coeÆcient is deduced

analytically by solvability condition of higher-order so-

lutions. Finally, the inuence of both surface tension

and the weak viscosity on the pattern formation is

described by a comparison between theoretical and

experimental results.

The nonlinear evolution equation (65) in

Refs.[16,17] can be modi�ed by introducing the above

linear damping, and the stability of the modi�ed am-

plitude equation can also be studied, which will be

given in another paper.

2.Governing equation and their

linearization in weakly viscous

uids

Now we consider the surface wave excited by ver-

tical oscillation of a circular cylindrical basin �lled

with weakly viscous uids. All parameters and the

choice of the coordinate system in Fig.1 are the same

as in Refs.[16] and [17].

Fig.1. Physical model of the liquid-�lled circular cylinder.

We suppose the uid is incompressible, and v (r,

�, z, t) is the velocity �eld of the uid, which obeys

the Navier{Stokes equation

@v

@t
+ v � rv = �1

�
rp� g(t)ez + �r2

v; (1)

where � is the mass density, p is the pressure, � is

the kinematic viscosity and g(t) is the e�ective grav-

ity acceleration, i.e. g minus the acceleration of the

vibrating tank �z0,

g(t) = g � �z0 = g + 4A!2
0 cos 2!0t: (2)

Let � (r, �, t) be the displacement of the sur-

face from z=0. In order to allow for a unique solution

of the Navier{Stokes equation, one must specify the

boundary conditions. The appropriate boundary con-

ditions for the free surface at z=� (r, �, t) are the

kinematic condition

w(r; �; z; t)jz=� = @�

@t
+ v � r�; (3)

where j� means the evaluation at z = �, and w de-

notes the velocity in the z direction. At the liquid{air

interface z=� (r, �, t), the net force per unit area is

balanced by the surface tension � , thus we have

(T air
jk � Tjk) � nk = �

�
1

R1
+

1

R2

�
nj : (4)

Here T air
jk and Tjk denote the stress tensor of the air

and liquid respectively, n is the unit outward normal

to the surface, � the surface tension, and R1 and R2

are the radius of curvature of the surface calculated

using the principal axes. Because the dynamic viscos-

ity of air is smaller than that of a liquid, the stress

tensor of the air above the liquid layer can be approx-

imated by a constant atmospheric pressure. Thus we

have 8><
>:

T air
jk � �p0Æjk;

Tjk = �pÆjk + ��

�
@vk
@xj

+
@vj
@xk

�
;

(5)
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where p0 is the atmospheric pressure which we assume

to be constant, and Æjk is the Kronecker Æ operator.

For the bottom and the side-wall we must use the non-

slip condition as their boundary conditions

v(r; �; z; t) = 0: (6)

For a suÆciently small drive amplitude A, the uid

remains at rest and the surface is at. It is therefore

convenient to introduce the pressure function � (r, �,

z; t) from Eqs.(4) and (5), and we let

� (r; �; z; t) = p(r; �; z; t)� p0 + �g(t)z; (7)

so Eq.(1) is changed to

@v

@t
+ v � rv = �1

�
r� + �r2

v: (8)

At the free surface, Eq.(4) can be divided into the

normal part, which is perpendicular to the free surface

� (r; �; z; t)jz=� � �g(t)� � 2��
@w

@z

=� (
1

R1
+

1

R2
); (9)

and the tangential part to the free surface

��

�
@u

@z
+
@w

@r

�
= ��

�
1

r

@w

@�
+
@v

@z

�
= 0; (10)

where u and v denote the velocity components in r

and � directions respectively.

The governing equation (8), boundary conditions

of the free surface, i.e. Eqs.(3), (9), (10), and bound-

ary condition for the side-wall and bottom, Eq.(6),

describe the motion of the vertically excited surface

wave in a viscous uid.

In the case of ideal uids, if we retain only the

linear terms of Eq.(8), and suppose the wave motion

is irrotational, we have

� (r; �; z; t) = ��@�
@t

; (11)

where � (r, �, z; t) is the inviscid velocity potential.

