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Abstract

In order to explore a prior warning to catastrophic rupture of heterogeneous media, like rocks, the present study inves-
tigates the relationship between surface strain localization and catastrophic rupture. Instrumented observations on the evo-
lution of surface strain field and the catastrophic rupture of a rock under uniaxial compression were carried out. It is found
that the evolution of surface strain field displays two phases: at the early stage, the strain field keeps nearly uniform with
weak fluctuations increasing slowly; but at the stage prior to catastrophic rupture, a certain accelerating localization devel-
ops and a localized zone emerges. Based on the measurements, an analysis was performed with local mean-field approxi-
mation. More importantly, it is found that the scale of localized zone is closely related to the catastrophic rupture strain
and the rupture strain can be calculated in accord with the local-mean-field model satisfactorily. This provides a possible
clue to the forecast of catastrophic rupture.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The catastrophic rupture of heterogeneous brittle
media, like rocks and the earth’s crust, presents
complexity [1–9], especially exhibits sample-specific-
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ity [7–9]. It implies a great diversity of rupture
thresholds for samples with identical initial macro-
scopic properties. This results in a tremendous diffi-
culty in the prediction of catastrophic rupture. A
possible strategy to deal with the problem is to
search for some common, but specific precursors
of catastrophe.

Numerous observations in laboratory compres-
sion tests on rocks and concrete revealed that the
deformation becomes localized somewhere in a
specimen ahead of the peak load [10–13]. On the
other hand, it is well known that as soon as the
.
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elastic energy stored in the testing system, like the
machine, becomes greater than the fracture energy
of the specimen, the catastrophic rupture will occur
[12,14,15]. However, it was observed that even for
the so called stiff testing machine, catastrophic rup-
ture still can happen [10–13]. It is supposed that this
should be attributed to the localization of damage
and deformation of specimen. But, the problem
how the localization is related to the every value
of catastrophic rupture strain remains open till
now.

The strain localization has been analyzed as a
bifurcation in the constitutive description of homo-
geneous deformation [16,17]. On the other hand, it
was found recently that for heterogeneous media
macroscopically localized damage may serve as an
early precursor to rupture [18–20]. However, these
previous works precludes post-localization analysis,
hence unable to provide a definite relation between
localization and rupture. In fact, no matter how thin
it may be, a localized zone (or fracture zone) has its
own width [21,22]. Therefore, to unveil the relation-
ship between the localization and rupture is really a
challenge and opportunity.

The objective of the present work is to elaborate
the dependence of catastrophic transition of speci-
men on localized zone. Firstly, the results are out-
lined based on global mean-field approximation
[23–25] and the driven nonlinear threshold model
[26]. Then, an instrumented observation of spatio-
temporal evolution of surface strain and cata-
strophic rupture of rock specimens under uniaxial
compression is reported. As anticipated, the results
based on global mean-field model deviate far from
the observed values. This means that the global
mean-field approximation is insufficient to represent
rupture of a specimen because localization develops
severely ahead of rupture. Therefore, our interests
were focused on the formation of localization and
the determination of the localized zone width.
Actually, the evolution of surface strain pattern
reflects the damage evolution of the sample
and the width of damage localization zone is one
of important parameters to predict the occurrence
of rupture. Then, the analysis based on local-
mean-field approximation, i.e., applying mean-field
approximation to the localized zone and its sur-
rounding area separately, is introduced. According
to the localized zone scale, the rupture strain in
experiment can be calculated according to the anal-
ysis and the calculated and measured strains at rup-
ture agree very well with each other.
2. Rupture prediction based on global mean-field

approximation

In order to formulate the catastrophic rupture
in heterogeneous media easily, the analysis is
started with global mean-field approximation
[23–25], To analyze the effects of mesoscopic heter-
ogeneity, the Weibull probability distribution func-
tion [27]

