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Abstract

In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain
simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green’s functions
for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show
that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of
fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-
frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity,
affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of
potential functions of two types of compressional waves to the Green’s function, the squirt-flow length has a small effect,
and the effects of viscoelastic parameter are mainly in the higher frequency range.
Crown Copyright � 2006 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The Green’s function is very useful and important in seismology, earthquake engineering, soil mechanics,
geophysics, dynamic foundation theory, and other subjects. The Green’s function can be used to derive rep-
resentation integrals for the radiation from an arbitrary distribution of body forces and surface tractions, and
can be applied to acoustic theory and numerical computations of many fields (Tewary, 1998; Spies, 1997; Liu
et al., 2002; Liu and Zhang, 2001; Dravinski and Zheng, 2000). Green’s functions have been derived for two-
phase porous media. Norris (1985) found the formal solution of fast and slow dilation spectrum and distortion
spectrum of the Green’s function in two-phase saturated media. Kazi-Aoual et al. (1988) derived the Green’s
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functions of infinite transversely isotropic saturated poroelastic media. Ding et al. (2001) obtained the Green’s
function for the two-phase saturated media for a concentrated force through dividing the force potential field
and using the properties of the Dirac function.

In 1993, Dvorkin and Nur (1993) proposed a consistent Biot/squirt (BISQ) model, which combines the ori-
ginal Biot two-phase model (Biot, 1956) and the squirt-flow model proposed by Mavko and Nur (1975). In
other words, the BISQ theory contains both the Biot (global)-flow and squirt (local)-flow mechanisms. Recent-
ly, Yang and Zhang (2000, 2002) extended the BISQ model to general anisotropic media. More recently,
Cheng et al. (2002) presented a viscoelastic Biot/squirt model by introducing a viscoelastic stress strain con-
stitutive relationship of solid phases, and found that the viscoelastic property of rocks, not the squirt-flow,
causes the dispersion and attenuation in the low-frequency range.

In this paper, we derive the equations of phase velocities and attenuations of two compressional waves (fast
P- and slow P-waves) and one rotational wave in terms of the decomposition of wave-fields of viscoelastic por-
ous media. We further investigate the effects of squirt-flow characteristic parameters and viscoelasticity of sol-
id phase on the phase velocity and attenuation of three body waves. Finally, we derive the Green’s functions of
the viscoelastic BISQ media using the classic potential function methods.

2. Wave propagation in viscoelastic BISQ media

Following Cheng et al. (2002), the wave equations in two-phase isotropic viscoelastic media can be written
as
l�r2uþ k� þ l� þ a11�/
/ a11F 1S1

� �
rr � uþ a11F 1S1rr � U ¼ o2

ot2 q1uþ q2Uð Þ

r F 1S1ða11 � /Þr � uþ /F 1S1r � U½ � ¼ o2

ot2 ðq12uþ q22UÞ þ g/2

k11

o
ot ðU � uÞ;

8<
: ð1Þ
where q12 = �qa, q22 = /qf + qa, q1 = (1 � /)qs, q2 = /qf. qs is the density of the solid, qf the density of the
fluid, / the porosity of the rock; g is the viscosity of the fluid, qa is the additional coupling density, and k11 is
the permeability. a11 is the viscoelastic coefficient of the effective stress. $ is the Hamilton operator, u = (ux, uy,
uz)

T and U = (Ux, Uy, Uz)
T in which ui and Ui (i = 1, 2, 3) denote, respectively, displacement components of

the solid and the fluid in the i-direction. k* and l* are the viscoelastic coefficients. F1 is the Biot-flow coefficient
and S1 is the squirt-flow coefficient (Dvorkin and Nur, 1993)
S1 ¼ 1� 2J 1ðk1RÞ
k1RJ 0ðk1RÞ ; and k2

1 ¼
qfx

2

F 1

/þ qa=qf

/
þ i

g/
qfxk11

� �
:

where J0 and J1 are the Bessel functions of the zeroth-order and first-order, respectively; the parameter R rep-
resents the average characteristic squirt-flow length.

The Fourier transformed stress–strain constitutive relationship of steady states is
rðtÞ ¼ G�ðxÞ � e0eixt;
where e0 is a constant strain tensor, G* denotes the complex modulus (in isotropic media, G* = (l*, k*)T). The
moduli are determined as follows
tan d ¼ G00=G0;

G0ðxÞ ¼ G00 1þ tan d
p

ln
x
x0

� �� �
;

G�ðxÞ ¼ G0ðxÞ þ iG00ðxÞ;

where x0 is the reference frequency and G00 is the elastic modulus.

