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Abstract

The coupling of mesoscopic strength distribution and stress fluctuation on damage evolution and rupture are

examined. The numerical simulations show that there is only weak stress fluctuation at the initial damage stage when

the mean field approximation is in effect. As the damage fraction becomes larger than the threshold value, the fluc-

tuation is amplified significantly, and damage localization appears. The coupling between stress fluctuation, disordered

heterogeneity and the damage localization may play an essential role in catastrophic rupture.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Media with mesoscopic heterogeneity, like rock,

are important in practice but their properties ap-

pear to be diversified. Mathematically speaking,

mesoscopic heterogeneity implies the dependence

of macroscopic behaviors on mesoscopic coordi-

nates. In the other hand, engineering practice
however prohibits the macroscopic constitutive

coefficient to depend on mesoscopic coordinates

since this would render the problem inaccessible.

Statistical distribution functions would be a better

choice than depending on the meso-coordinate.
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The important statistical descriptions are:

• The statistical distributions of mesoscopic vari-

ables may involved the distribution function

of material properties (elastic parameters, meso-

scopic strength, etc.) and the distribution

function of stresses, etc. These distribution func-

tions may become time-dependent owing to
damage evolution. The corresponding macro-

scopic variables can be calculated from the

statistical average of the relevant distribution

functions, e.g., the damage fraction could be re-

lated to the distribution function of mesoscopic

strength and the loading history.

• The statistical average of joint probability meso-

scopic variables can lead to the correlation func-
tion between microdamages, stresses, etc.
ed.
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Although the effect of heterogeneity on stress–

strain curve in the media have been discussed by

previous authors [1–5], the usual approaches are

based on mean field approximation. That is to say,

the stress on a macroscopic sample is assumed to be

uniform, to permit a simple macroscopic constitu-
tive description of the material. However, it is

found that the behavior near the rupture of a

sample obtained by the mean field approximation

may not be in agreement with observations. This

is mainly because the stress fluctuation becomes

stronger and stronger as rupture is approached in

the heterogeneous media. Coupling effects of the

stress fluctuation and the mesoscopic heterogeneity
of the material is essential in catastrophic rupture.

In this paper, emphasis is placed on the stress

distribution function and its effects on rupture.

Numerical simulations for a network model under

uniaxial tensile loading accounted for by consid-

ering the stress fluctuation. The rupture of net-

works occurs significantly earlier than that based

on mean field approximation. To interpret the
difference, the coupling effect between stress fluc-

tuation and heterogeneity of mesoscopic strength

should be taken into account. Through stress

fluctuation statistics of network model, it is found

that at the initial damage stage, relative variance of

strain energy increases linearly with the damage

fraction; when the damage fraction becomes lar-

ger, values of relative strain energy variance in-
crease quickly with increasing damage fraction.
2. Mean field approximation

Although the results of mean field approxima-

tion are not in agreement with the observations

near rupture, they may give an important clue to
understand the mechanism of rupture. Hence, a

brief review of the mean field approximation will be

given. Since rupture is much more sensitive to mes-

oscopic strength than elastic modulus, an elastic–

brittle model is adopted to obtain a mesoscopic

elastic modulus E0 but various mesoscopic strength

can be depicted by the distribution function, hðrcÞ,
which is assumed to have a Weibull distribution
function with two parameters. They are the scale

parameter g and Weibull modulus m (shape para-
meter) [6]. Provided are the normalized stress

r ¼ stress=g and normalized strain e ¼ strain �
E0=g such that rc ¼ ec for any elastic–brittle mes-

oscopic elements of a macroscopic sample of the

heterogeneous medium. Hence, the Weibull distri-

bution of normalized strength rc is

hðrcÞ ¼ hðecÞ ¼ m � rm�1
c � expð�rm

c Þ: ð1Þ
The smaller the Weibull modulus m is, the more
diverse the meso-strength is. That is to say, the