Now we take Eq.(11) as the approximate function

when we consider the weakly viscous liquid as follows.

As for the linear viscous problem, it is reasonable to

separate the velocity into two components,

v = r�+U ; (12)

namely, potential ow and boundary layer velocity.

Here the velocity vector U is relevant to boundary lay-

ers while the potential part is important in the rest of

the uid. Substituting Eqs.(11) and (12) into Eq.(8),

and ignoring the nonlinear terms, we obtain the fol-

lowing di�usive equation with respect to the velocity

of boundary layer:

@U

@t
= �r2

U : (13)

If we insert Eq.(12) into the incompressible condition

r � v = 0, then the boundary layer velocity satis�es

the zero divergence condition

r �U = 0: (14)

Substituting Eq.(12) into Eqs.(3), (9), (10) and (6),

and neglecting all nonlinear terms, the incompressible

condition can be expressed as

@2�

@r2
+
1

r

@�

@r
+

1

r2
@2�

@�2
+
@2�

@z2
= 0;

�h � z � �(r; �; t); 0 < r < R: (15)

The boundary conditions at the free surface

@�

@t
� @�

@z
=W; z = �(r; �; t); (16)

@�

@t
+ g

�
1 +

4A!2
0

g
cos 2!0t

�
�

+ 2�

�
@2�

@z2
+
@W

@z

�
= 0; z = �(r; �; t); (17)

��

�
@u

@z
+
@w

@r

�
= ��

�
1

r

@w

@�
+
@v

@z

�
= 0; (18)

and the non-slip condition on the side-wall and at the

bottom

r�+U = 0; z = �h and r = R (19)

must be satis�ed. HereW is the component of bound-

ary layer velocity U in the z direction. Equations

(13){(19) are elementary linearized equations in vis-

cous uids. Our aim is to study the weakly viscous

surface waves via solving the above potential ow and

boundary layer equations.

3.Nondimensional equations and

establishment of curvilinear co-

ordinates
Taking the radius R of the tank as the length

scale, nondimensionalizing all related independent
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variables and unknown variables, the following scal-

ings are adopted:

z� =z=R; r� = r=R; �� = �=R;

t� =t=
p
R=g; �� = �=(R

p
gR); A� = A=R;

!�0 =!0=
p
g=R; "� = 4A!2

0=g;

�� =�=("�2R
p
gR); U

� = U=
p
gR; (20)

where the asterisks denote dimensionless quantities

and they will be dropped subsequently. The param-

eter " quanti�es the acceleration due to the vertical

oscillation relative to gravity and is assumed to be

much less than unity.

We have supposed that the viscosity is weak, and

has been scaled as "2 in Eq.(20) in order to facilitate

the theoretical analysis in mathematics. Substituting

Eq.(20) into Eqs.(13){(19), we obtain the following

dimensionless governing equations:

@2�

@r2
+
1

r

@�

@r
+

1

r2
@2�

@�2
+
@2�

@z2
= 0;

�h=R � z � �(r; �; t); 0 < r < 1; (21)

the boundary conditions at free surface z=� (r, �, t)

@�

@t
� @�

@z
=W; z = �(r; �; t); (22)

8>><
>>:

"2
�
2
@2�

@r@z
+
@W

@r

�
+ "2

@U

@z
= 0;

"2
�
2

r

@2�

@�@z
+

1

r

@W

@�

�
+ "2

@V

@z
= 0;

z = �(r; �; t); (23)

@�

@t
+ (1 + " cos 2!0t)� + 2�"2

�
@2�

@z2
+
@W

@z

�
= 0;

z = �(r; �; t); (24)

and the boundary conditions for the side-wall and the

bottom of the vessel are

r�+U = 0; z = �h=R and r = 1: (25)

The boundary layer equations are

@U

@t
= "2�r2

U ; (26)

r �U = 0; (27)

where U and V are velocity components of the bound-

ary layer in r, � directions respectively.