We define the following notations:
e ¼r � u; e ¼ r � U ;
- ¼r� u; X ¼ r� U :
Applying the curl operator to Eq. (1), we have
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lr2- ¼ o2

ot2 ðq1-þ q2XÞ

0 ¼ o2

ot2 ðq12-þ q22XÞ þ g/2

k11

o
ot ðX� -Þ:

(
ð2Þ
Without the loss of generality, for a plane wave, the magnitude of rotations of solid and fluid in the z-direction
may be written as
- ¼ C1eiðkx�xtÞ

X ¼ C2eiðkx�xtÞ:

(
ð3Þ
Substituting Eq. (3) into Eq. (2) and eliminating C1 and C2, we obtain
k2~q22l
� ¼ x2ðq1~q22 � q2~q12Þ; ð4Þ
where ~q12, ~q22, and l* are complex quantities, and
~q12 ¼ q12 � i
g/2

k11x
; ~q22 ¼ q22 þ i

g/2

k11x
:

Substituting k = kr + iki, phase velocity vs and attenuation are given by
vs ¼ x=kr; and Q�1
s ¼ 2ki=kr; ð5Þ
where kr and ki can be obtained from Eq. (4). There is only one rotational wave. We can find the relationship
between the rotation - of solids and the rotation X of fluids:
X ¼ � ~q12

~q22

-:
Let the fluid and solid displacements satisfy the relation U = nu, then for the shear waves, we have
nS ¼ �~q12=~q22: ð6Þ
From Eqs. (4) and (5), we find that the variables vs, Q�1
s , and ns are not related to the squirt-flow coefficient S1,

and that the shear waves are not affected by the squirt-flow in porous isotropic viscoelastic media. The expres-
sions for ~q12 and ~q22 indicate that the ratio ns is independent of viscoelasticity of solid phases.

In all numerical examples presented in this paper except where stated otherwise, the following input
parameters are used: qs = 2650 kg/m3, qf = 1000 kg/m3, qa = 420 kg/m3, KS = 38 GPa, Vf = 1500 m/s,
~V P ¼ 3969 m=s, ~V S ¼ 2547 m=s, / = 0.15, k11 = 1.25 mD, g = 0.01 ps, x0 = 1000 Hz, R = 0.5 mm, 1 mm,
5 mm and tand = 0.001, 0.035, 0.05.

In all figures in this paper, different solid lines correspond to different values of R with tand = 0.035; dif-
ferent dashed lines correspond to different values of tand with R = 5 mm. If R is not given in a figure, it means
that the curves for the value of R and the curve with tand = 0.035 overlap. If tand is not given in a figure, it
means that the curves for different values of tand and the curve with R = 5 mm overlap.

Figs. 1 and 2 show the variations of vs and Q�1
s with different parameters. From Fig. 1 we can see that for

x < x0 (x0 is the reference frequency) the phase velocity of S-waves decreases with increasing tand, but it
decreases when x > x0. In the low-frequency range, the inverse of quality factor Q�1

s is not sensitive to fre-
quency. However, in the high-frequency range, there exists a peak in Q�1

s . When tand is large, Q�1
s is also large

(Fig. 2). Figs. 1 and 2 show that the phase velocities and attenuations of S-waves are only affected by
viscoelasticity.

Let
A11 ¼ k� þ 2l� þ a11 � /
/

a11F 1S1; A12 ¼ a11F 1S1;

A21 ¼ F 1S1ða11 � /Þ; A22 ¼ /F 1S1:
Applying the divergence operator to Eq. (1), we obtain
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Fig. 1. Phase velocity of S-waves. Different solid lines correspond to different values of R with tand = 0.035; different dashed lines
correspond to different values of tand with R = 5 mm. If R is not given in a figure, it means that the curves for the value of R and the curve
with tand = 0.035 overlap. If tand is not given in a figure, it means that the curves for different values of tand and the curve with
R = 5 mm overlap.
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Fig. 2. The attenuation of S-waves. Different solid lines correspond to different values of R with tand = 0.035; different dashed lines
correspond to different values of tand with R = 5 mm. If R is not given in a figure, it means that the curves for the value of R and the curve
with tand = 0.035 overlap. If tand is not given in a figure, it means that the curves for different values of tand and the curve with
R = 5 mm overlap.
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A11r2eþ A12r2e ¼ o2

ot2 ðq1eþ q2eÞ

A21r2eþ A22r2e ¼ o2

ot2 ðq12eþ q22eÞ þ g/2

k11

o
ot ðe� eÞ:

(
ð7Þ
Again we consider plane waves of the following form:
e ¼ C1eiðkx�xtÞ

e ¼ C2eiðkx�xtÞ:

(
ð8Þ
Substituting Eq. (8) into Eq. (7), we obtain
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C1A11zþ C2A12z ¼ C1q1 þ C2q2

C1A21zþ C2A22z ¼ C1~q12 þ C2~q22:

�
ð9Þ
where z = k2/x2. Eliminating C1 and C2, we have
A11A22 � A12A21ð Þz2 � q1A22 þ ~q22A11 � q2A21 � ~q12A12ð Þzþ q1~q22 � q2~q12ð Þ ¼ 0: ð10Þ

We can find two roots z1 and z2 from Eq. (10) and then obtain k1 and k2. The velocity vi and the inverse quality
factor Q�1

i of these waves are given by
vi ¼ x=realðkiÞ; Q�1
i ¼ 2Imag ðkiÞ=RealðkiÞ ði ¼ 1; 2Þ; ð11Þ
where v1 and v2 are the velocities of the fast- and slow-dilatational waves (fast P- and slow P-waves), respec-
tively. It is easy to see that the coefficients in Eq. (10) contain both the Biot-flow coefficient F1 and the squirt-
flow coefficient S1, indicating that the velocities of fast and slow P-waves are affected not only by the Biot-flow,
but also by the squirt-flow.

From Eqs. (8) and (9), we can obtain the following relationships of the fast P- and slow P-waves
ei ¼ niei; ni ¼
A11zi � q1

q2 � A12zi
or ni ¼

A21zi � ~q12

~q22 � A22zi
ði ¼ 1; 2Þ: ð12Þ
Similarly, the fluid and solid displacements satisfy the relationship Ui = niui. Eq. (12) shows that, for a plane
wave, the ratios of fluid to solid displacements ni depend on the Biot-flow coefficient F1 and the squirt-flow
coefficient S1, i.e., the ratios of fluid to solid displacements of the fast and slow P-waves are affected simulta-
neously by the Biot- and squirt-flow mechanisms. The ratios are also related to the viscoelasticity of the solid
phase.

Figs. 3 and 4 show the effects of different parameters on phase velocity v1 and attenuation Q�1
1 of fast P-

wave. Fig. 3 shows that the phase velocity of fast P-waves increases with logx, and when x < x0 (x0 is the
reference frequency), it decreases as tand increases and it increases when x > x0. From Fig. 3, we also can
see that the zone of increas in the phase velocity of fast P-waves shifts towards low frequencies as R increases.
In the high frequency range, those lines with different values of R overlap, indicating that the phase velocity of
fast P-waves is mainly affected by the viscoelasticity of solid phases rather than the squirt-flow.
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Fig. 4. The attenuation of the fast P-waves. Different solid lines correspond to different values of R with tand = 0.035; different dashed
lines correspond to different values of tand with R = 5 mm. If R is not given in a figure, it means that the curves for the value of R and the
curve with tand = 0.035 overlap. If tand is not given in a figure, it means that the curves for different values of tand and the curve with
R = 5 mm overlap.
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The variations of attenuation Q�1
1 with frequency are given in Fig. 4. We can see there exist two attenuation

peaks. For the lines with the same value of R and different values of tand in Fig. 4, we find that the larger the
value of tand, the larger the value of Q�1

1 is. Note that the two peaks are in the same frequency range. For the
lines with the same value of tand and different values of R, the first attenuation peak shifts towards low fre-
quency as R increases, and passing the second attenuation peak, these attenuation lines are overlapped. Fig. 4
also shows the effects of viscoelasticity on the attenuation at all frequencies, and in contrast, the squirt-flow
has a much less effect on the attenuation in the high frequency range.

Figs. 5 and 6 show that the effects of different parameters on the phase velocity v2 and attenuation Q�1
2 .