more heterogeneous the medium is. Based on the

mean field approximation, the corresponding con-

stitutive equation is

rðeÞ ¼ e
Z 1

e
hðecÞ � dec ¼ e � expð�emÞ; ð2Þ

where D is the damage fraction determined by

D ¼
Z e

0

hðecÞ � dec ¼ 1� expð�emÞ: ð3Þ

For this heterogeneous elastic–brittle model, there

is a sequence of events, among which damage

localization and catastrophic rupture may be the

most interesting.
Physically, damage localization implies the

emergence of macroscopic inhomogeneity, i.e. a

prelude to localized rupture. The geometrical def-

inition of damage localization [7,9] is

o

oT
oD
oX

� �

oD
oX

P

oD
oT
D

: ð4Þ

For the medium with Weibull distribution, the

critical conditions for damage localization can be

derived as

ðm� 1Þ � DL þ m � lnð1� DLÞ � ½m � ð1� DLÞ
� lnð1� DLÞ þ 1� 2DL� ¼ 0; ð5Þ

where DL is the critical damage for damage local-

ization. As DPDL, the fluctuations of the damage

fraction and the stress will be amplified and leads

to appearance of damage localization. It is interest

to notice that the criterion of damage localization

is derived based on mean field approximation, but

the criterion really corresponds to the condition

where the mean field approximation tends to be
inapplicable.
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The critical condition for the self-sustained

catastrophic rupture is that the increase of input

work DW is no longer positive, i.e.,

DW ¼ F � ðDus þ DumÞ
¼ F � DF � ðK�1

s þ K�1
m Þ6 0; ð6Þ

where F , Du and K are load, the increments of

displacement and stiffness, respectively, and sub-

scripts �s� and �m� refer to the sample and testing

machine, respectively. Suppose Km ¼ kKs0, Ks0 is

the initial stiffness of the sample, the instability

condition for catastrophic rupture (6) can be ex-
pressed as
Fig. 1. (a) Continuous damage evolution. D denotes the damage frac

and u is the boundary displacement. Quasi-static loading is assumed. h
schematic of the specimen and surrounding (machine) (left) and the cu

(right). ecr indicates catastrophic rupture, where the tangent of the s

machine (the straight line).
dr
de

6�k: ð7Þ

The case driven by external load is corresponding

to k ¼ 0, the catastrophic rupture appears at the

maximum point of the constitutive curve. The case

driven by boundary displacement is corresponding

to k ! 1, the failure of the sample shows con-

tinuous damage accumulation and does not dis-
play catastrophe (see Fig. 1(a)). The case of k ¼ 1

is shown in Fig. 1(b).

Fig. 2 gives an example of the variation of stress

and damage with increasing strain (m ¼ 5). The
tion, e ¼ u=L, where e is the strain, L is the length of the sample

ðeÞ is Weibull distribution function with modulus m ¼ 3. (b) The

rve of stress vs. strain for k ¼ 1 and m ¼ 5 in MF approximation

tress–strain curve becomes the negative of the stiffness of the



Fig. 2. The stress–strain curve (thick solid line), gradual energy

release rate dE
de vs. strain (thick dashed) and damage vs. strain

(thick dotted) for the model with m ¼ 5 based on the mean field

(MF) approximation. The vertical lines (from left to right)

indicate the strains where damage localization (dotted), cata-

strophic rupture (k ¼ 1, dashed) and both maximum energy

release and minimum slope of stress-strain curve (solid) occur.
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figure clearly demonstrates that damage localiza-

tion, maximum stress and catastrophic rupture

occur successively with increasing deformation.

Moreover, for any cases (any m values) damage

localization always appears before maximum

stress and catastrophic rupture. In a broad sense,

damage localization may be adopted as a very
early warning of rupture.

