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Abstract

Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni

flows in half-zone liquid bridges of low-Pr fluid (Pr ¼ 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions)

have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their

oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the

characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity

fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major

temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most

energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the

same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory

disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory

disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily

originates from the interior of the liquid bridge.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For decades, extensive studies, e.g. see Ref. [1], have been
devoted to the oscillatory Marangoni flow in half-zone
liquid bridges of low-Pr fluids due to its relation in the
technological floating-zone method of crystal growth.
Among the research works, limited space experimental
studies, e.g. Refs. [2,3], have been reported due to the
difficulties in conducting well-controlled experiments in-
duced by the opacity, reactivity, and high melting
e front matter r 2007 Elsevier B.V. All rights reserved.
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temperature of low-Pr fluids (mostly liquid metals). On
the other hand, since the first prediction through the
numerical study conducted by Rupp et al. [4], theoretical
studies including both linear instability analyses, e.g. Ref.
[5], and direct numerical simulations, e.g. Refs [4–8], have
confirmed that Marangoni flow in nonisothermal liquid
bridges of low-Pr fluids becomes oscillatory via a two-step
bifurcation; this implies that the flow is steady and
axisymmetric when the imposed temperature difference
between the liquid-bridge supports (DT) is small. As DT

increases, at the first critical value of DT (DTc1), its spatial
symmetry breaks down and a three-dimensional steady
flow arises; this is referred as stationary bifurcation. As DT
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Nomenclature

As ¼ L/R aspect ratio
Am

i eigenvector for velocity
A0

m
i normalized eigenvector for velocity

ai(t) time-dependent coefficient of characteristic
mode

Bm
i eigenvector for temperature

B0
m
i normalized eigenvector for temperature

bi(t) coefficient of characteristic mode
CV

m;n time-correlation matrix for velocity
CY

m;n time-correlation matrix for temperature
D flow domain and integral domain
L liquid-bridge length
M number of the important modes
m azimuthal wave number
N number of snapshots
T temperature
Th temperature of hot end
Tc temperature of cold end
DT ¼ (Th+Tc)/2 temperature scale
T0 ¼ R/V0 time scale
PL long-axis symmetry plane of steady flow

(m ¼ 2)
PS short-axis symmetry plane of steady flow

(m ¼ 2)
PSY symmetry plane of steady flow (m ¼ 1)
Pr ¼ n/a Prandtl number
p0 ¼ rV 2

0 pressure scale
p dimensionless pressure

R liquid-bridge radius and length scale
Re ¼ sTj jDTR=rn2 capillary Reynolds number
x ¼ (r, y, z) cylindrical coordinate system
V 0 ¼ sTj jDT=m velocity scale
V ¼ (Vr,Vy,Vz) dimensionless velocity vector

Greek letters

t dimensionless time
t0 quasi-steady oscillation period
Y ¼ (T�Tm)/DT dimensionless temperature
n kinematic viscosity
r density
a thermal diffusivity
sT temperature coefficient of surface tension
l eigenvalue
F normalized eigenfunction
e ¼ (Re�Rec2)/Rec2 normalized distance from Rec2

Superscripts

m, n mth, nth component
V velocity related
Y temperature related

Subscripts

i, j ith, jth component
m, n mth, nth component
r, y, z r, y, and z directions
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increases further, at the second critical value of DT (DTc2),
a time-dependent three-dimensional flow sets in. Recently,
a numerical benchmark work [9] concerning the first
bifurcation of the Marangoni flow in liquid bridges of
low-Pr fluids was devoted jointly by nine groups from
several countries. However, the corresponding benchmark
results on the second bifurcation to oscillatory Marangoni
flow were not available in Ref. [9].