Recalling that the order of viscosity � is O("2),

and the thickness Æ of an oscillatory boundary layer

has an order of Of(2�=
)1=2g, so the order of the

boundary layer thickness is O("). A boundary layer

coordinate is introduced as shown in Fig.2.

Fig.2. Curvilinear coordinates of the boundary layer.

Here xN is the normal direction pointing into the

uid from the wall, hence opposite to n. xT1 and xT2

determine the tangential plane that is perpendicular

to the normal direction xN . So xN , xT1 and xT2 form

a local rectangular coordinate system. We introduce

a new boundary layer variable

& =
xN
"
: (28)

Then the continuity equation (27) in terms of the local

coordinate is

�@n �U
@&

+ "

�
@UT1
@xT1

+
@UT2
@xT2

�
= 0; (29)

and the boundary layer equation (26) becomes

@U

@t
= �

@2U

@&2
; (30)

due to the supposition of weak viscosity.

In the next section, we will solve potential equa-

tion (21) with boundary condition (22){(25) and

boundary layer equations (29) and (30) by the method

of perturbation expansions.

4.A series solution of external po-

tential ow and inner boundary

layer

We invoke two-time scale perturbation expan-

sions, and expand the related variables into power se-

ries of the small parameter ". A slowly varying time

scale � is introduced, such that

� = t": (31)

Expand velocity potential �, free surface displacement

� and velocity vector U of the boundary layer into8>><
>>:

� = �0(r; �; z; t; � ) + "�1(r; �; z; t; � ) + � � �
� = �0(r; �; t; � ) + "�1(r; �; t; � ) + � � �
U = U0(r; �; z; t; � ) + "U1(r; �; z; t; � ) + � � �

(32)
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and then expand Eqs.(22) and (24) into Taylor series

about z =0. Provided that we neglect higher-order

terms O ("2), substitute Eqs.(31), (32) into Eqs.(21){

(25), compare with the coeÆcients of the small param-

eter "i at the two hands of all equations, and obtain

governing equations and boundary conditions for both

potential ow and boundary layer in every order of the

"i.

Due to the complexity of the mathematical for-

mulation, the detailed process is ignored in this paper,

and only the important results are given as follows.

The external O ("0) velocity potential �0 (r, �, z,

t, �) and free surface displacement �0 (r, �, t, �) can

be expressed as

�0 =Jm(�r) cosh[�(z + h=R)]

� [p(�)ei
t + �p(�)e�i
t] cosm�; (33)

�0 =� i
Jm(�r) cosh �

� [p(�)ei
t � �p(�)e�i
t] cosm�; (34)

where Jm(r) is the m-order Bessel function of the �rst

kind; the wavenumber � = �mn satis�es

dJm(�mnr)=drjr=1 = 0; (35)

p(�) is called the slowly varying complex amplitude,

�p(�) denotes the complex conjugate of p(�), and 
 is

the natural frequency of the surface wave. The dis-

persion relationship obeys



2 = �mn tanh(�mnh=R) = � tanh(�h=R): (36)

The internal boundary layers in our vertically

forcing model are composed of side-wall layer and bot-

tom layer. Both of them have three velocity compo-

nents.

First of all, let U0W , V0W and W0W be the three

velocity components of the side-wall boundary layer.