hðrcÞ ¼
m
g

rc

g

� �m�1

exp � rc

g

� �m� �
ð1Þ

is adopted to characterize the strength distribution
of mesoscopic elements in this model, where rc is
the strength of mesoscopic elements, g is propor-
tional to mean strength, and m is the shape para-
meter (Weibull modulus) characterizing the degree
of heterogeneity. For an elastic mesoscopic element,
the strain threshold is

ec ¼
rc

E0

; ð2Þ

where E0 is the elastic modulus of pristine state. So
the expression (1) can be rewritten as

hðecÞ ¼
m
g

E0ec

g

� �m�1

exp � E0ec

g

� �m� �
: ð3Þ

In light of the driven nonlinear threshold model
[26], once an element reaches its stress threshold rc

(strain ec), it is assumed to be damaged, Accord-
ingly, the continuum damage D can be defined
and expressed as

DðeÞ ¼
Z e

0

hðecÞdec ¼ 1� exp � E0e
g

� �m� �
; ð4Þ

where e denotes the nominal strain of the specimen.
Here, global mean-field approximation is adopted,
i.e., the fields of stress, strain and damage are as-
sumed to be uniform, approximately. Then, accord-
ing to continuum damage mechanics, the relation
between stress and strain is

r ¼ E0ð1� DðeÞÞe: ð5Þ

The combination of Eqs. (4) and (5) gives the stress–
strain relation,

rðE0e=gÞ ¼ E0eeð�ðE0e=gÞmÞ: ð6Þ

The catastrophic rupture occurs when the slope of
load-displacement curve of a specimen is equal to
the unloading stiffness �kmachine of test machine.
So, if the fields of stress, strain and damage keep
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uniform until catastrophic rupture, the catastrophe
condition can be expressed as [12,14,15]

E0A
l
ð1� DðeÞ � ehðeÞÞ ¼ �kmachine: ð7Þ

where A and l are the cross area and the height of a
specimen respectively. The left side of Eq. (7) is the
slope of load-displacement curve of a specimen.

Once the probability distribution function of
mesoscopic strength hðecÞ can be determined from
experimental data, one can calculate the rupture
strain eF;G according to Eq. (7), where subscripts F
and G denote rupture and global mean-field
approximation, respectively.

In the following it will be described that how to
experimentally determine the parameters m, g and
E0 involved in the model [28]. Firstly, the slope of
the experimental r� e curve can be calculated
(Fig. 1). Generally, the early increase in the mea-
sured dr=de is due to the elastic closing of cracks
[16,29] and has little influence on the following ana-
lysis. So, the point Q corresponding to the
maximum slope of the r� e curve, is chosen as
the starting point where the above mentioned model
can be used, and an assumption is adopted that
ðdr=deÞQ is approximately equal to E0. Then, it is
supposed that the part of r� e curve lower than
point Q is linear elastic with E0 (a straight line)
and shift the combined r� e curve, i.e. the mea-
sured part beyond point Q and the elastic part with
E0, horizontally till the origin, (see Fig. 1). There-
fore, a processed integrated experimental nominal
stress–strain curve (the dash line in Fig. 1) is
obtained.
Fig. 1. Stress–strain curve for nominal test data raw test data.
Now, the other two parameters m and g can be
obtained, by fitting the processed stress–strain curve
to Eq. (5) and minimizing the following function,

f ðm; g;E0Þ ¼
X

i

ðriðE0et=gÞ � ðrt=gÞiÞ
2
; ð8Þ

where et and rt are the processed experimental
nominal stress and strain respectively, and ri is
the normalized stress of the model (Eq. (6)). The
three fitting parameters of 6 specimens are shown
in Table 1 respectively. With these parameters, a
theoretical nominal stress–strain curve can be ob-
tained in accord with Eq. (6). The agreement be-
tween the calculated and experimental nominal
stress–strain curves appear quite good prior to the
peak stress (see Fig. 2). Meanwhile, the calculated
damage fraction at point Q is much less than that
at peak stress, e.g., for specimen 1, the former is
0.004 and the later is 0.216. So, the effects of dam-
age before point Q on the fitting parameters can be
ignored.