In our previous numerical studies [10–13], the general
features of the oscillatory Marangoni flow in liquid bridges
of low-Pr fluids in microgravity were systematically
investigated over a wide range of aspect ratios (As) from
0.6 to 2.2, and the corresponding stability map for low-Pr

fluid was proposed [13]. The results indicated that the
critical azimuthal wave number (m) of the steady three-
dimensional Marangoni flow depends strongly on As, e.g.
m ¼ 1 in long liquid bridges of As ¼ 2.0, m ¼ 2 in
intermediate liquid bridges of As ¼ 1.4 and 1.0, and
m ¼ 3 in shorter liquid bridges of As ¼ 0.6. These results
qualitatively agree with the empirical correlation [1],
namely, mE2/As. For the oscillatory Marangoni flow at
slightly supercritical conditions, the flow field F(x, t) can be
characterized as the superposition of the time-dependent
three-dimensional velocity or temperature disturbances
F0(x, t) onto time-averaged steady (basic) fields
F̄ ðxÞ : F ðx; tÞ ¼ F̄ ðxÞ þ F 0ðx; tÞ. The basic fields have the
same characteristic azimuthal wave number (m) as the
corresponding three-dimensional steady flow, and the time-
dependent velocity and temperature disturbances may
exhibit complex behaviors. However, the detailed spatio-
temporal structures of the oscillatory velocity and tem-
perature disturbances of Marangoni flows in liquid bridges
of low-Pr fluids remain largely unknown.
Proper orthogonal decomposition (POD) analysis [14] is

a rigorous procedure for extracting a basis of characteristic
modes from sampled time evolution signals. These modes
are the eigenfunctions of an integral operator based on the
spatial correlation function. They are shown to form an
orthogonal basis for the function space in which the
process resides and to represent this process in the most
efficient way. However, the direct application of POD to a
discretized three-dimensional flow problem involves ex-
tremely heavy computational tasks because the dimension
of the spatial correlation matrix corresponds to the mesh
number in the direct numerical simulation. A more
accessible approach is the method of snapshots [15]. This
method, which invokes the ergodic hypothesis, can reduce
the computational task to a more tractable eigenproblem
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of a size equal to the snapshot number of the flow field
obtained through direct numerical simulation. An overview
of POD and its applications can be found in Refs. [16,17].
However, POD analyses on the oscillatory Marangoni flow
in liquid-bridge configurations are still lacking.

In the present study, the POD analysis using the method
of snapshots was applied to the oscillatory Marangoni
flows in half-zone liquid bridges of Pr ¼ 0.01 and As ¼ 1.0,
1.4, and 2.0 at certain Reynolds numbers. A series of
characteristic modes and their temporal expansion coeffi-
cients were extracted from the oscillatory velocity and
temperature disturbances. Through the analyses of the
spatial structures of the characteristic modes and their
temporal behaviors, the present study aims to obtain the
details of the spatio-temporal structures of the three-
dimensional oscillatory velocity and temperature distur-
bances.
2. Problem statement

Fig. 1 shows the schematics of a typical half-zone liquid
bridge model adopted in the present study. The adiabatic
melt-free surface is assumed to be nondeformable and
cylindrical in a microgravity condition. The origin of the
cylindrical coordinate is located at the center of the lower
disc. The fluid with Pr ¼ 0.01 is representative of typical
semiconductor melts or liquid metals and is assumed to be
an incompressible Newtonian fluid with constant proper-
ties. The corresponding fundamental equations are ex-
pressed in a dimensionless form as follows:

r � V ¼ 0, (2.1)

qV

qt
þ V � rV ¼ �rpþ

1

Re
r2V , (2.2)

qY
qt
þ V � rY ¼

1

Re Pr
r2Y. (2.3)
Fig. 1. Schematics of the half-zone liquid bridge model.
The boundary conditions are as follows:
At the free surface (r ¼ 1):

Vr ¼ 0; r
q
qr

Vy

r

� �
¼ �

1

r

qY
qy
;

qV z

qr
¼ �

qY
qz
;

qY
qr
¼ 0.

(2.4)

At the upper cold disc (z ¼ As):

V ¼ 0; Y ¼ �0:5. (2.5)

At the lower hot disc (z ¼ 0):

V ¼ 0; Y ¼ 0:5. (2.6)

The fundamental equations are discretized by the
finite control-volume method based on a staggered grid.
Fig. 2. Projections of basic flow and thermal fields onto the z ¼ 0.5As

plane: (a) 2P oscillatory flow, (b) 2T oscillatory flow and (c) 1T oscillatory

flow (gray color in the flow-field plots denotes the axial velocity).
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Fig. 3. Projections of flow and thermal fields of 2P oscillatory flow onto

the z ¼ 0.5As plane for a quasi-steady oscillation period at intervals of

t0/4 (gray color in the flow-field plots denotes the axial velocity).