We have the velocity U0W =0 from Eq.(25) and the

boundary condition of the O ("0) potential ow. The

appropriate fast coordinate is introduced by

&W =
r � 1

"
: (37)

The solutions of V0W and W0W can be formulated as

follows:

V0W =mJm(�) cosh�(z + h=R) sinm�

�
h
p(�)ei
te�(1+i)

p



2�
&W

+ �p(�)e�i
te�(1�i)
p




2�
&W
i
; (38)

W0W = ��Jm(�) sinh�(z + h=R) cosm�

�
h
p(�)ei
te�(1+i)

p



2�
&W

+ �p(�)e�i
te�(1�i)
p




2�
&W
i
: (39)

In the same way, by introducing an appropriate

fast coordinate

&B =
z + h=R

"
; (40)

the solutions for bottom boundary layer U0B and V0B

(similarly W0B=0) can be described as

U0B =�
�
m

r
Jm(�r)� �Jm+1(�r)

�
cosm�

�
h
p(�)ei
te�(1+i)

p



2�
&B

+ �p(�)e�i
te�(1�i)
p




2�
&B
i
; (41)

V0B =
m

r
Jm(�r) sinm�

�
h
p(�)ei
te�(1+i)

p



2�
&B

+ �p(�)e�i
te�(1�i)
p




2�
&B
i
: (42)

AtO ("1), an inhomogeneous problem for �1 is ob-

tained. In fact, we need not solve this inhomogeneous

equation accurately, and can obtain the damping coef-

�cient by virtue of the so-called solvability condition.

The derived amplitude equation is

dp(�)

d�
= �i��p(�) + �p(�); (43)

where � is a positive real number which represents

the e�ect of vertical external excitation, and � de-

notes the complex damping coeÆcient. The detailed

expressions of � and � are

� =



4
; � = �W + �B + �M ; (44)

where �W , �B, and �M represent the viscous damp-

ing on the side-wall, in the bottom boundary layer,

and the meniscus region (this region is de�ned as the

overlap between free surface and the side-wall bound-

ary layer) respectively, and they can be written as

�W =
�[sinh(2�h=R) + 2�h=R]

8
 cosh2(�h=R)

r
2�



(1 + i); (45)

�B =
�2

4
 cosh2(�h=R)

r
2�



(1 + i); (46)

�M =
�2


2(�2 �m2)

r
2�



(1 + i): (47)
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Henderson[20] pointed out that the real and the

imaginary parts of Eqs.(45){(47) mean the value of

damping and frequency shift respectively. Damping

causes the attenuation of the surface wave, while the

frequency shift changes the natural frequency of the

surface wave.

5.The critical condition for the

appearance of stable surface

waves
Separating Eq.(43) into real and imaginary parts,

and letting

p(�) = p1(�) + ip2(�); � = �1 + i�2; (48)

we can express Eq.(43) as

dp1(�)

d�
= �1p1(�)� (�+ �2)p2(�); (49)

dp2(�)

d�
= �(�� �2)p1(�) + �1p2(�): (50)

The ordinary di�erential equation groups (49)

and (50) are linear and their instability condition can

be easily obtained as

�2 > j�j2: (51)

Equation (51) means that the vertical external excita-

tion cannot be smaller than the damping of the uid if

the surface wave is to be excited, and j�j2 = �21 + �22 .

Substituting Eqs.(44){(47) into Eq.(51), and us-

ing the dispersive relation (36), we have

[(� tanh(�h=R))]1=4 >
p
�

�
�

4�2

(�2 �m2)
+

sinh(2�h=R) + 2�h=R+ 2�

sinh(�h=R) cosh(�h=R)

�
: (52)

In order to make clear the physical meaning of

the damping coeÆcient, the dimensional forms of

Eqs.(44){(47) and (52) become

� =



4

s
R

g
;

�W =
g
p
g=R�(sinh 2�h+ 2�h)

32A
3 cosh2(�h)

r
2�



(1 + i);

�B =
g
p
gR�2

16A
3 cosh2(�h)

r
2�



(1 + i);

�M =
R
p
gR�2

8A
(�2R2 �m2)

r
2�



(1 + i);

A >

�
sinh 2�h+ 2�h+ 2�R

4R sinh �h cosh �h
+

�2R

(�2R2 �m2)

�
�p

�=[g(� tanh �h)5]1=4: (53)

In Eq.(53), the expression of " in Eq.(20) is employed.