In some cases the results obtained by the mean

field approximation are not in agreement with

observations, because of stress fluctuation in the

sample [8].
3. Characteristics of stress fluctuation and effects of
stress fluctuation

The deviation of stress in the sample from the

mean field approximation may be enhanced owing

to damage-induced stress re-distribution. There-

fore, in a real system the coupling between stress

fluctuation and heterogeneous mesoscopic strength

may play an important role.
Numerical simulations were performed with a

two-dimensional network model [10,11]. The net-

work consists of straight bars of the same length

and the same elastic modulus but different tensile

strength. Each bar deforms elastically until its own
breaking threshold, i.e. tensile strength is reached.

Similar to the previous analytical model, the

breaking thresholds of all bars of the network

follow the Weibull distribution, Eq. (1). The spa-

tial distribution of the breaking thresholds in

the network, however, is random and statistically
uniform. The bars support tensile or compressive

loads only and six bars are hinged at a joint, see

Fig. 3. In the calculations, networks consisting of

40 · 40 and 60 · 60 bars are adopted. The bound-

ary conditions are shown in Fig. 3. On the left-

hand side of the network, all joints of the bars

are hinged to a straight fixed solid wall. On the

right-hand side of the network, a similar net-
work with the same elastic modulus but without

breaking is attached as a mimic testing machine.

External uniaxial tensile loading is applied on the

extreme right of the surrounding, Fig. 3. Though

the load applied to the sample is uniaxial, the bars

in the network may sustain different stresses owing

to different orientations and mesoscopic strength.

More importantly, since the bars have different
breaking thresholds and then fail individually

according to its local stress, then stress re-distri-

bution will appear in the two-dimensional net-

work.

The two-dimensional simulations under tension

in Fig. 4 correspond to the early stage of defor-

mation and damage. There is a good consistency

between the simulations and the mean field
approximation for either Weibull modulus m ¼ 5

or 2. But, when there are some deviations in stress–

strain curves from the mean field approximations,

sudden rupture occurs. The rupture appears earlier

than the mean field predictions for catastrophic

rupture, and even earlier than the predictive

maximum stress. However, the unloading path in

all these simulations is exactly the same as those
predicted by the mean field approximation. The

unloading slope is equal to the negative stiffness of

the mimic testing machine. One hint for the

interpretation of the immature rupture in simula-

tions is that all ruptures in simulations occur be-

yond damage localization, Fig. 4. Recall that the

assumptions made in the analysis of catastrophic

rupture in terms of the mean field approximation,
i.e. the assumption of uniform spatial stress and

damage distributions may be improper, since the



Fig. 3. Sketch of network model. The network consists of straight bars of the same length. The spatial distribution of breaking

thresholds of the bars in the network is random and statistically uniform. The bars support tensile or compressive loads only and six

bars are hinged at a joint.

Fig. 4. The curves of stress vs. strain coupled with surrounding for Weibull distribution with moduli m ¼ 5 (left) and m ¼ 2 (right),

respectively. In the diagram, curve (1) represents the result of the mean field model with infinite surrounding stiffness. Curve (2) shows

the jump unloading after catastrophic rupture (marked by a vertical dashed line labelled as ecr) owing to finite surrounding stiffness, Eq.

(7). Curve (3) is the result of numerical simulation of network driven by the surrounding with finite stiffness. The two vertical dashed

lines labelled by 0.5 (left) and 0.387 (right) indicate damage localization (eL ¼ 0:501 for m ¼ 5 and eL ¼ 0:387 for m ¼ 2). Notice that

the rupture occurs beyond the appearance of damage localization in the simulations. But in the right diagram, there are only curves (1)

and (3), and there is no curve (2) in the case of m ¼ 2, because there is no point on curve (1) satisfying the condition for catastrophic

rupture, Eq. (7).
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damage localization implies uneven spatial dam-

age. The uneven damage localization induces more

severe uneven spatial stress re-distribution, which

can enhance local damage accumulation.

