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Abstract

The mechanical properties of film—substrate systems have been investigated through nano-indentation experiments in
our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by
nano-indentation, considering the effects of thickness and different coating—substrate combinations. Surf. Coat. Technol.,
191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between
the hardness H and normalized indentation depth /¢, where ¢ denotes the film thickness, exhibits three different regimes: (i)
the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value
in the range of 0.1-0.7 of the normalized indentation depth //1; (iii) after that, the hardness increases with increasing inden-
tation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the
nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an
ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical
plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain
gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a
deep depth. Strain gradient and substrate effects are proved to coexist in film—substrate nano-indentation experiments.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Micro and nano-indentation hardness experiments are widely used to measure the plastic flow resistance of
materials. It has been shown repeatedly that the hardness of metallic materials displays a strong size effect with
conical or pyramidal indenters. The measured indentation hardness can increase by a factor of two or three as
the indentation depth decreases into micrometers, even to tens to hundreds of nanometers (e.g., Nix, 1989;
Oliver and Pharr, 1992; Stelmashenko et al., 1993; Ma and Clarke, 1995; Poole et al., 1996; McElhaney
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et al., 1998; Nix and Gao, 1998; Suresh et al., 1999; Xue et al., 2002; Huang et al., 2004; Swaddiwudhipong
et al., 2005, 2006a,b). The indentation size effect has also been investigated using spherical indenters (e.g., Swa-
dener et al., 2001, 2002; Wei and Hutchinson, 2003b; Qu et al., 2004, 2006), where the indentation hardness
depends on not only the indentation depth but also the indenter radius. Size effects have also been found in
other micron and sub-micron scale experiments. Experimental work on particle-reinforced metal matrix com-
posites has revealed that a substantial increase in the macroscopic flow stress can be achieved by decreasing the
particle size while keeping the volume fraction unchanged (Lloyd, 1994). Fleck et al. (1994) reported that
the strength of thin copper wires increases with decreasing diameter of thin wires in micro-torsion. The facts
of the strength increasing with decreasing thickness of thin beams in micro-bending test are found by Stolken
and Evans (1998), Shrotriya et al. (2003) and Haque and Saif (2003). Thermo-mechanical fatigue has relation
with the spatial strain gradient effects too (Pucha et al., 2004).

Conventional plasticity theory can not explain the above size-dependent material behavior at the small
scales because no intrinsic material lengths are involved. The size-dependent behavior has been attributed
to geometrically necessary dislocations associated with non-uniform plastic deformation in small volumes
(e.g., Gao et al., 1999; Huang et al., 2000a; Voyiadjis and Abu Al-Rub, 2005).

Based on the concept of geometrically necessary dislocations, strain gradient theories have been developed.
These theories believed that the flow stress not only relies on strain in particular point as in conventional plas-
ticity theory, moreover also relies on the strain gradient at that point. Generally, the gradient plasticity the-
ories to model size effects can be divided into two groups. The first one involves higher-order stresses and
higher-order boundary conditions, such as the CS and SG theories (e.g., Fleck and Hutchinson, 1993,
1997; Wei and Hutchinson, 1997, 2003b; Gurtin, 2002, 2003) and MSG theory (Gao et al., 1999; Huang
et al., 2000a; Hwang et al., 2002). The second group does not involve the higher-order stresses and the equi-
librium equations remain the same as those of classical theory (e.g., Acharya and Bassani, 2000; Bassani, 2001;
Chen and Wang, 2000, 2001, 2002a,b; Gao and Huang, 2001; Abu Al-Rub and Voyiadjis, 2004, 2006; Hu and
Huang, 2004; Liu and Hu, 2005; Voyiadjis and Abu Al-Rub, 2005). Huang et al. (2000a) showed that the high-
er-order stresses have little or essentially no effect on the predictions of size effects in micro-torsion, micro-
bending, micro-indentation, crack tip, void growth and MSG theory was modified by Huang et al. (2004) such
that it does not include the higher-order stresses and preserves the structure of conventional plasticity theory,
which becomes very convenient for application. All these strain gradient theories have been used to analyze
the experimental phenomena and to some extent most theoretical and simulation results are consistent with
experimental data. Besides the strain gradient theories, other models to study the size effects have been inves-
tigated, such as a model based on a surface work and plastic volume work concept (Horstemeyer et al., 2001;
Gerberich et al., 2002) and a model considering the surface and interface energy (Duan et al., 2005).

