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Abstract

Synchronous chaos is investigated in the coupled system of two Logistic maps. Although the diffusive coupling

admits all synchronized motions, the stabilities of their configurations are dependent on the transverse Lyapunov

exponents while independent of the longitudinal Lyapunov exponents. It is shown that synchronous chaos is struc-

turally stable with respect to the system parameters. The mean motion is the pseudo-orbit of an individual local map so

that its dynamics can be described by the local map.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The object of this research is to investigate synchronous chaos in the coupled system of two Logistic maps: how

temporal chaos on each map is spatially synchronized by a diffusive coupling. Since the diffusive coupling admits all

spatial uniform configurations, the key problem is the stability of synchronous chaos. The pioneering work by Fujisaka

and Yamada [1] demonstrates that chaos in coupled oscillators is synchronized when its maximal Lyapunov exponent is

positive while the others are negative. However, the linear analysis is not sufficient to synchronous chaos since the

higher-order perturbations are inevitably involved in chaos. Afraimovich et al. [2–4] show that synchronization in two

slight different oscillators or subsystems can be achieved by the diffusive coupling, where the differences between two

solutions are analytically estimated and can be controlled to decay. However, the estimation and control techniques are

very difficult to be applied to a high-dimensional coupled system. Another related and interesting topic is how a coupled

system of oscillators is synchronized to periodic states by chaotic driving signals. See Refs. [5,6] for details.

Synchronous chaos is one of most interesting topics on spatial extended systems. When many identical maps are

coupled to a larger system (coupled map lattices or CML), the system can exhibit a variety of spatial configurations,

such as kink–antikinks and wavelike patterns etc. [7]. Moreover, these configurations can also present local chaos on

each map. In other words, a spatial regular configuration may admit temporal chaos. This phenomena seems to be

contradictive to the initial sensitivity of chaos but it does exist. For example, the chaotic surface waves in Faraday

experiments [8]. Let us begin with the simplest case: whether or not a spatial uniform configuration inherit the dynamics

of the local map? For periodic motions, the answer is true. The periodic synchronization does exist. For chaotic motion,

the synchronization can also be observed, which is more or less out of general intuition.

We will study synchronous chaos in two coupling Logistic maps in this paper. The approach developed here is not

restricted to a two-dimensional case and could be extended to higher-dimensional CMLs. Our working model is as

follows:
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xtþ1 ¼ ð1� �Þf ðxtÞ þ �f ðytÞ
ytþ1 ¼ ð1� �Þf ðytÞ þ �f ðxtÞ;

�
ð1Þ
where � is a coupling parameter with 06 �6 1, f denotes a local map, which is taken as the Logistic map:

f ðxÞ ¼ 1� ax2, ð06 a6 2Þ. In Section 2, the existence and stability of the synchronous chaos are discussed. In Section

3, the structural stability on synchronous chaos is addressed. With those results, it is concluded that the synchro-

nous chaos can be observed. In Section 4, it is shown that the synchronous chaos is a pseudo-orbit of the local

map so that its dynamics can be described by the local map. The final section is devoted to the conclusions and dis-

cussions.
2. Existence and stability of synchronous chaos

It can be verified directly that the synchronized motion xt ¼ yt ¼ zt, where ztþ1 ¼ f ðztÞ, is an uniform solution of

(1), no matter whether the motion zt is periodic or chaotic. This is because of the diffusive coupling in (1). The cen-

tral problem is the stabilities of synchronous chaos. Due to its initial sensitivity, the orbits of the uniformly chaotic

motion are never stable in phase space. However, the uniform configuration may be insensitive to its initial configu-

ration so that the configuration is stable. In other words, the derivation from the synchronous configuration can be

controlled, although the orbit zt itself is chaotic. Noting that the uniform motion ðzt; ztÞ is always located on the

diagonal line of the phase space ðxt; ytÞ, the transverse derivation to the diagonal line indicates the stability of the

synchronous chaos.