Fig. 5 shows that the velocity of slow P-waves varies from its low-frequency limit to the high-frequency limit
as frequency increases. In the lower frequency range, the velocity v2 is mainly affected by the parameter R rath-
er than the parameter tand; while in the higher frequency range, the case is opposite. Fig. 6 shows that, in the
low-frequency range, the attenuation of the slow P-wave (the value of Q�1

2 Þ is very large. The fact that those
lines with different values of tand overlap is an indication that Q�1

2 is mainly affected by R.
3. The Green’s function

We now consider a time harmonic motion with a real frequency x. Let
uðx; y; z; tÞ ¼ uðx; y; zÞe�ixt

Uðx; y; z; tÞ ¼ Uðx; y; zÞe�ixt:

�
ð13Þ
Let a point force with a unit amplitude, F = d(x � 1)K (d is the Dirac function, K is the unit vector of the
force), act at the 1 position in the solid phase, then the equations of motion, after substituting Eq. (13) into
Eq. (1), can be rewritten as
x2ðq1uþ q2UÞ þ l�r2uþ k� þ l� þ a�
11

/

/ a11F 1S1

� �
rr � uþ a11F 1S1rr � U ¼ �dðx� 1ÞK

x2ð~q12uþ ~q22UÞ þ r F 1S1ða11 � /Þr � uþ /F 1S1r � Uð Þ ¼ 0:

(
ð14Þ
Let r = jx � 1j, the force F can be written as



Log

P
h

as
e 

ve
lo

ci
ty

(m
/s

)

2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

ω

R=0.0005

0.001
0.005

tan

tan

δ

δ

=0.05

=0.01

Fig. 5. Phase velocity of slow P-waves. Different solid lines correspond to different values of R with tand = 0.035; different dashed lines
correspond to different values of tand with R = 5 mm. If R is not given in a figure, it means that the curves for the value of R and the curve
with tand = 0.035 overlap. If tand is not given in a figure, it means that the curves for different values of tand and the curve with
R = 5 mm overlap.

Fig. 6.
lines co
curve
R = 5

4790 D. Yang et al. / International Journal of Solids and Structures 44 (2007) 4784–4794
Kdðx� 1Þ ¼ � K
4p
r2 1

r

� �
¼ � 1

4p
rr � K

r

� �
�r�r� K

r

� �� �
: ð15Þ
Applying the curl operator to Eq. (14), and then combining with Eq. (4), we can obtain
r2r� uþ k2
Sr� u ¼ �1

4pV 2
S ½ðq1~q22 � ~q12q2Þ=~q22�

r � r�r� K
r

� �
; ð16Þ
where kS = x/VS is the shear wave number. If there is a potential function Ws, satisfies
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r2WS þ k2
SWS ¼

1

4pV 2
Sr½ðq1~q22 � ~q12q2Þ=~q22�

; ð17Þ
then the solution of Eq. (16) can be obtained by
u ¼ �r�r� ðKWSÞ: ð18Þ

Solving Eq. (17), we may obtain
WS ¼ CSGSðrÞ þ
1

4px2r ðq1~q22 � ~q12q2Þ=~q22½ � : ð19Þ
The first term on the right-hand side of Eq. (19) is the general solution of the homogeneous equation
r2WS þ k2

SWS ¼ �d0, and the second term on the right-hand side of Eq. (19) is the particular solution of
the inhomogeneous equation. Note that
GSðrÞ ¼
e�ikS r

4pr
: ð20Þ
The constant CS is found from the regularity condition at the source point,
CS ¼ �
1

x2½ðq1~q22 � ~q12q2Þ=~q22�
: ð21Þ
Applying divergence operator to Eq. (14), and combining with Eq. (12), we obtain
1

ðq1 þ q2n2ÞV 2
2

r2r � u1 þ
1

ðq1 þ q2n1ÞV 2
1

r2r � u2 þ
k2

1

ðq1 þ q2n2ÞV 2
2

r � u1 þ
k2

2

ðq1 þ q2n12ÞV 2
1

r � u2

¼ 1

4pðq1 þ q2n2ÞV 2
2ðq1 þ q2n1ÞV 2

1

r2r � K
r

� �
; ð22aÞ

1

ðq12þq22n2ÞV 2
2

r2r�u1þ
1

ðq12þq22n1ÞV 2
1

r2r�u2þ
k2

1

ðq12þq22n2ÞV 2
2

r�u1þ
k2

2

ðq12þq22n12ÞV 2
1

r�u2¼ 0:

ð22bÞ

Similarly, if there exist scalar potential functions W1 and W2 that satisfy
r2Wi þ k2
i Wi ¼