6.Properties of the damping co-

eÆcient obtained by computa-

tion

6.1. Variation of the damping coeÆcient with

viscosity and depth of the uid

Figure 3 illustrates the damping coeÆcient as a

function of viscosity.

Fig.3. Variation of damping coeÆcient with viscos-

ity (forced amplitude A=11.4�m, forced frequency

f=8.5Hz,radius of the vessel R=7.5cm, depth of the

uid h=1.0cm).

It can be shown from Fig.3 that the damping co-

eÆcient of the side-wall, the bottom and the meniscus

regions increase with the increase of viscosity. This

obvious result can be easily seen from Eq.(53).

Figure 4 shows the variations of damping coeÆ-

cient at di�erent depth of the liquid layer.

Fig.4. Variation of damping coeÆcient with the depth

of uid (forced amplitudeA=11.4�m, forced frequency

f=9Hz, radius of the vessel R=7.5cm, viscosity coef-

�cient �=10�6m2/s).
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With the increase in the depth of the liquid, the

area of the side-wall boundary layer increases accord-

ingly, so the damping on the side-wall will increase

too.

However, the damping of the bottom decreases

with the increase in the depth of the uid. As the

uid layer becomes shallow, the whole damping is pri-

marily concentrated on the bottom boundary layer.

In the region of the meniscus, the damping exhibits

a jump in a certain depth. This is mainly due to the

variability of mode selection, which can change the

value of denominator in Eq.(53). When the depth

of the uid layer exceeds 2.0cm, the damping in the

meniscus region increases with increasing depth of the

uid.

6.2. Variation of the damping coeÆcient with

the forced amplitude and frequency

The dependence of the damping coeÆcient upon

the forced amplitude is shown in Fig.5.

Fig.5. Variation of damping coeÆcient with forced

amplitude (forced frequency f=9Hz, radius of the ves-

sel R=7.5cm, depth of uid h=1.0cm, viscosity coeÆ-

cient �=10�6m2/s).

Clearly, the damping decreases with the increase

of the forced amplitude. The reason is that the en-

ergy entering into the system by external excitation

is more than that of dissipation caused by viscosity.

Under this condition, the energy will be accumulated

and the surface wave becomes unstable. In fact, since

the forced frequency is �xed, the small parameter "

will become larger with the increase of the forced am-

plitude and thus the basis of the theoretical analysis

will not be satis�ed.

Figure 6 illustrates the variation of damping co-

eÆcient with forced frequency.

Fig.6. Variation of damping coeÆcient with forced

frequency (forced amplitude A=11.4�m, radius of the

vessel R=7.5cm, depth of uid h=1.0cm, viscosity co-

eÆcient �=10�6m2/s).

As indicated in the �gure, the damping decreases

gradually with the increase of forced frequency. The

reasons are similar as for Fig.5. The damping of the

meniscus is inuenced by the selected mode of the

surface wave as in Fig.4, while some jump phenomena

appear.

6.3. Variation of damping coeÆcient with the

radius of the vessel

The variation of damping coeÆcient with the ra-

dius of the vessel is shown in Fig.7, in which damping

increases with the radius of the vessel.

Fig.7. Variation of damping coeÆcient with the ra-

dius of vessel (forced amplitude A=11.4�m, forced fre-

quency f=12Hz, depth of uid h=1.0cm, viscosity co-

eÆcient �=10�6m2/s).

A reasonable explanation is that the contact area

between side-wall and uid is enlarged. Thus the area

of the boundary layer increases, and viscous damping

increases accordingly.

6.4. Determination of the critical curve

When the forced amplitude and forced frequency

exceed some threshold values, the system becomes un-
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stable and surface waves form. From Eq.(53), we ob-

tain a critical curve of forced amplitude versus forced

frequency in Fig.8 by considering the dispersive rela-

tion (36).

Fig.8. Critical curve associated with excited ampli-

tude and forced frequency (depth of uid h=1.0cm,

radius of the vessel R=7.5cm, viscosity coeÆcient

�=10�6m2/s).