The catastrophe transition of a specimen is due
to the release of elastic energy stored in the testing
system, like the testing machine [12,14,15] In our
experiments, the stiffness kmachine of the loading
(including columns, hydraulics and platens) shows
slight variation in the test as shown in Table 1.

Now, the rupture strain eF;G of specimen can be
calculated based on the global mean-field model
and the stiffness kmachine of testing machine, by
means of Eq. (7). The calculated rupture strains
eF;G and their comparisons to the measured rupture
strains eF;m are shown in Table 1. Compared to the
measured values, the mean relative deviation of cal-
culated rupture strains in 6 tests is about 17%.
Clearly, the deviation is unacceptable in engineer-
ing. In particular, all the 6 calculated rupture strains
are greater than those of measured values, hence the
rupture forecast based on the global mean-field
approximation seems to be too rough, even
dangerous.

In fact, our experimental observations have dem-
onstrated clear deformation localization ahead of
rupture. Hence though the principle of rupture
occurrence owing to the release of elastic energy
stored in the testing system may remain valid, the
global mean-field approximation fails to the rupture
discussion. Therefore, it is necessary to pay special
attention on damage and deformation localization
experimentally and theoretically. In the following
sections, some detailed experimental observations
of deformation localization and the corresponding



Table 1
Model parameters and the calculated values of rupture strain

Specimens 1 2 3 4 5 6

Model parameters E0 ¼ 52:5 GPa E0 ¼ 52:5 GPa E0 ¼ 59:5 GPa E0 ¼ 90:5 GPa E0 ¼ 44:5 GPa E0 ¼ 78:5 GPa
g = 459 MPa g = 425 MPa g = 412 MPa g = 490 MPa g = 356 MPa g = 517 MPa
m ¼ 3:9 m ¼ 2:7 m ¼ 3:0 m ¼ 2:6 m ¼ 5:5 m ¼ 3:3

Machine stiffness (kN/mm) km ¼ 214:835 km ¼ 210:189 km ¼ 204:289 km ¼ 212:606 km ¼ 245:064 km ¼ 196:006
Localized zone scale c (mm) 6.7 7.9 7.9 6.9 7.1 6.3
Measured values of rupture

strain eF;m

0.00645 0.00655 0.00636 0.00515 0.00850 0.00634

Predicted values based on
global mean-field theory eF;G

0.00810 0.00839 0.00694 0.00661 0.00879 0.00682

Mean relative deviation 17%
Predicted values basing on

localized zone scale eF;L

0.00674 0.00694 0.00611 0.00606 0.00816 0.00633

Mean relative deviation 6%

Fig. 2. Stress–strain curve for nominal test data: dotted portion
fitted and solid portion processed.
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local-mean-field approximation for the rupture
forecast will be provided.
3. Experimental method for surface strain-field
measurement

Digital speckle pattern metrology [30,31] has
been widely applied to the measurement of defor-
mation of materials and structures. Also, digital
speckle correlation method (DSCM) [28,32] has
been applied to measure deformation field of rock.
In this paper, in order to explore the process from
localization to eventual rupture, a similar digital
speckle correlation method is adopted to examine
the spatio-temporal pattern of the surface deforma-
tion fields of specimens.
The uniaxial compressive experiments were per-
formed on granite. The testing machine is servo-
controlled and the specimens with dimensions of
20� 16� 40 mm3 were loaded at a constant rate
of 0.02 mm/min.