Fig. 4. Projections of velocity and temperature disturbances of the 2P

oscillatory flow onto the z ¼ 0.5As plane for a quasi-steady oscillation

period at intervals of t0/4 (gray color in the flow-field plots denotes the

axial velocity).

K. Li et al. / Journal of Crystal Growth 307 (2007) 155–170158
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Nonuniform grids in radial and axial directions are
adopted to increase the resolution near the bound-
ary. The details of the numerical methods were described
in Refs. [10–13] and the code validation can be found in
Ref. [10].

3. POD using the method of snapshots

The practical procedures for POD using the method of
snapshots that was applied in the present study are
described here.

The primary variables V(x, t) and Y(x, t) obtained
through the N snapshots are decomposed into time-
averaged parts, V̄ ðxÞ and ȲðxÞ, and time-varying parts,
V 0ðx; tÞ and Y0ðx; tÞ, i.e.,

V ðx; tÞ ¼ V̄ ðxÞ þ V 0ðx; tÞ; Yðx; tÞ ¼ ȲðxÞ þY0ðx; tÞ.
(3.1)

The two time-correlation matrices CV
m;n and CY

m;n are then
constructed from the velocity and temperature samples,
respectively, as follows:

CV
m;n ¼

1

N
V 0ðx; tmÞ;V

0ðx; tnÞð Þ; m; n ¼ 1; 2; . . . ;N, (3.2)

CY
m;n ¼

1

N
Y0ðx; tmÞ;Y0ðx; tnÞð Þ; m; n ¼ 1; 2; . . . ;N. (3.3)

Here, the outer parentheses represent the inner product;
the velocity and temperature are treated separately
during the construction of the time-correlation matrices
[18–20].

The eigenvalues lV
i and lYi associated with the above

matrices and their corresponding eigenvectors Am
i and Bm

i

can be calculated, which gives

CV
m;nAn

i ¼ lV
i Am

i ; CV
m;nAn

i ¼ lV
i Am

i ; m ¼ 1; 2; . . . ;N.

(3.4)

Finally, the characteristic modes (also known as empir-
ical eigenfunctions) FV

i ðxÞ and FY
i ðxÞ (here normalized) are
Table 1

Eigenvalues of major characteristic modes of velocity and temperature disturb

Eigenfunction, i Velocity disturbance

Normalized eigenvalue, li Contribution to fluctu

energy by
P

li (%)

1 0.5024 50.236

2 0.4199 92.228

3 4.5550� 10�2 96.783

4 2.5539� 10�2 99.337

5 2.8379� 10�3 99.621

6 2.5162� 10�3 99.873

7 5.7302� 10�4 99.930

8 4.2220� 10�4 99.973

9 1.3524� 10�4 99.986

10 8.2950� 10�5 99.994
obtained as linear combinations of the time-varying parts

FV
i ðxÞ ¼

XN

m¼1

A0
m
i V 0ðx; tmÞ; FY

i ðxÞ ¼
XN

m¼1

B0
m
i Y
0ðx; tmÞ

(3.5)

with A0
m
i ¼ Am

i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lV

i N
PN

m¼1ðA
0m
i Þ

2
q

and B0
m
i ¼ Bm

i =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lYi N

PN
m¼1ðB

0m
i Þ

2
q

:

On the other hand, the time-varying parts V(x, t) and
Y(x, t) can be reproduced in terms of these characteristic
modes as

v0ðx; tÞ ¼
XMV

i¼1

aiðtÞFV
i ðxÞ; Y0ðx; tÞ ¼

XMY

i¼1

biðtÞFY
i ðxÞ,

(3.6)

where ai(t) and bi(t) are time-dependent coefficients; MV

and MY are the numbers of characteristic modes retained
in the expansion for velocity and temperature, respectively.
Usually, MV and MY are much smaller than the snapshot
number N, and the accuracy of the reconstruction can be
improved by increasing MV and MY. When MV ¼MY ¼

N, the original sampled signals can be reproduced exactly,
with aiðtÞ ¼ NlV

i A0
m
i and biðtÞ ¼ NlT

i B0
m
i .