For the indentation problem of film—substrate system, the results are influenced strongly by substrates, which
result in extreme difficulty to measure the mechanical properties of film material. The commonly used method is
to limit the depth of impression below 10% film thickness, but this method is only available for the film thickness
larger than 1 um, and cannot give accurate results for the film with very small thickness such as nanometer or
sub-micro scales. Wei et al. (2003c) considered the effect from both the crystal grain size and the grain shape dis-
tribution in the thin film—substrate system. Recently Saha and Nix (2002) used a method called constant Young’s
modulus assumption and analyzed the hardness and elastic moduli of both soft films on hard substrates and
hard films on soft substrates. Saha et al. (2001) also used MSG theory (Gao et al., 1999) to investigate the strain
gradient effect in nano-indentation of film—substrate systems and found that the MSG theory could describe the
new phenomena well. Chen et al. (2005) carried out nano-indentation experiments on kinds of film—substrate
systems and the experimental results were successfully explained (Chen et al., 2004a) by the strain gradient the-
ory proposed in Chen and Wang (2000, 2001, 2002a,b). Using discrete dislocation simulation of nano-indenta-
tion, Kreuzer and Pippan (2005) found that the hardness values vs. the number of contact elements (size of the
indentation) illustrates the same typical trend (decreasing hardness with increasing indentation depth, followed
by an increase of the hardness when the indenter feels the presence of the substrate) as that in Chen et al. (2005),
which verifies the basis of geometric necessary dislocation in strain gradient plasticity theories.

As we know that the effects of spherical tip are different from that of the conical or pyramidal indenter (Xue
et al., 2002; Wei and Hutchinson, 2003b; Qu et al., 2006). In real experiments the conical or pyramidal indent-
er tip is not usually ideal sharp, which possesses a curvature. What effect does the tip round has? Numerical



4494 S.H. Chen et al. | International Journal of Solids and Structures 44 (2007) 4492-4504

simulations of the nano-indentation on film—substrate systems often take empirical formula to obtain the film
parameters, such as the yield stress, power-law hardening exponent (e.g., Saha et al., 2001; Chen et al., 2004a).
How can we obtain the film parameters from the experimental data directly? In the present paper, nano-in-
dentation experimental results on Al-glass systems with different film thicknesses have been analyzed and sim-
ulated. The film material parameters, such as yield stress, the power-law hardening exponent and intrinsic
length in strain gradient theory, can be obtained through fitting the experimental load—depth curve with finite
element calculation. Both the classical plasticity and strain gradient plasticity theories are adopted. The influ-
ence of indenter tip curvature on the measured hardness is also considered. Finally, it shows that the strain
gradient plasticity theory can describe the complex relation between the hardness and the indentation depth
very well, but the results predicted by the classical plasticity theory are much smaller than the experimental
data. Furthermore, in contrast to the case with an ideal sharp indenter tip, a round indenter tip will reduce
the experimental hardness during the shallow indentation depth.

2. Experimental results

Details about the nano-indentation experiments on film—substrate systems can be found in Chen et al.
(2005), here we only give some brief information and results for Al-glass systems.