Suppose that ðxt; ytÞ is a perturbed solution of (1) to synchronization ðzt; ztÞ by ðdxt; dytÞ, that is, dxt ¼ xt � zt,
dyt ¼ yt � zt. Then
dxtþ1

dytþ1

� �
¼ E

f ðxtÞ
f ðytÞ

� �
� f ðztÞ

f ðztÞ

� �
¼ E

f ðxtÞ � f ðztÞ
f ðytÞ � f ðztÞ

� �
;

where E is a diffusive matrix of the coefficients in (1):
E ¼ 1� � �
� 1� �

� �
:

Its eigenvalues and unitary eigenvectors are k1 ¼ 1 and k2 ¼ 1� 2� separately and
v1 ¼
1ffiffiffi
2

p 1
1

� �
; v2 ¼

1ffiffiffi
2

p 1
�1

� �
:

The Taylor’s expansion of the local map f leads to
dxtþ1

dytþ1

� �
¼ E

f 0ðztÞdxt þ 1
2
f 00ðztÞdx2t

f 0ðztÞdyt þ 1
2
f 00ðztÞdy2t

 !
¼ f 0ðztÞE

dxt
dyt

� �
þ 1

2
f 00ðztÞE

dx2t
dy2t

� �
;

where f 0ðztÞ ¼ �2azt; f 00ðztÞ ¼ �2a.
The first order perturbation can be calculated in terms of the eigenvectors of E:
dxt
dyt

� �
¼ btv1 þ ctv2 ¼

1ffiffiffi
2

p bt þ ct
bt � ct

� �
;

where the coefficient bt is the magnitude of the projection of the perturbation ðdxt; dytÞ to the diagonal eigenvector v1,
and ct is the magnitude of the projection of ðdxt; dytÞ to the transverse eigenvector v2, which indicates the transverse

deviation. That is
1ffiffiffi
2

p bt ¼
xt þ yt

2
� zt;

1ffiffiffi
2

p ct ¼
1

2
ðxt � ytÞ:
Similarly, the second order perturbation can be calculated as
dx2t
dy2t

� �
¼ 1ffiffiffi

2
p ðb2t þ c2t Þv1 þ

ffiffiffi
2

p
btctv2:
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Then, the perturbation at the next time step can be formulated as follows:
dxtþ1

dytþ1

� �
¼ f 0ðztÞEðbtv1 þ ctv2Þ þ

1

2
f 00ðztÞE

1ffiffiffi
2

p ðb2t
�

þ c2t Þv1 þ
ffiffiffi
2

p
btctv2

�

¼ f 0ðztÞbtk1
�

þ 1

2
f 00ðztÞ

1ffiffiffi
2

p ðb2t þ c2t Þ
�
v1 þ f 0ðztÞ

�
þ 1ffiffiffi

2
p f 00ðztÞbt

�
ctk2v2;
that is,
btþ1 ¼ f 0ðztÞbt þ 1

2
ffiffi
2

p f 00ðztÞðb2t þ c2t Þ
ctþ1 ¼ f 0ðztÞ þ 1ffiffi

2
p f 00ðztÞbt

h i
k2ct:

(
ð2Þ
Eq. (2) expresses the perturbations of (1) exactly in terms of the eigenvectors of the linear matrix in (1). Noting that

the second equation is linear with respect to ct, an upper bound on ct can be formulated immediately.

Noting that jbtj6 2, jctj6 2, jf 0ðztÞj6 2a, jf 00ðztÞj6 2a, we obtain
jctþ1j6 4aj1� 2�jjctj:
Therefore, if 4aj1� 2�j < 1, ct will decay to zero as t goes to infinite. That is, the synchronous chaos is stable.

An alternative method of estimating ct is to calculate the Lyapunov exponents of (2) [9]:
q1 ¼ lim
N!1

1

N
ln

YN
t¼1

jf 0ðztÞj
 !