4. Results

In our previous numerical studies [10–13], we reported
three types of oscillatory velocity and temperature dis-
turbances, i.e., ‘‘P’’, ‘‘T’’, and ‘‘R’’, which were classified
based on the time-dependent deformations of flow and
thermal fields in the midplane of the liquid bridge. ‘‘P’’
represents the disturbance exhibiting a pendulum-like
pulsating motion across the axis of the liquid bridge, ‘‘T’’
represents the disturbance accompanying the twisting (or
torsional) motion of one of the symmetry axes of the basic
fields, and ‘‘R’’ represents the bulk rotational motion of the
basic fields about the axis of the liquid bridge. Thus, the
ances for Pr ¼ 0.01, As ¼ 1.0, and Re ¼ 8000

Temperature disturbance

ation Normalized eigenvalue, li Contribution to fluctuation

energy by
P

li (%)

0.8879 88.787

6.3906� 10�2 95.178

3.8132� 10�2 98.990

8.4547� 10�3 99.836

7.9348� 10�4 99.915

6.3905� 10�4 99.980

1.1151� 10�4 99.990

5.9710� 10�5 99.996

1.9264� 10�5 99.998

1.0053� 10�5 99.999
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corresponding oscillatory Marangoni flows are denoted as
the disturbance types combined with the critical azimuthal
wave number of the basic fields, e.g. (2P), (2T), and (2R)
Fig. 5. Projections of the major velocity and temperature characteristic

modes of the 2P oscillatory flow onto the z ¼ 0.5As plane (gray color in

the flow-field plots denotes the axial velocity).
for m ¼ 2. The aforementioned characteristics of the
oscillatory Marangoni flows are analogous to those in
liquid bridges of high-Pr fluids. However, the instability
mechanism for low-Pr fluids is hydrodynamic in nature
and fundamentally different from that for high-Pr fluids,
which is due to hydrothermal waves [1].
In present study, three cases, i.e., (1) Pr ¼ 0.01, As ¼

1.0, Re ¼ 8000; (2) Pr ¼ 0.01, As ¼ 1.4, Re ¼ 6500; and (3)
Pr ¼ 0.01, As ¼ 2.0, Re ¼ 3500, were investigated. Cases 1
and 2 represent liquid bridges of intermediate length, and
the third case represents a long liquid bridge. The second
critical Reynolds numbers for half-zone liquid bridges of
Fig. 6. Iso-surfaces of the major characteristic modes of 2P oscillatory

flow: (a)–(d): the velocity characteristic modes and (e)–(h) the temperature

characteristic modes.
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Pr ¼ 0.01 are Rec2 ¼ 6650 for As ¼ 1.0, Rec2 ¼ 4628 for
As ¼ 1.4, and Rec2 ¼ 2865 for As ¼ 2.0 [13]. Thus, the
Reynolds number for each case is slightly supercritical, and
the corresponding saturated oscillatory Marangoni flow
reaches the quasi-steady states (periodic oscillation with
constant amplitude). Data sets of the flow and thermal
fields covering three periods of the quasi-steady oscillations
were selected as the sampled time evolution signals. For
each case, totally 120 snapshots were taken from the signal
with equal time interval between two successive snapshots.
POD analysis using the method of snapshots was
conducted on the sampled signals, and the results are
described in the following sections.

4.1. Case 1: Pr ¼ 0.01, As ¼ 1.0, Re ¼ 8000, and e ¼ 0.2

For the present case, the corresponding three-dimen-
sional steady flow is m ¼ 2 [10], and the flow and thermal
fields are mirror symmetric with respect to two orthogonal
planes, i.e., the meridian planes consisting of the long and
short axes of the saddle-shaped vortex core (denoted by PL
Fig. 7. Temporal expansion coefficients of the major characteristic modes for