In the experiment, one of the films is aluminum, which is deposited onto glass substrate by sputtering with
three nominal thicknesses, 52, 245 and 851 nm. The mechanical properties of the substrates and films are first-
ly characterized using a Nano Indenter XP II equipped with a standard Berkovich indenter. Continuous stiff-
ness method (CSM) is used in all experiments. The indentations have been done with a constant nominal strain
rate (h /h) 0.05s™'. Five indentations are chosen in each sample and the results presented are the average of
these five indentations. During the experiments, hardness and Young’s modulus are measured using Oliver
and Pharr (1992) method (O&P method). As we know that O&P method has become a standard method
in nano-indentation instruments, but it should be noticed that Oliver and Pharr method is developed only
for monolithic materials and the modified contact area function is established only for sink-in phenomenon.
From indentation images of scanning electron microscopy (SEM) as shown in Fig. 1 (a), we find that pile-up
happens at the edge of indenter, which will result in an overestimation of hardness and elastic modulus and an
underestimation of the contact area. In order to avoid the influence of the contact area calculation, we have
adopted Joslin and Oliver (1990) method and Constant Young’s modulus assumption (CYMA) to analyze the
experimental data and obtained the true hardness variation (Chen et al., 2005) for Al-glass because the
Young’s modulus of Al film is very close to that of glass substrate.

Fig. 1. (a) Indentation SEM image of Al film on glass substrate. The light area denotes pile-up. (b) SEM cross-section micrograph of a
Berkovich indentation. (c¢) Amplified picture of the cross-section, which illustrates the strain gradient between the diamond indenter and
the hard glass substrate.
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Nano-indentation hardness of Al-glass with different film thicknesses versus the normalized indentation
depth %/t is shown in Fig. 2. One can see that at initial stage, the hardness decreases with increasing indenta-
tion depth, which is also expected for bulk metallic materials. As the indentation depth increases, the inden-
tation hardness keeps almost a constant in the second stage. In the third stage, it increases with an increasing
indentation depth, which is impossible for single bulk material. Comparing the indentation hardness of film—
substrate systems with different film thicknesses, one can find that the smaller the film thickness, the larger the
hardness is. The constant values of hardness for systems with different film thicknesses are 0.9 GPa for 8§51 nm
film, 1.1 GPa for 245 nm film and 1.8 GPa for 52 nm film, respectively.

With the help of focus ion beam (FIB) and SEM, the cross-section deformations of indented samples are
shown in Fig. 1(b) and (c). One can see that the cross-section of Al-glass system after unloading clearly shows
the compression of the film thickness between the indenter and the hard glass substrate. Motivated by Hwang
et al. (2002), in which it is found that the finite deformation effect is not very significant for modeling inden-
tation experiments, small deformation theory will be used in this paper.

3. Brief review of strain gradient plasticity theory

Strain gradient plasticity theory proposed by Chen and Wang (2000, 2001, 2002a,b) will be used to analyze
the above experimental results. It preserves the same equilibrium equations as those of classical theory and
involves no higher-order stresses or higher-order strain rates. The key features of the theory are that the rota-
tion gradient influences the material behavior through the interaction between the Cauchy stress and couple
stress, while the stretch gradient explicitly enters the constitutive relations through the instantaneously tangen-
tial modulus. The tangential hardening modulus is influenced by not only the generalized effective strain but
also the effective stretch gradient.

The strain tensor ¢; and the stretch gradient tensor #;; (Smyshlyaev and Fleck, 1996) are both related to the
displacement u; by

&ij = 5 (Uij+ i)y M = Unij- (1)

The relationship between the rotation gradient y; and the independent micro-rotation vector w; is
Xij = Wiy (2)

The effective strain e, effective rotation gradient y. and effective stretch gradient #; are defined as

1 1
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Fig. 2. Experimental results of hardness of Al-glass obtained by Joslin and Oliver (1990) method and constant Young’s modulus
assumption versus the normalized indentation depth by film thickness.
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where ¢; and y;; are the deviatoric parts and the definition of ’7,(,1;{) can be found in Smyshlyaev and Fleck (1996)
and the formula for numerical calculation of 5; can be found in Chen and Wang (2002b).
The constitutive relations are as follows

0 = iiz &; + Kemij,
myj = i;: sy + K1 L i, (4)
where
{Eﬁ =+ L2 I=al+17m, 5
Of =38y Sy mg =My mp,

E, is called the generalized effective strain and X, is the work conjugate of E; /., is an intrinsic material length,
which reflects the effect of the rotation gradient; K is the volumetric modulus and K is the bend-torsion vol-
umetric modulus.