;

q2 ¼ lim
N!1

1

N
ln

YN
t¼1

k2 f 0ðztÞ
����

 
þ 1ffiffiffi

2
p f 00ðztÞbt

����
!
:

Here q1 is the maximum Lyapunov exponent of (1) and also the Lyapunov exponent of the local map. q1 < 0 is

corresponding to periodic motions, and q1 > 0 to chaotic ones. q2 is the transversal Lyapunov exponent, which

indicates the expanding rate of the transverse derivation perpendicular to the synchronous direction. When q2 < 0, the

transverse derivation ct will decrease to zero and thus the synchronous motions are stable. Therefore, q1 > 0 and q2 < 0

imply a stable synchronous chaos. Since ctþ1 is linearly dependent on ct in this case, the above analysis is exact.

In our model (1), � can be chosen so close to 0.5 that k2 is enough small. In this case, q2 < 0. Therefore, synchronized

chaos can be realized in Eq. (1).
3. Structure stability of synchronous chaos

If there are some slight differences among local maps, can synchronous chaos be still observed? or does synchronous

chaos exist for the coupled system of the slight different local maps? This problem is involved in structure stability of

synchronization. In fact, it is impossible to have identical local maps in practice so that we have to deal with parameter

perturbations.

We consider the coupled system of two slight different Logistic maps:
xtþ1 ¼ ð1� �Þf ðxt; a1Þ þ �f ðyt; a2Þ
ytþ1 ¼ ð1� �Þf ðyt; a2Þ þ �f ðxt; a1Þ;

�

where f ðx; aiÞ ¼ 1� aix2, 06 ai 6 2 and ja� aij6 s=2 ði ¼ 1; 2Þ, s is a small positive number.

We examine the difference between xt and yt:
xtþ1 � ytþ1 ¼ ð1� 2�Þ½f ðxt; a1Þ � f ðyt; a2Þ� ¼ ð1� 2�Þ½f ðxt; a1Þ � f ðxt; a2Þ þ f ðxt; a2Þ � f ðyt; a2Þ�
¼ ð1� 2�Þ½f 0

aðxt; a3ðtÞÞða1 � a2Þ þ f 0
xðnt; a2Þðxt � ytÞ�;
where the mean value theorem is employed, and
f 0
aðxt; a3ðtÞÞ ¼ �x2t ða1 6 a3ðtÞ6 a2Þ;
f 0
xðnt; a2Þ ¼ �2a2nt ðxt 6 nt 6 ytÞ:
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Noting that f is the Logistic map, we have
jf 0
aðxt; a3ðtÞÞj6 1; jf 0

xðnt; a2ðtÞÞj6M 6 4;
where M is a constant. Therefore,
jxtþ1 � ytþ1j6 j1� 2�j½jf 0
aðxt; a3ðtÞÞða1 � a2Þj þ jf 0

xðnt; a2ðtÞÞðxt � ytÞj�

6 j1� 2�j½sþM jxt � ytj�6 sj1� 2�j 1� ½Mð1� 2�Þ�t

1�Mð1� 2�Þ

����
����þ jMð1� 2�Þjtþ1jx0 � y0j:
If jMð1� 2�Þj < 1, we obtain the following estimation at very large t:
jxtþ1 � ytþ1j6
j1� 2�js

1�Mð1� 2�Þ :
Thus, if the difference between two nonlinear parameters is small enough, the difference between xt and yt still re-
mains small. This result is hold only for the coupling parameter region: jMð1� 2�Þj < 1 and for all initial conditions. In

fact, it implies nearly synchronous chaos but not an exact synchronous one. This shows that the slight perturbations of

parameters in local maps do not change synchronization. That is, synchronization is structurally stable.
4. Shadows of synchronous chaos

The dynamics of the exactly synchronous chaos, where xt ¼ yt, can be described by its local maps. The next question

is how to describe the dynamics of the nearly synchronous chaos, where xt and yt are slight different. In this section, we

will show that the mean of the nearly synchronous chaos can be tracked by the local maps.

It is known that ct is the distance from the point ðxt; ytÞ to the diagonal line y ¼ x in the phase plane. Thus, the

difference between xt and yt is just the transverse derivation of the nearly synchronous chaos from the exact synchronous

orbits. Noting that the interaction of the transverse deviation with the diagonal line is the point ðxtþyt
2

; xtþyt
2
Þ, we can use

the spatial mean value of (1) to describe the dynamics of the synchronized chaos.