characteristic modes.
and PS) (see Fig. 2a). The saturated quasi-steady oscilla-
tory Marangoni flow is of the (2P) type. Fig. 3 shows the
oscillatory flow and thermal fields in a plane at z ¼ 0.5As
at four different instants during an oscillation period.
Following the procedures described in Section 3, the basic
flow and thermal fields show the similar characteristics as
the three-dimensional steady flow of m ¼ 2 as shown in
Fig. 2a. During the oscillation period, the velocity
disturbance moves back and forth along PS across the
axis of the liquid bridge; this disturbance is accompanied
by pairs of intense vortices (with every pair having the
opposite vorticity with regard to the previous pair) that are
annihilated and recreated periodically around r ¼ 0.5
along PL (see Fig. 4). Correspondingly, the hot spots and
cold spots of the temperature disturbance expand and
contract periodically and occupy the same spatial positions
alternately. Both the velocity and temperature disturbances
show a mirror symmetry with respect to PS, indicating the
dominant odd azimuthal wave numbers of the distur-
bances. It is also noted that on the free surface of the fluid,
the azimuthal component of the velocity disturbance is
the 2P oscillation: (a) velocity characteristic modes and (b) temperature
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Fig. 8. Projections of flow and thermal fields of the 2T oscillatory flow

onto the z ¼ 0.5As plane for a quasi-steady oscillation period at intervals

of t0/4 (gray color in the flow-field plots denotes the axial velocity).

Fig. 9. Projections of velocity and temperature disturbances of the 2T

oscillatory flow onto the z ¼ 0.5As plane for a quasi-steady oscillation

period at intervals of t0/4 (gray color in the flow-field plots denotes the

axial velocity).

K. Li et al. / Journal of Crystal Growth 307 (2007) 155–170162
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directed from the cold spots to the hot spots, which reflects
the hydrodynamic nature of the instability. The velocity
and temperature disturbances can be decomposed into a
series of characteristic modes (eigenfunctions) by POD
analysis. Table 1 shows the 10 largest eigenvalues normal-
ized by requiring

PN
1 li ¼ 1 for the velocity and tempera-

ture disturbances, respectively; they are real, positive, and
ordered by their magnitude which represents the contribu-
tion of the corresponding characteristic mode to the
velocity (temperature) fluctuation energy [21]. For both
velocity disturbance and temperature disturbance, the first
four characteristic modes, namely, major modes, totally
capture more than 99% of the fluctuation energy. For the
velocity disturbance, the major modes can be divided into
two pairs based on the eigenvalue magnitude, and the first
pair is the most energetic which captures more than 90% of
the fluctuation energy. The energy distribution among the
major modes for the temperature disturbance is different,
and the first characteristic mode is the most energetic,
which captures about 90% of the fluctuation energy alone.
Figs. 5 and 6 show the major velocity and temperature
modes and their spatial structures. Within the most
energetic velocity characteristic mode pair, the two modes
mirror symmetric to PS represent the large scale features of
the velocity disturbance; they both have strong velocity
components parallel to PS with a phase shift of p at the
central region of liquid bridge (see Figs. 5a, b and 6a, b),
where the velocity disturbance is most vigorous. Within the
other velocity characteristic mode pair (see Figs. 5c, d and
6c, d), the two modes symmetric to both PL and PS provide
the secondary features of the velocity disturbance over the
whole liquid bridge. The major modes of the temperature
disturbance show the similar symmetry characteristics as
the major velocity modes.

The temporal expansion coefficients ai(t) and bi(t) (in
Eq. (3.6)) of the characteristic modes can be obtained
through the direct projection of the sampled signals onto
the characteristic modes. The temporal expansion coeffi-
cient profiles for the major velocity and temperature modes
in the present case are shown in Fig. 7; these profiles are
Table 2

Eigenvalues of major characteristic modes of velocity and temperature disturb

Eigenfunction, i Velocity disturbance

Normalized eigenvalue, li Contribution to fluctu

energy by
P

li (%)