The effect of the stretch gradient on material behaviors is introduced through the following incremental
hardening law

3o = A'(E)\/1 + 2 Ec = B(Ee, In))E, Ze > oy,

Z."e = 3,uEea ze < 0Oy,

(6)

where B(E.,In;) is a new hardening function including the effective stretch gradient; / is the second intrinsic
material length associated with the stretch gradient; p is the shear modulus and oy is the yield stress.

On each incremental step in finite element calculation, both the effective strain ¢, and the effective stretch
gradient 5, can be obtained from the updated displacement fields; the effective rotation gradient y. can be
obtained from the updated rotation fields. Hence 7, is only a given parameter in Eq. (6) and it does not invoke
higher-order stress or higher-order strain rates. When the stretch gradient is considered, the constitutive rela-
tions must be in an incremental form according to the incremental hardening law (6). From Egs. (4) and (5),
we obtain

0. =0 2 . 2 . 57 z“e<O—Y (7)

mi; = lulcs Xij +K' lcs Zm 9ij

Gy =i+ e —%g;jEe + Kémd;; . - 5
e = 0y

mij = % 1(23 X:j + % li X.lij - % li X;jEe + Kllzs j(méij ,
The above strain gradient theory has been successfully used to explain the size effects in thin-wire torsion
(Chen and Wang, 2000, 2001, 2002a), thin-beam bending (Chen and Wang, 2000, 2001, 2002a), micro-inden-
tation (Chen et al., 2004b), particle-reinforced metal matrix composites (Chen and Wang, 2002c) and the
cleavage fracture near the crack tip (Chen and Wang, 2002b,d). It has also been used to analyze the small scale
effects in film—substrate (Chen et al., 2004a), in which the parameters of films are obtained using empirical for-
mula and only the ideal sharp indenter tip is considered.

4. Finite element method simulation
4.1. Calculation model

In order to consider the strain gradient, a second-order element should be used, such as eight-node or nine-
node elements. The results obtained from eight-node elements have been found very close to that obtained

from nine-node elements (Chen and Wang, 2002b). This kind of element is only suitable for solids with van-
ishing higher-order stress traction on the surface. For example, the element works very well in the fracture



S.H. Chen et al. | International Journal of Solids and Structures 44 (2007) 4492-4504 4497

analysis of strain gradient plasticity (Chen and Wang, 2002b,c; Wei and Hutchinson, 1997), where the higher-
order stress tractions vanish on the crack face and on the remote boundary. This element also works well in
the study of micro-indentation experiments (Huang et al., 2000b) because the higher-order stress tractions are
zero on the indented surface. Since the strain gradient theory proposed by Chen and Wang (2000, 2001,
2002a,b) does not include higher-order stress or higher-order stress tractions, it will work well in the present
study as discussed in the next section.

The scheme of conical indenter is shown in Fig. 3 with a half-angle ¢ = 70.32°, which gives the same cross-
sectional area as that of Berkovich indenter used in the experiments at the same indentation depth. Axial sym-
metric calculation model is chosen and the finite element meshes are shown in Fig. 4, in which there are 545
elements and 1746 nodes. For a non-ideal indenter, as shown in Fig. 3, the relation of contact depth, J, and
contact radius, r, can be expressed as

ro,

<
9
or)=--t-¢ ro <r<a, ©)

T tane

{5(r) =R- (R -, 0<r

where R is the tip radius of the indenter, ¢ is the blunting distance, ry is the contact radius of the blunt indenter
and «a represents the largest contact radius at the contact edge, ry = R - cos ¢ and ¢ = R/sin ¢ — R. Moreover,
the indenter is also assumed to be frictionless such that there is no sticking between the indenter and the
indented materials.

The boundary conditions in the present model are described as follows,

(1) Along the symmetric axis (r = 0), the displacement u,(0, z) is zero, where (r,z) is cylindrical coordinate
system.

(2) The upper and side surfaces of the indented body are traction-free except the pressure produced by the
indenter. The displacement u, at the bottom of the indented body is assumed to be zero.