1

4pV 2
i rðq1 þ q2niÞ

; i ¼ 1; 2; ð23Þ
then the sum of solutions u1 and u2 of Eq. (22) can be expressed by
u1 þ u2 ¼ k1rr � ðKW1Þ þ k2rr � ðKW2Þ; ð24Þ

where ki = x/Vi (i = 1, 2). From Eq. (22), we can see that k1 and k2 satisfy the following two equations
k1 þ k2 ¼ 1
k1

ð~q12 þ ~q22n2Þðq1 þ q2n1Þ
þ k2

ð~q12 þ ~q22n1Þðq1 þ q2n2Þ
¼ 0:

8<
: ð25Þ
We can easily find that
k1 ¼
ð~q12 þ ~q22n2Þðq1 þ q2n1Þ

ð~q12 þ ~q22n2Þðq1 þ q2n1Þ � ð~q12 þ ~q22n1Þðq1 þ q2n2Þ

k2 ¼
�ð~q12 þ ~q22n1Þðq1 þ q2n2Þ

ð~q12 þ ~q22n2Þðq1 þ q2n1Þ � ð~q12 þ ~q22n1Þðq1 þ q2n2Þ
:

8>><
>>: ð26Þ
The wave-fields described by Eq. (22) are divergent fields, so W1 and W2 are two potential functions of two
dilatational waves, i.e., the fast- and slow-compressional waves. k1 and k2 in Eq. (24) are the contributions
of W1 and W2 to the displacement field, respectively.

Figs. 7 and 8 show that the variations of k1 and k2 with different parameters. The effect of the parameter R

on k1 and k2 is very weak. In the high-frequency range, the viscoelastic parameter tand has different effects on
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the coefficients k1 and k2. Moreover, because V 2
1 � V 2

2, these terms about u1 are much larger than those terms
about u2 in Eq. (22), resulting in jk1j � jk2j in the Green’s function.

The solutions W1 and W2 of Eq. (23) can be written as a sum of particular plus general solutions,
Fig. 7.
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GiðrÞ ¼
e�ikir

4pr
; ai ¼ �

1

x2ðq1 þ q2niÞ
: i ¼ 1; 2: ð28Þ
Combining Eqs. (18) and (24), we can obtain the solution for Eq. (14) as
u ¼ k1rr � a1KG1ðrÞð Þ þ k2rr � a2KG2ðrÞð Þ � r�r� CSKGSðrÞð Þ ¼ Gðx; 1; xÞ � K; ð29Þ

where G(x, 1; x) is the Fourier transform of the Green’s displacement function, and is given by
Gðx; 1; xÞ ¼ 1

4px2

k1

ðq1 þ q2n1Þ
rr � I

e�ik1r

r

� �� �
þ k2

ðq1 þ q2n2Þ
rr � I

e�ik2r

r

� �� ��

� 1

ðq1~q22 � ~q12q2Þ=~q22

r�r� I
e�ikS r

r

� �� �	
ð30Þ
where I is the second-rank unit tensor.

4. Discussions and conclusions

Based on the viscoelastic BISQ theory, which represents both the Biot-flow mechanism and the squirt-flow
mechanism in two-phase porous isotropic viscoelastic media, we have investigated the effects of the squirt-flow
mechanism and viscoelasticity on wave propagation, and derived the Green’s function of displacement fields.

Our results show the phase velocity and attenuation of S-waves and fast P-waves strongly depend on the
viscoelasticity of solid phases. At the same time, the phase velocity and attenuation of fast P-waves are also
affected by the squirt-flow mechanism. For the attenuation Q�1

1 variation with frequency of fast P-waves, there
exist two peaks. The fact that the amplitudes of fast P-waves are in the same phase and the amplitudes of slow
P-waves are in the opposite phase is an important reason that there exist fast P-waves and slow P-waves. In the
low-frequency range, the squirt-flow characteristic length, not the viscoelasticity, influences the phase velocity
of slow P-waves; it is opposite in the high-frequency range.

From Eqs. (24) and (26), k1 and k2, which, respectively, correspond to the contributions of fast compres-
sional wave potential function W1 and slow-compressional wave potential function W2 to the Green’s function,
relate not only to both the Biot-flow mechanism and the squirt-flow mechanism, but also to the viscoelasticity
of the solid phase. The fact that V 2

1 >> V 2
2 results in jk1j � jk2j in the Green’s function.
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