1 0.4879 48.789

2 0.4347 92.259

3 3.5095� 10�2 95.769

4 3.3516� 10�2 99.120

5 3.6923� 10�3 99.490

6 3.5015� 10�3 99.840

7 6.4880� 10�4 99.905

8 6.2786� 10�4 99.967

9 1.1525� 10�4 99.979

10 1.1417� 10�4 99.999
sinusoidal with a constant amplitude and frequency.
Within the most energetic velocity mode pair, the two
modes evolve with profiles of comparable amplitude and a
frequency (or basic frequency) identical to that of the
quasi-steady 2P Marangoni oscillatory flow with a fixed
phase shift of p/4 (see Fig. 7a), the resultant flow at the
central region of the liquid bridge alternates between
directions parallel and antiparallel to PS and induces a
pulsating velocity disturbance of the same frequency. On
the other hand, the other mode pair evolves with profiles of
much smaller amplitudes and overtone frequencies. Their
interaction, however, only modifies the velocity distur-
bances locally due to their symmetry characteristics. The
aforementioned results imply that the pulsating oscillatory
disturbance for the present case originates from the interior
of the liquid bridge. Moreover, the contribution of the
characteristic modes to the fluctuation energy is a function
of the amplitude and frequency of the temporal expansion
coefficient profile. The modes evolving with profiles of
large amplitude and low frequency make major contribu-
tions to the fluctuation energy and thus determine the basic
frequency of the resulting oscillatory disturbance. The
behaviors of the temporal expansion coefficients for the
temperature characteristic modes are similar, except that
the profile amplitude of the dominant temperature
characteristic mode overwhelms the others as expected.

4.2. Case 2: Pr ¼ 0.01, As ¼ 1.4, Re ¼ 6500, and e ¼ 0.4

The saturated quasi-steady oscillatory Marangoni flow for
the present case is of the (2T) type [11]. Fig. 8 shows the flow
and thermal fields in a plane at z ¼ 0.5As at four different
instants during a quasi-steady oscillation period. The super-
position of a torsional disturbance induces the backward and
forward motion of the flow and thermal fields in the
azimuthal direction with respect to PL. As shown in
Fig. 2b, the basic flow and thermal fields, which are
symmetric to both PL and PS, are also similar to the three-
dimensional steady flow of m ¼ 2. Both the velocity and
temperature disturbances are characterized by dominant
ances for Pr ¼ 0.01, As ¼ 1.4, and Re ¼ 6500

Temperature disturbance

ation Normalized eigenvalue, li Contribution to fluctuation

energy by
P

li (%)

0.7471 74.713

0.2034 95.050

3.0617� 10�2 98.112

1.7723� 10�2 99.884

5.2236� 10�4 99.937

3.5723� 10�4 99.972

1.4593� 10�4 99.987

5.1510� 10�5 99.992

3.8252� 10�5 99.996

1.4697� 10�5 99.999
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Fig. 10. Projections of the major velocity and temperature characteristic

modes of the 2T oscillatory flow onto the z ¼ 0.5As plane (gray color in

the flow-field plots denotes the axial velocity).

K. Li et al. / Journal of Crystal Growth 307 (2007) 155–170164
disturbances with even azimuthal wave numbers (see Fig. 9),
which are different from the aforementioned pulsating
disturbance in the (2P) case. Table 2 shows the 10 largest
normalized eigenvalues of the characteristic modes of the
velocity disturbance and temperature disturbance obtained
through the POD analysis. For the velocity disturbance, the
Fig. 11. Iso-surfaces of the major characteristic modes of 2T oscillatory

flow: (a)–(d) the velocity modes and (e)–(h) the temperature characteristic

modes.
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eigenvalues form pairs, and the eigenvalues in each pair are
approximately equal. Similar to the case of the (2P)
oscillatory Marangoni flow, the first two pairs of character-
istic modes totally capture more than 99% of the fluctuation
energy, and the first pair is the most energetic which captures
more than 90% of the fluctuation energy. For the
temperature disturbance, the contribution to the temperature
fluctuation energy of the first characteristic mode is also
dominant. However, the percentage, which is about 75%, is
less than the dominant temperature characteristic mode in the
case of the (2P) oscillatory Marangoni flow. Within the most
energetic characteristic velocity mode pair (see Figs. 10a, b
and 11a, b), each mode consists of two diagonal pairs of
major vortices along PL and PS. The vortices in each pair are
antisymmetric with respect to the axis of the liquid bridge and
have the same vorticity direction. The velocity at the central
region of the liquid bridge has a strong component
approximately perpendicular to PL and PS. However, the
vorticity directions of the vortex pairs along PL of the two
modes are opposite to each other. When the two modes
evolve with temporal expansion coefficient profiles of the
Fig. 12. Temporal expansion coefficient of the major characteristic modes for