(3) For a frictionless indenter, the materials in the contact region (0 < r < «) can slide up and down freely on
the surface of the indenter. For an ideal indenter, we have
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Fig. 3. (a) A spherically truncated conical indenter. (b) Schematic illustration of sink-in or pile-up in indentation. The total depth of
indentation is denoted as /, the contact depth is /. and the contact radius is a.



4498 S.H. Chen et al. | International Journal of Solids and Structures 44 (2007) 4492-4504
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Fig. 4. (a) Finite element meshes for film—substrate model. (b) Locally amplified sketch map.
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~ tang’

For a spherically truncated conical indenter with tip radius R, there are

uz(r):—5(0!)—1—R—(R2—r2)1/2, 0<r<r, an
u:(r) = —6(a) — E+ ko, ro <r<a.

(4) Other surfaces are tractions free.

In the present model, the contact between the indenter and the specimen is simulated by assuming a contact
radius « first, then the indentation depth, %, which is defined as the depth where the normal stress between the
indenter and the specimen vanishes at the edge of the contact region, i.e., t.|,—, = 0, can be found by iteration
as shown in Fig. 3(b). The real contact depth, /4, can be obtained as /. = a/tan ¢ for ideal indenter and /. = a/
tan @ — ¢ for round tip case.

The total load P is the sum of nodal forces in the vertical direction of the nodes on the contact boundary of
the indenter.

The indentation hardness is defined as

=2 (12)

na?’

During the finite element calculation, pile-up or sink-in is not imposed a priori, but a natural result of the
indentation analysis. The comparison between contact depth, /., and the total depth, 4, leads to sink-in or
pile-up, i.e.,

he < hy sink-in,
he > hy pile-up. (13)
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In the finite element calculation, we assume the glass substrate to be an elastic material and Al film an elas-
tic-plastic one with a uniaxial stress—strain constitutive relation as,

{o:ES, o < oy,

(14)
G:O-refgna o > 0y,

where gy is the yield stress of Al film, n the strain hardening exponent, and a,.f, a reference stress which can be
expressed by o.r = oy (Efoy)".

4.2. Identification of material parameters

Due to vanishing couple stresses on the outer boundaries, i.e., m.. = 0, m., = 0, it can be proved easily that
w; and my; are zero in the whole region, and the influence of /., has no significance in this kind of model. From
the experimental results, we obtain the Young’s modulus of glass substrate, E,j,s = 88.5 GPa. The Young’s
modulus of aluminum is close to that of glass, so that we take E4; = 88.5 GPa. Three parameters, i.c., the yield
stress g, power-law hardening exponent #, and the second intrinsic material length / are obtained by fitting the
experimental load—depth curves. The interval 0.3z </ < 0.7¢ is chosen for fitting, where ¢ denotes the thickness
of the film. From Fig. 2, one can see that the dominative influence is caused by size effect at shallow depth; the
substrate effect becomes stronger at larger depth, i.e., the indenter close to the interface. In the interval we
choose to identify the film parameters, the role of both effects is almost equivalent. Thus we can take these
plateaus to be good estimations of the true properties of films.

Virtual-Newton method (Dennis and Moré, 1977) is used to calibrate parameters, which is described in
details as follows.

From the nano-indentation experimental results, we can obtain the corresponding load for each depth 4,
which is denoted as P(h). For each chosen depth, /1, we can also obtain a load, P*(k; a,n,l) by FEM if the yield
stress gy, power-law hardening exponent n and the second intrinsic length / of films are given.