The stress patterns in Fig. 5 show that the whole

process may be divided into three stages. At the

initial stage, several small cracks occur and the

stress–strain curve remains nearly linear. With
increasing damage, high stress regions may shift
from one part to another very swiftly. This means

that severe stress adjustment occurs. At the final

stage, a main crack forms, and high stress mainly

adheres to the large crack tip. From the simula-

tions, it can be seen that the stress re-distribution

due to heterogeneity plays a very significant role in

rupture.

Actually, the network simulations show clear
stress concentration and stress screening effect when



Fig. 5. Stress re-distribution and damage patterns in network simulation (for Weibull modulus m ¼ 2) and the corresponding stress vs.

strain curve. The bars in the network are colored with 10 levels of darkness according to their stress, bold black indicates the highest

stress and white vacancy means bar broken. From the insets, one can notice clear damage localization and stress re-distribution ahead

of rupture.
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some elastic bars fail during the loading process.

Now, consider the characteristics of stress fluctua-

tion in the rupture process, the network model is

based on the equivalence of strain energy stored in a

unit element [12]. Statistics on strain energy will be

made to investigate the stress fluctuations indi-

rectly.

The relative variance of strain energy dE
E

� �2
is

defined as square of the standard deviation of

strain energy divided by average strain energy of a

unit element. Figs. 6 and 7 show the relation be-

tween the relative variance of strain energy (Y axis)

and the damage fraction (X axis). The black solid

line is the results of a percolation model. In the

percolation model the broken bar is simply se-

lected at random for each step. So, the broken bars
are statistically uniformly distributed. The results

of percolation model are compared with those

obtained by the network model. Ten network
samples are computed with the same Weibull

modulus. It is found that:

• During the initial damage period (damage frac-

tion is less than 2‰), relative variance of strain

energy increases linearly with the damage frac-

tion. After comparing the results of network

model and percolation model, it can be con-
cluded that the fluctuation at this period is

mainly caused by randomly distributed damage.

And the interaction among damage can be ne-

glected at this stage, Fig. 6.

• When the damage fraction becomes larger, Fig.

7 the values of relative strain energy variance in-

crease quickly with increasing damage fraction

and they are much larger than that of percola-
tion model. When damage is becoming local-

ized, the interaction of microdamage leads to a

nonlinear increase of the strain energy variance.



Fig. 6. The relative strain energy variance vs. damage fraction

for the network model (dotted line) with m ¼ 3 and percolation

model (black solid line).

Fig. 7. The relative strain energy variance vs. damage fraction

for the network model with m ¼ 3 (dotted line) and percolation

model (black solid line).

Fig. 8. Sketch of the simplified model.
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It is also found that the values of the relative

strain variance are obviously different from

sample to sample. It seems that it is the stress

fluctuation that leads to the catastrophe prior

to the maximum stress given by MF model

and the sample-specific behavior.
4. Damage localization on catastrophic rupture

The fully developed stress fluctuation leads to

appearance of damage localization, which may af-

fect the rupture behavior significantly. Asmentioned

above, the global mean field approximation for
failure of the sample driven by boundary displace-

ment u quasi-statically shows continuous damage

accumulation and does not display catastrophic

behavior. However, the transition of evolution

mode from homogeneous damage to damage local-

ization [3,4] may result in the appearance of cata-
strophic transition.

In order to reveal the mechanism of damage

localization induced catastrophe, consider a sim-

plified model of damage localization. Suppose that

the sample divided into two (or more) parts: a

heavily damaged one attached to an elastic one

shown in Fig. 8.

There are two parts in the sample: an elastic
part with length Lm and constant elastic modulus

Em; a damaged part with length Ls and initial

elastic modulus Es0, and the strength threshold of

mesoscopic units in the damage part follows

Weibull distribution function with modulus m. Use

the local mean field approximation to the sample,

i.e., the mean field approximation is used to each

part, separately. Denote the strain for two parts by
es and em, separately. This gives

u ¼ Lses þ Lmem: ð8Þ
The displacement u is expressed by using the unit

corresponding to that of the strain e. The balance

condition is expressed by

Emem ¼ Es0ð1� DðesÞÞes: ð9Þ
The damage fraction is determined by

DðesÞ ¼
Z es

0

hðecÞdec: ð10Þ

The catastrophic transition appears at

dD
du

¼

dD
des
du
des

¼ 1 or
du
des

¼ 0: ð11Þ



Fig. 9. Damage localization induced catastrophe transition.