characteristic modes.
same basic frequency with a fixed phase shift of p/4 (see
Fig. 12), the resulting velocity component perpendicular to
PL periodically enhances and counteracts the flow circulating
about the axis of the liquid bridge; the velocity component
also induces the alternate expansion and contraction of
the diagonal pairs of vortices in the azimuthal direction.
Correspondingly, the flow field shows a torsional oscillatory
motion of the same frequency with respect to PL. Within
the second most energetic velocity characteristic mode pair
(see Figs. 10c, d and 11c, d), the two modes symmetric to
both PL and PS provide the secondary features of the
velocity disturbance. The interaction of the two modes only
modifies the velocity disturbance locally due to their
symmetry with regard to both PL and PS. The major modes
of the temperature disturbance show the same symmetry
characteristics as those of the velocity disturbance. Similar to
the velocity disturbance, the two characteristic modes
evolving with profiles of comparable amplitudes and a basic
frequency identical to the (2T) oscillatory Marangoni flow
make a major contribution to the temperature fluctuation
energy.
the 2T oscillations: (a) velocity characteristic modes and (b) temperature
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Fig. 13. Projections of flow and thermal fields of the 1T oscillatory flow

onto the z ¼ 0.5As plane for a quasi-steady oscillation period at intervals

of t0/4 (gray color in the flow-field plots denotes the axial velocity).

Fig. 14. Projections of velocity and temperature disturbances of the 1T

oscillatory flow onto the z ¼ 0.5As plane for a quasi-steady oscillation

period at intervals of t0/4 (gray color in the flow-field plots denotes axial

velocity).
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Table 3

Eigenvalues of major characteristic modes of velocity and temperature disturbances for Pr ¼ 0.01, As ¼ 2.0, and Re ¼ 3500

Eigenfunction, i Velocity disturbance Temperature disturbance

Normalized eigenvalue, li Contribution to fluctuation

energy by
P

li (%)

Normalized eigenvalue, li Contribution to fluctuation

energy by
P

li (%)

1 0.5059 50.587 0.7103 71.030

2 0.4569 96.274 0.2775 98.783

3 1.7682� 10�2 98.042 6.3910� 10�3 99.421

4 1.7184� 10�2 99.761 5.5394� 10�3 99.976

5 1.0788� 10�3 99.869 9.6955� 10�5 99.985

6 1.0665� 10�3 99.975 9.2826� 10�5 99.995

7 9.3990� 10�5 99.985 4.3849� 10�5 99.998

8 9.3291� 10�5 99.999 2.9853� 10�6 99.999
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4.3. Case 3: Pr ¼ 0.01, As ¼ 2.0, Re ¼ 3500, and e ¼ 0.22

The saturated quasi-steady oscillatory Marangoni flow
in the present case is of the (1T) type. Fig. 13 shows the
flow and thermal fields in a plane at z ¼ 0.5As at four
different instants during an oscillation period. The
torsional disturbance in the present case induces an
oscillatory motion in the flow and thermal fields in the
azimuthal direction with respect to the symmetry plane of
the basic flow and thermal fields of m ¼ 1 (denoted as PSY)
(see Fig. 2c). Fig. 14 shows the time evolution of velocity
and temperature disturbances over an oscillation period.
The flow circulating about the axis of the liquid bridge
periodically alters its orientation between anticlockwise
and clockwise directions; it is accompanied by an intense
vortex cell at the cold plume altering the flow orientation in
the reverse order. Table 3 shows the eight largest normal-
ized eigenvalues of the characteristic modes of the velocity
disturbance and temperature disturbance. For the velocity
disturbance, the first two pairs of characteristic modes
totally capture more than 99% of the fluctuation energy,
and the first pair is the most energetic. For the temperature
disturbance, the first characteristic mode makes the
dominant contribution to the temperature fluctuation
energy. Within the most energetic velocity characteristic
mode pair (see Figs. 15a, b and 16a, b), each mode consists
of two diagonal pairs of major vortices along PSY and
antisymmetric to PSY, and the velocity at the central region
has a strong component circulating about the axis of liquid
bridge. However, for the pairs of vortices along PSY, only
the intense vortices in the cold plume have opposite
vorticity directions, which is different from the (2T)
oscillatory Marangoni flow. When the two modes evolve
with temporal expansion coefficient profiles of the basic
frequency with a fixed phase shift (see Fig. 17), the
resulting vortices in the cold plume, which alter the flow
orientation between anticlockwise and clockwise directions
alternately, enhance and reduce the flow periodically
circulating about the axis of the liquid bridge. The cold
plume vortices also induce the alternate expansion and
contraction of the vortex pair antisymmetric to PSY.
Correspondingly, the flow field shows a torsional oscilla-
tory motion of the same frequency with respect to the half
of PSY in the cold plume. The other two major velocity
characteristic modes (see Figs. 15c, d and 16c, d) are both
symmetric to PSY. Their interaction only modifies the
velocity disturbance locally.