In order to find the three parameters of films, a group value of yield stress, power-law hardening exponent
and the second intrinsic length are chosen initially, which can be denoted as a¢, ng and /. Here, ny should be
satisfied with 0 <n <1 and /y is chosen as 0 </ <1 um inspired by Saha et al. (2001) and Chen et al. (2004a).
The three parameters can be expressed by a vector x, i.e., xo = {09,109, ly}. We chose three values of depths /4,
h, and /5 at the plateau of the hardness—depth curve, the corresponding values of loads P (%), P (h,) and P
(h3) can be found from the experimental data. For each selected depth, 4; (i = 1, 2, 3), we can calculate a cor-
responding load P*(h; xo) by FEM. A vector function is introduced as follows

Si(xx) P*(hy, x) — P(h)
F(xi) = | falxi) | = | P*(h2,xi) — P(ha) |, (15)
S3(xx) P (h3,x;) — P(hs)
The norm of function F (x;) can be expressed as
3 12 3 12
|1F(x0)|| = [Zﬁ(xk)} Z (P (hi, %) = P(h))*| (16)

with a given value of the tolerable limit ¢ > 0. If the norm of the function is less than the tolerable value, i.e.,
IF (x0)|| <e, then {a¢, no, lp} are the parameters we are searching for, otherwise iteration should be done.
According to virtual-Newton method, a matrix will be introduced first, which is denoted as B. Generally B
is set as a unit matrix initially, here By = I3.3. According to matrix By and function F (x,), we can obtain
another set of parameters, x; = {gy, ny, /1}, by x; = xo — B, 'F (x0). With the new parameters, we can calculate
F (x,), if the norm of F (x;) is more than or equal to the tolerable value, i.e., ||F (x1)|| = ¢, iteration will con-
tinue following such two steps as

(Ve — Bisi)sy

B; =B+
<Sk, Sk>

s Xk2 = X1 — Bk+1 F(xk+1)7 (k = 172737 .. ) (17)
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where s, = X341 — X = Axy = {Aoy, Ang, Ali} denotes the increment of vector xy. yr = F (x441) — F (xx) de-
notes the increment of vector F (xy), (st,Sx) the inner product of sy, i.e., (s;,8) = s} - s, = Aa? + An? + AlL.
Continuing the above steps, until a group of parameters x,, = {0, m, /) 1 obtained, which satisfies ||F
(xm)|| <é&, then {0y, nm, I} are the parameters we are searching for.

Finally, we obtain all the parameters for Al films with different thicknesses, which are shown in Table 1.
From Table 1, one can see that the yield stress increases when the film thickness decreases, which is consistent
with the experiment results (Venkatraman and Bravman, 1992; Hommel and Kraft, 2001; Schwaiger and
Kraft, 2004). The power hardening exponent decreases with decreasing film thickness, which is consistent with
our AFM measurements, i.e., grain size decreasing with decreasing film thickness. The intrinsic length scale /
increases with a decreasing film thickness. The physical origin of different values of / for the same film material
but with different film thicknesses can be explained by the theory proposed by Abu Al-Rub and Voyiadjis
(2006) and MSG theory (Gao et al., 1999; Huang et al., 2000a). In Abu Al-Rub and Voyiadjis theory
(2006), they found that / depends on not only the plastic strain level, the hardening level, but also the grain
size, characteristic dimension of the specimen and hardening exponent. In MSG theory (Gao et al., 1999;
Huang et al., 2000a), / has relation with the shear modulus, the Burgers vector, an empirical coefficient in
the Taylor model and a reference stress, which has relation with the film thickness. Both mechanism-based
theories prove that / should be different for the same material with different thickness. The experimental values
of load and FEM results obtained by the fitting parameters are compared in Fig. 5.

4.3. Numerical results of nano-indentation hardness

After we obtain the parameters of Al films, indentation hardness can be further analyzed. Fig. 6(a)—(c) plot
the indentation hardness predicted by both strain gradient plasticity and classical plasticity theories versus the
normalized depth for Al films with different thicknesses on glass substrates, in which the same plastic work
hardening exponent and yield stress are used for both theories in each case.