It is shown in Fig.8 that this curve approximates

a hyperbola, and when the exciting frequency is small,

the exciting amplitude must be large enough to pro-

duce a surface wave, and vice versa. It should be

pointed out that the unstable region is the area above

the curve.

6.5. The inuence of viscous damping and sur-

face tension on mode selection and com-

parison with experiment

In this section, we investigate the e�ect of the

viscous damping in Eq.(53) on the natural frequency

of the surface wave and mode choice. The natural

frequency (36) was modi�ed by introducing the imag-

inary part of the viscous damping coeÆcient �2, which

is the sum of dampings of side-wall, bottom and menis-

cus in Eq.(53),


̂ = 
 � �2; (54)

where


 =
p
� tanh(�h=R);

�2 =

�
�[sinh(2�h=R) + 2�h=R]

8
 cosh2(�h=R)

+
�2

4
 cosh2(�h=R)
+

�2


2(�2 �m2)

�r
2�



: (55)

In order to show the inuence of surface tension

and damping on the pattern selection, we present a

frequency versus wavenumber curve in Fig.9.

Fig.9. Variation of dimensional natural frequency and

modi�ed frequency with wavenumber (depth of uid

h=1.0cm, radius of the vessel R=7.5cm, viscosity co-

eÆcient �=10�6m2/s).

It can be seen from Fig.9 that when the forcing

frequency is low, the viscosity of the uid is a promi-

nent factor for the mode selection. However, when

the forcing frequency is high, the surface tension of

the uid is the prominent.

Table 1 and Fig.10 illustrate the comparison of

the forced frequencies in theory for di�erent patterns

including the e�ect of surface tension and damping

with those in experiment. In Fig.10, the left �gures

show the calculated results (the meanings of paramet-

rical couple (m, n), solid lines and dashed lines are

the same as in Refs.[16, 17]), and the right ones are

the experimental contours of ow patterns.

It is found from Table 1 and Fig.10 that when

the wavenumber is low, e.g. (3, 3) mode, the forced

frequency agrees well with the experimental result.

However, when the wavenumber is high, the forced

frequency is quite di�erent from the experimental re-

sult. This is possibly due to the dissipation of the

moving contact line of the meniscus, the mode com-

petition in high frequency, and the surface viscosity

of surfactant �lms, which are ignored in our present

analysis.

7.Conclusions

From the above analysis, the following results can

be obtained:

1. The analytical expression of the damping coef-

�cient is obtained and its properties have been studied

over a range of system parameters. Viscous damping

increases with viscosity, depth of uid and radius of

the vessel, and decreases with the external amplitude

or frequency of excitation.
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2. An instable condition for the occurrence of

surface waves is determined and the critical curve is

obtained analytically.

3. When the wavenumber is small, the inuence

of the damping is important. However, when the

wavenumber is large, the e�ect of surface tension is

prominent.

Fig.10. Comparison of theoretical contours of surface wave mode with those of experiment (depth of uid h=1.0cm, radius

of the vessel R=7.5cm, the forcing amplitude A=11.4�m). (a) (3, 3) mode (left) forced frequency f=19.9, (right) forced

frequency f=20Hz, (b) (8, 4) mode (left) forced frequency f=22.5Hz, (right) forced frequency f=50Hz, (c) (7, 6) mode

(left) forced frequency f=26.7 Hz, (right) forced frequency f=52Hz.
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Table 1. Comparison of the forced frequencies in theory for di�erent patterns including the e�ect

of surface tension and damping with those in experiment.

Forced frequency Forced frequency Forced frequency

Pattern Wave without surface with surface tension with surface Experimental forced

(m, n) number tension and and without tension and frequency/Hz

damping/Hz damping/Hz damping/Hz

(3, 3) 11.346 11.68 12.63 19.9 20

(8, 4) 21.229 16.71 21.10 22.5 50

(7, 6) 26.545 18.74 26.02 26.7 52
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