Quasi-static loading is assumed. hðeÞ is Weibull distribution

function with modulus m ¼ 3 and b ¼ 1:186.
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From Eqs. (8), (9) and (11), this provides the

condition

1

k
� gðesÞ ¼ 0; ð12Þ

where

k ¼ Es0Lb

EbLs

ð13Þ

and

gðesÞ ¼ �1þ DðesÞ þ eshðesÞ: ð14Þ

The equation is solvable only for the case of

k >
1

gMax

: ð15Þ

Denote the solution of Eq. (12) by esc (or uc, or
Dc ¼ DðescÞ). The catastrophe appears at u ¼ uc (or
es ¼ esc), when the condition (15) is satisfied.

As the threshold follows Weibull distribution

function with modulus m, the condition for ap-

pearance of catastrophe becomes

k >

exp 1þ 1

m

� �

m
� kcðmÞ ð16Þ

or

b ¼ k
kcðmÞ

> 1: ð17Þ

The catastrophe transition point is at esc (or Dc),

which satisfies

1

k
þ expð�emscÞ � memsc expð�emscÞ ¼ 0 ð18Þ

or

1

k
þ 1� Dc þ mð1� DcÞ lnð1� DcÞ ¼ 0: ð19Þ

Fig. 9 shows the damage evolution for the case

with m¼ 3 and b¼ 1:186> 1 ðkcð3Þ ¼ 1:264555965;
k ¼ 1:5Þ. The catastrophe transition depends on

mesoscopic heterogeneity and damage evolution,

especially the scale of damage localization the local

damage fraction. The critical damage fraction Dc is

dependent on m and k in above-mentioned exam-

ple. However, the damage localization can be the
result of enhancement of fluctuations from meso-

scopic level to macroscopic level. So the damage

localization may display sample-specificity since it

is sensitive to the details on mesoscopic scale. Then

the catastrophe transition may also present mac-

roscopic uncertainty, which leads to the difficulty in

rupture prediction because the details on meso-

scopic scale are difficult to be identified.
5. Discussion

The coupling effects of mesoscopic strength

distribution and stress fluctuations on damage

evolution and rupture are examined. The mean

field approximation of a heterogeneous brittle
model demonstrates a sequence of characteristic

events, which includes damage localization, maxi-

mum stress and catastrophic rupture, etc. Damage

localization always appears ahead of maximum

stress and its dependence on heterogeneity could

be simply calculated by means of the mean field

approximation.

Though the mean field approximation can
properly indicate the appearance of damage lo-

calization. It does imply that the mean field ap-

proximation tends to be lacking. The numerical

simulations of heterogeneous networks under

tension show that rupture may occur earlier than
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that predicted based on mean field approximation.

Data analysis demonstrates that this may result

from stress fluctuation in the sample. Therefore,

stress fluctuation and its interaction with micro-

damage evolution should be taken into account in

the discussion of rupture.
The statistics of stress fluctuation in the

numerical simulations show that at the initial

damage stage, relative variance of strain energy

increases linearly with the damage fraction. The

fluctuations in this period are mainly caused by

randomly distributed damage. When the damage

fraction becomes larger, the relative strain energy

variance increases quickly with increasing damage
fraction. This may significantly affect rupture.

The damage localization resulting from the

coupling effects between stress fluctuation and dis-

ordered heterogeneity presents uncertainty or sam-

ple-specificity. This leads to sample-specificity of

catastrophic rupture. The sample-specific catastro-

phe, a typical complexity in heterogeneous media,

is the main origin of the difficulty of rupture pre-
diction.
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