4.4. Dependency on the signal length and the number of

snapshots

In the present study, the sampled time evolution signals
of the flow and thermal fields covered three periods of the
quasi-steady oscillations to show the periodic evolutions of
the temporal expansion coefficients ai(t) and bi(t). It is
noted that for purely quasi-steady oscillation, the signal
length of one quasi-steady period is enough. Moreover, we
collected different samples from the same signal by
changing the number of snapshot, i.e., N ¼ 240, 120, and
60. It is found that they gave the similar POD results except
for N ¼ 60. Thus, a sufficient small time interval between
snapshots is required for accuracy of the POD results.
However, it is unnecessary to strongly increase the number
of snapshots to avoid the increasing computation task.

5. Conclusions

In order to visualize the details of the spatio-temporal
structures of three-dimensional oscillatory disturbances,
POD analysis using the method of snapshots was applied
to the oscillatory Marangoni flows in low-Pr (Pr ¼ 0.01)
liquid bridges of As ¼ 1.0, Re ¼ 8000; As ¼ 1.4,
Re ¼ 6500; and As ¼ 2.0, Re ¼ 3500. At slightly super-
critical conditions, the saturated oscillatory Marangoni
flows are quasi-steady and correspond to (2P), (2T), and
(1T) types. The POD results reveal that the oscillatory flow
and temperature disturbances can be decomposed into a
series of characteristic modes (eigenfunctions). For the
Marangoni flow of different oscillatory types, the char-
acteristic modes of velocity and temperature disturbances
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Fig. 15. Projections of the major velocity and temperature characteristic

modes of the 1T oscillatory flow onto the z ¼ 0.5As plane (gray color in

the flow-field plots denotes axial velocity).

Fig. 16. Iso-surfaces of the major characteristic modes of 1T oscillatory

flow: (a)–(d) the velocity characteristic modes and (e)–(h) the major

temperature modes.

K. Li et al. / Journal of Crystal Growth 307 (2007) 155–170168
have common features. Among the characteristic modes,
only several modes with large eigenvalues, i.e., major
modes, are important; these capture more than 99% of the
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Fig. 17. . Temporal expansion coefficients of the major characteristic modes for the 1T oscillations: (a) velocity characteristic modes and (b) temperature

characteristic modes.
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fluctuation energy. The major characteristic modes evolve
with the temporal expansion coefficient profiles of large
amplitude and low frequency make crucial contributions to
the fluctuation energy, and thus determine the basic
frequency of the resulting oscillatory flow. Moreover, the
spatio-temporal structure of the oscillatory disturbance
reflects the spatial characteristics of the most energetic
velocity characteristic mode pair, which are unique for
different oscillation types. It also implies that the oscilla-
tory disturbance, which is hydrodynamic in nature,
primarily originates from the interior of the liquid bridge.
The interaction of other major velocity modes only
modifies the disturbances locally due to their symmetry
characteristics, i.e., the secondary spatio-temporal struc-
tures of the disturbance. To verify the conclusions,
summations of the most energetic velocity and temperature
characteristic modes with their temporal expansion coeffi-
cients are adopted to reproduce the original oscillatory
velocity and temperature disturbances, and the results are
in a good agreement.
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