The digital speckle correlation method (DSCM)
was coordinated with the loading system in order
to detect the localization of deformation. The digital
image, acquired by a charge-coupled-device (CCD)
camera with a resolution of 768(H) and 576(V),
was immediately transmitted to image capturing
board on a personal computer and recorded on a
hard disk. After the experiment, the deformation
fields of each test were calculated by the image anal-
ysis software developed by the Department of Mod-
ern Mechanics, The University of Science and
Technology of China (USTC). The photographic
resolution is about 0.05 mm/pixel. Before testing,
calibration was carried out. The size of an element
used to calculate strain is taken to be 30 pixels.
The measured fluctuation of strain is less than
200 le, whilst the rupture strain is greater than
2000 le.
4. Experimental results for evolution and localization

of surface strain

In this section, as an example, the data of speci-
men 1 (Figs. 4–8) will be analyzed. In all figures of
this paper, the axis x is set as vertical to the eventual
rupture surface and its origin (x = 0) is just at the
rupture surface (Fig. 3). In addition, time t = 0
was set at the occurrence of the eventual rupture,
so the negative values, like t = �27 s (Fig. 4), means
the time lag ahead of the rupture. As shown in



Fig. 3. Schematic of reference axis.

Fig. 5. Distribution of strain fluctuation rate at various time.

Fig. 6. Spatio-temporal pattern of strain fluctuation.
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Fig. 4, the first principal strain ei ¼ eðxiÞ is the mean
strain of a slice (2 mm in thickness) parallel to rup-
ture surface at distance xi. And the distance x

between the middle of this slice and the eventual
rupture surface is named as the distance from
rupture surface. Strain fluctuation is defined as
ei � hei, where hei represents the average strain
of the whole specimen at the same time ðhei ¼PIðwholespecimenÞ

i ei=IÞ. Also, the derivative dðei�heiÞ=
dt denotes the rate of strain fluctuation.

Figs. 4 and 5 show the distribution of ei � hei and
dðei � heiÞ=dt on the whole surface (Fig. 3) of spec-
imen 1 at various times respectively. The fluctua-
tions of strain are random at early stage
(t = �27 s). Prior to rupture (from t = �1.2 s to
t = 0 s), significant strain localization develops adja-
cent to the plane x = 0.

A spatio-temporal pattern of the strain fluctua-
tion of specimen 1 is shown in Fig. 6. It is found that
there are two phases in the evolution of strain fields.
Fig. 4. Distribution of strain fluctuation at various time.
The duration of phase I is much longer than that of
phase II. In phase I, the strain is nearly homo-
geneous with weak fluctuations, and the strain
pattern evolves slowly. Afterwards, the nucle-
ation and accelerating development of localization
appear. This is phase II, which eventually leads to
a significantly localized zone, namely the rupture
surface.

In order to depict the accelerating evolution in
phase II, the spatio-temporal pattern of strain fluc-
tuation rate is shown in Fig. 7. From this figure, it is
clear that the strain fluctuation rate in phase II
increases rapidly in the localized zone with high
strain.

The formation of localized zone can be attributed
to the connection of spots with unstable develop-
ment of local strain. In order to identify the unstable
spots, the conditions
dðei � heiÞ
dt

> 0 and ðei � heiÞ > 0 ð9Þ



Fig. 7. Spatio-temporal pattern of strain fluctuation rate.

Fig. 8. Spatio-temporal pattern of unstable points on specimen.
The marks represent satisfaction of condition (9).

Fig. 9. Time-dependent range of the localized zone. The solid
square represents satisfaction of condition (9) afterwards.

Fig. 10. Model consisting of localized and non-localized zones.
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were used as the unstable development of local
strain. Fig. 8 shows a spatio-temporal pattern of
the unstable points on the whole specimen. The
marks in Fig. 8 represent the Spatio-temporal
state at which ei satisfies both ðei � heiÞ > 0 and
dðei�heiÞ

dt > 0. It can be observed that some unstable
points on the specimen may disappear outside local-
ized zone, whilst the others form a persistently local-
ized zone, as the enlarged figure (Fig. 9) shows.