We will show that the mean ðxt þ ytÞ=2 is a �-pseudo-orbit of the local map f if and only if ðxt; ytÞ is the d-syn-
chronization, where � ¼ ad2=4. This can be achieved by calculating
xtþ1 þ ytþ1

2

��� � f
xt þ yt

2

� 	��� ¼ f ðxtÞ þ f ðytÞ
2

���� � f
xt þ yt

2

� 	���� ¼ 1

4
ajxt � ytj2:
From the above equations, it is easy to see that
xtþ1 þ ytþ1

2

��� � f
xt þ yt

2

� 	���6 �
holds if and only if jxt � ytj6 d.
It is reasonable to assume that chaotic attractors of the local maps are compact hyperbolic invariant sets. By Shadow

lemma [9], there exists a real orbit fwtþ1 ¼ f ðwtÞg of the local map such that ðxt þ ytÞ=2 can be shadowed by fwtg, that is

xt þ yt

2

��� � wt

���6 s;
where s is a small positive number. Therefore, when ðxt; ytÞ is nearly synchronized, its dynamics can be described

approximately by the corresponding local map; When ðxt; ytÞ exactly synchronized with d ¼ 0, it is just a real orbit of the

local map. The pseudo-orbits ðxt þ ytÞ=2 can be served as the descriptions of synchronized motions.
5. Discussions and conclusions

The stability of the synchronous configurations is investigated in this paper. When synchronous motions are peri-

odic, their stabilities can be determined by the Lyapunov exponents; When synchronous motions are chaotic, linear

analysis is not sufficient and nonlinear perturbations have to be considered. The method developed in this paper is to

estimate the transverse derivations normal to the synchronous configurations. The expanding rates of the transverse

derivations can be determined by the transverse Lyapunov exponents. The negative transverse Lyapunov exponents

imply stabilities of synchronous configuration with temporal chaos.
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The diffusive coupling admits all synchronous motions. Due to the diffusive coupling, the eigenvector for the

maximal Lyapunov exponent is corresponding to the configuration of synchronized motions. In this case, it possibly

happens that all other Lyapunov exponents are negative while the maximum one is positive. Thus, synchronous chaos

can be observed. However, if the synchronous configuration does not coincide with the eigenvector for the maximum

Lyapunov exponent, synchronous chaos may leads to that some other Lyapunov exponents are positive. In this case,

other spatial modes can be excited so that the synchronization disappears. For example, the convective coupling does

not show the synchronous chaos [10]. More generally, the regular spatial configurations with temporal chaos can be

observed only if the eigenvectors for the positive Lyapunov exponent are corresponding to the configurations of

synchronized motions and the transverse derivations normal to the configurations have to be decaying. For example, a

single wave in CML does not coincide with the eigenvector for the positive Lyapunov exponent so that it never exhibits

chaos [11].

Synchronization is structurally stable. When the slight different local maps on units are coupled, a nearly syn-

chronous motion can be still observed. This is because small perturbations to local maps do not block decrease of the

transverse derivation. In other words, the transverse Lyapunov exponents are insensitive to local maps. A similar

discussion can also be carried out on the coupling parameters.

The dynamics of synchronous chaos can be described by its local map. We have shown that ðxt þ ytÞ=2 is a pseudo-

orbit of the local map. Therefore, for the hyperbolic maps, it can be shadowed by the real orbit of the local map. On the

other hand, synchronization can be determined by whether or not ðxt þ ytÞ=2 is a pseudo-orbit of the local map.

Our working model is two-dimensional. However, the methods suggested in the present paper are not restricted to

low-dimensional cases. They can be used for the higher-dimensional coupled map lattices. It has been found by our

numerical simulation that higher-dimensional CMLs do exhibit nearly synchronous chaos. From synchronous chaos,

nonuniform configuration will be developed via bifurcation from the wavelike patterns, which are either the longest or

shortest spatial wavelength [12,13]. The stabilities of the regular spatial configurations with temporal chaos can also be

investigated by the transverse derivations.
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