The size effect in nano- and micro-indentations is still an arguable problem, some researchers think that
indenter tip curvature may be the main reason that leads to the increasing indentation hardness with decreas-
ing indentation depth at the initial stage. During the present simulations with classical plasticity and strain

Table 1

Parameters of films obtained by fitting experimental data

Film thickness (nm) Yield stress (MPa) Power-law hardening exponent Intrinsic length (um)
52 310 0.02 0.8

245 154 0.05 0.6

851 123 0.10 0.5

o[ T T T T T T T T

Al film on glass substrate

1 1 1 1 1
00 02 04 06 08 10 12 14 16
indentation depth/ film thickness

Fig. 5. Plots of load versus the normalized indentation depth for Al films on glass substrates with three different film thicknesses.
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Fig. 6. Hardness versus the normalized indentation depth for Al-glass. Both the classical plasticity and strain gradient plasticity theories
are used and each with both ideal and non-ideal indenters, respectively. (a) For 851 nm Al film on glass substrate; (b) for 245 nm Al film on
glass substrate; (c) for 52 nm Al film on glass substrate.

gradient theories, both ideal sharp and spherically truncated indenters (non-ideal indenter tip) are considered,
respectively. For the non-ideal indenter we take the radius of indenter tip as 50 and 100 nm (for 851 nm Al-
glass system, the tip radius is set to be 100 nm only).

From Fig. 6(a)—(c), one can see that the results predicted by both ideal and non-ideal indenter tip with the
classical plasticity theory are much smaller than the experimental data, especially in the initial region of inden-
tation. The hardness with non-ideal indenter tip increases with an increasing indentation depth, then it keeps
almost a constant except for the region with substrate effects. In the region that the indentation depth is com-
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Fig. 7. Plot of yield stresses of films with different thicknesses versus the inverse of film thicknesses, which shows an almost linear relation.

parable to the film thickness, the predicted hardness by the classical plasticity theory is still much smaller than
experimental results. The indenter curvature will influence the hardness only at the very shallow indentation
depth and the effect will reduce along an increasing indentation depth. In the strain gradient theory, the cal-
culated hardness with ideal indenter increases with decreasing depth of indentation at small depth. For the
case with a non-ideal indenter, it decreases with decreasing depth of indentation at very small indentation
depth, but the whole level of hardness is improved due to the existence of strain gradient effect and fits the
experiment data quite well. In the region where the indentation depth is comparable to the film thickness, sub-
strate effect becomes significant. The hardness predicted by the strain gradient theory in this region can still
describe the experiment data well, which indicates that the strain gradient effect exists not only at the shallow
indentation depth due to small size effects but also at the deep depth due to the films’ compression between the
indenter and the substrates.

One should note that a round indenter tip would result in an increasing hardness with an increasing inden-
tation depth at the initial stage. The physical process responsible for such behavior is very clear and can be
found in Johnson (1970) and Wei (2003a).

Finally, we plot the yield stresses as a function of the inverse of film thicknesses in Fig. 7. One can see that
the relation between the yield stress and the inverse of film thickness keeps almost a linearity, which is in agree-
ment with experimental studies (Hommel and Kraft, 2001; Schwaiger and Kraft, 2004).

5. Conclusions

In the present paper, film—substrate systems with three different sub-micrometer thicknesses of films are
investigated using nano-indentation experiments and FEM simulations.

From experimental results, we find that the variation of indentation hardness with the indentation depth
consists of three stages: at the shallow indentation depth, the indentation hardness decreases with an increas-
ing indentation depth; then approximate constant indentation hardness follows; when the indenter is close to
the film—substrate interface, the indentation hardness increases with an increasing indentation depth. Compar-
ing systems with different film thicknesses, one can find that the hardness increases with a decreasing film
thickness.

Parameters of Al film can be obtained using virtual-Newton method to fit the experimental load—depth
curves. FEM simulations have been done with classical plasticity and strain gradient plasticity theories, as well
as an ideal sharp indenter tip and a round indenter one, which shows that the classical plasticity can not
explain the experimental data either with an ideal or a round indenter tip. However, the calculation results
with strain gradient theory are consistent well with the experimental ones. The effects of indenter tip curvature
are to reduce the hardness at the shallow indentation depth, not to improve the hardness and the strain gra-
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dient effects should be included to explain the initial elevated hardness, which is consistent with the recent
paper written by Huang et al. (2006).
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