Hence, the localized zone at time t can be defined
to be the region, where both ðei � heiÞ > 0 and
dðei�heiÞ

dt > 0 are satisfied afterwards. Then, the width
of localized zone can be determined accordingly.
Fig. 9 shows the process that the unstable points
in the localized zone become persistent when the
unstable points outside this zone become disappear.
The solid squares in Fig. 9 represent the spots,
where the above-mentioned inequalities are satisfied
afterwards. Therefore, the width of eventual
localized zone can be estimated to be 6.7 mm,
approximately, nearly one sixth of the specimen
dimension. In addition, the eventual rupture surface
forms within the localized zone.
5. Local-mean-field approximation based on damage

localization

When localization of deformation and/or dam-
age occurs, a specimen can be depicted as two parts,
see Fig. 10, i.e. a localized zone with going on defor-
mation and/or damage and a non-localized zone
with potential release of elastic energy. As before
the testing machine remains the other elastic part
with stiffness kmachine. At early stage, the same dam-
age develops in the two parts. But after localization,
the damage or deformation concentrates in the
localized part. When the release of the elastic energy
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stored in the machine as well as in the non-localized
part become greater than the fracture energy of the
localized part, a catastrophic rupture will appear.

In the following, a relation between the cata-
strophic rupture and the localized zone scale will
be derived, based on a driven nonlinear threshold
model and local-mean-field approximation. The
elastic modulus of pristine specimen is assumed to
be homogeneous and is made as unit. It is also
assumed that both the height of specimen l and
the area of specimen’s cross section A are unit.
Based on local-mean-field approximation, the dam-
age fraction of part 1 and part 2 can be expressed as

D1 ¼
Z e1

0

hðecÞdec; D2 ¼
Z e2

0

hðecÞdec; ð10Þ

where hðecÞ is initial probability distribution func-
tions of breaking threshold ec of mesoscopic ele-
ments for part 1 and part 2. hðecÞ is adopted as
Weibull distribution functions provided g is made
as unit, i.e:

hðecÞ ¼ mem�1
c e�em

c ; ð11Þ

and Eq. (10) can be rewritten as

D1 ¼
R e1

0
hðecÞdec ¼ 1� e�em

1

D2 ¼
R e2

0 hðecÞdec ¼ 1� e�em
2

)
; ð10 0gÞ

The strain of a specimen can be expressed with
the strain of these two parts as

e ¼ e1ð1� cÞ þ e2c; ð12Þ

where c ¼ l2

l ¼ 1� l1

l is the relative scale of localized
zone, l1 and l2 are the initial heights of part 1 and
part 2, respectively, and l ¼ l1 þ l2. Here, part 2
corresponds to the localized zone of damage.

The normalized constitutive relation and the
mechanical equilibrium condition can be expressed
as

r ¼ r1 ¼ ð1� D1Þe1 ¼ r2 ¼ ð1� D2Þe2: ð13Þ

At the early stage of loading the specimen is weakly
damaged and the strain field keeps uniform e1 ’ e2.
The localization point, denoted by e ¼ eL, is defined
that the damage becomes mainly concentrated in
one part, i.e., part 2, and no further damage will
occur in part 1. Thus, the damage fraction of part
1 is assumed to be a constant D1ðeLÞ ¼

R eL

0
hðecÞdec

(see Eq. (10) after the localization point.
The catastrophic rupture will appear at the

higher damaged part, i.e., part 2. Then the rupture
condition is that the slope of force–displacement
curve of the part 2 d½ð1� D2Þe2�=ðcde2Þ is equal to
a negative value �1=ðð1� cÞ=ð1� D1Þ þ 1=kmÞ, the
stiffness of the combination of testing machine and
part 1, i.e.

d½ð1�D2ðe2ÞÞe2�
cde2

¼� 1

ð1�cÞ=ð1�D1ðeLÞÞþ1=kmachine

;

ð14Þ

where the damage fractions D1 and D2 are deter-
mined by Eq. (10) respectively. Eq. (14) with Eq.
(10) gives the rupture strain of part 2 eF;2 as a func-
tion of kmachine, eL and c: eF;2 ¼ eF;2ðkmachine; eL; cÞ.
From Eqs. (12) and (13), the corresponding nominal
rupture strain eF;L can be derived as

eF;Lðkmachine;eL;cÞ

¼ ð1�D2ðeF;2ðkmachine;eL;cÞÞÞeF;2ðkmachine;eL;cÞ
1�D1ðeLÞ

ð1� cÞ

þ ceF;2ðkmachine;eL;cÞ; ð15Þ

where subscript L denotes local-mean-field approx-
imation. Clearly, the nominal rupture strain eF;L is
dependent on c, the scale of localized zone. In addi-
tion, Eq. (15) together with Eqs. (10 0), (11) and (14)
can give the calculated rupture strain eF;L.

Now, a case with shape parameter m = 3 is con-
sidered and its damage localization transition
appears at the maximum load. Subsequently, load-
ing and unloading appear in part 2 and part 1 sep-
arately. In this case, eL ¼ ermax. The dependence of
catastrophic rupture point on the scale of damage
localization zone is shown in Fig. 11 (c vs. e2) and
Fig. 12 (eF;L vs. c), where the normalized stiffness
of testing machine is taken as kmachine ¼ 1:433. It is
found that the nominal strain at catastrophic rup-
ture eF;L decreases with decreasing c. In other words,
the higher localization, i.e., the smaller scale of
localized zone, the higher risk of catastrophic
rupture.

It is noticeable that the damage localization gen-
erally appears before catastrophic rupture in the
system initially described by uniform statistical dis-
tribution function with unique shape parameter m,
owing to the deviations of damage field and stress
field from the mean-field approximation. In fact,
the damage localization transition and the scale of
localized zone are related to mesoscopic details,
i.e., the coupling between disordered mesoscopic
heterogeneity and the microdamages will induce
the redistribution of stress field.



Fig. 11. Stress–strain relation of part 2 localized zone and localized zone scale c.

Fig. 12. Dependence of catastrophic strain eF;L of specimen on
localized zone scale c.
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6. Rupture prediction based on localized scale

Now, the rupture strain of specimen can be pre-
dicted by making use of Eqs. (13) and (14) based
on the obtained parameters (m; g;E0 and kmachine)
and the experimentally observed localized zone scale
c. The calculated strains e F;L at rupture of 6 speci-
mens are shown in Table 1. These values are very
closer to the observed ones. The mean relative devi-
ation 6% of the results based on the local mean-field
approximation is much less than that of global
mean-field approximation (17%). In addition, unlike
the too great rupture strains obtained by the global
mean-field model, a half of the calculated rupture
strains based on the local mean-field approximation
are less than the observed values, hence the local
mean-field model is much more meaningful.
7. Discussions and conclusions

The experimental observations demonstrate that
there are two phases in the spatio-temporal surface
strain pattern of granite under compression. The
later phase II is characterized by an accelerating
localization and is closely related to catastrophic
rupture. The accelerating evolution of localized
strain in phase II implies a sensitive response of
the specimen to external loading prior to the even-
tual rupture. Also, the eventual rupture surface is
located in the localized zone with high strain.
Hence, the investigation of the relation between
strain localization and catastrophic rupture is cru-
cial to the search for precursors of rupture.

In comparison with the experimental measure-
ments, the global mean-field approximation always
leads to much later rupture occurrence, hence, it
seems to be to rough and even dangerous in rupture
forecast. Obviously, this is because the global mean-
field approximation neglects the appearance of
localized zone ahead of rupture. However, together
with experimental results before the peak stress, the
approximation can provide a necessary estimation
of the heterogeneous parameters of specimen. These
parameters, like the shape factor of Weibull distri-
bution, are significant in catastrophic rupture.

With these obtained parameters and based on
local mean-field approximation, which takes the
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appearance of localization into account, it is found
that the strain of catastrophic rupture can be calcu-
lated properly, provided the localized zone scale is
available experimentally. The calculated rupture
strains are in good agreement with the experimental
results, with mean deviation 6%. So, the local mean-
field model is a very promising approach to the fore-
cast of catastrophic rupture.
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