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Snap-Through and Pull-In Instabilities of an
Arch-Shaped Beam Under an Electrostatic Loading

Yin Zhang, Yisong Wang, Zhihong Li, Member, IEEE, Yubo Huang, and Dachao Li

Abstract—The snap-through and pull-in instabilities of the mi-
cromachined arch-shaped beams under an electrostatic loading
are studied both theoretically and experimentally. The pull-in
instability that results in a system collision with an electrode
substrate may lead to a system failure and, thus, limits the system
maximum displacement. The beam/plate structure with a flat ini-
tial configuration under an electrostatic loading can only experi-
ence the pull-in instability. With the different arch configurations,
the structure may experience either only the pull-in instability or
the snap-through and pull-in instabilities together. As shown in
our computation and experiment, those arch-shaped beams with
the snap-through instability have the larger maximum displace-
ment compared with the arch-shaped beams with only the pull-in
stability and those with the flat initial configuration. The snap-
through occurs by exerting a fixed load, and the structure ex-
periences a discontinuous displacement jump without consuming
power. Furthermore, after the snap-through jump, the structures
are demonstrated to have the capacity to withstand further elec-
trostatic loading without pull-in. Those properties of consuming
no power and increasing the structure deflection range without
pull-in is very useful in microelectromechanical systems design,
which can offer better sensitivity and tuning range. [2006-0232]

Index Terms—Actuators, beams, electrostatic analysis,
modeling.

I. INTRODUCTION

THE INSTABILITY study of chevron-shaped or V-shaped
structures, as shown in Fig. 1(a), plays an important role in

catastrophe theory [1], [2] and engineering applications [3]. The
snap-through instability pattern experienced by the chevron-
shaped or V-shaped structures is also shared by other problems
like the buckling propagation of a pipeline and a beam on a
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Fig. 1. Schematic diagram of one-DOF systems with the snap-through and
pull-in instabilities, respectively. (a) Two trusses are tied with a spring K1 at
the bottom and under a mechanical concentrated load P at the center. (b) Plate
with a spring K2 under an electrostatic loading.

nonlinear elastic foundation [4]. As shown in Fig. 2 of the
snap-through of V-shaped trusses, the rotation angle increases
dramatically and so does its slope when the load is around
the critical value. When the critical load is reached, the slope
becomes infinite, and snap-through occurs. After the snap-
through, the slope becomes finite, and the trusses regain the
capacity to withstand further loading without losing stability.
Both the statics and dynamics of the arch-shaped structures are
intensively studied during the 1950s and the 1960s [5]–[12].
A relatively recent experiment on an elastic arch instability
done by Pippard [13] inspires the investigators again to further
explore the rich instability patterns and dynamics of the arch-
shaped structures [14], [15]. The snap-through property of the
arch-shaped or V-shaped structures and the advantages like
reliability, reconfigurability, and low cost have been utilized in
various devices such as robotic manipulators, crane-like devices
for space exploration, and electrostrictive polymer artificial
muscle (EPAM) actuators [3]. When the snap-through happens,
the applied force is fixed, and the structure equilibrium experi-
ences a rather dramatic jump to a new stable one. In that sense,
the structure is reconfigured by exerting a force but consuming
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Fig. 2. Snap-through instability of V-shaped trusses under a mechanical
concentrated load and the curve of F versus rotation angle.

no power, and powering is not a trivial thing in the world of
micromechanics [16]. Various microdevices such as actuator
[16], [19]–[24], microvalve [17], and transducer [18] utilizing
the snap-through instability have been reported. In micro-
electromechanical systems (MEMS), another instability called
pull-in also plays a very important role in MEMS device perfor-
mance and design [25]–[31]. Pull-in is such instability at which
the system elastic restoring force can no longer balance the
attractive forces such as the electrostatic [25]–[28], [31] or van
der Waals (vdw) [30] forces. When pull-in happens, the MEMS
structure collapses and may adhere to the structure, which
results in the failure of the system. In the aforementioned arch-
shaped or V-shaped structures, the transverse force exerted on
those structures is either mechanical [1]–[16], [18], [19], [22],
[23], thermal [17], optical [20], [21], or electromagnetic [24].
Those loadings above are all independent of the deflection/
displacement of the structure; snap-through occurs but pull-in
does not in those structures (modeling). In contrast, electrostatic
and vdw forces are dependent on the structure deflection/
displacement. As the MEMS structure deflects more, the gap
between the structures shrinks and those attractive (electrostatic
and vdw) forces increase nonlinearly until pull-in. In those pull-
in studies [25]–[31], the initial configurations of the structures
are explicitly or implicitly assumed flat, and snap-through, thus,
cannot occur. However, for the structures with a flat initial
configuration, the constant residual stress or thermal loading
sometimes can be so large that the microstructures enter the
postbuckling region with a curvy equilibrium configuration
[32],[33]. Furthermore, because the residual stress gradients,
which vary through the thickness, generate a bending moment,
the microstructure instantly curves up or down after releasing
[34]. Therefore, under an electrostatic loading, the structure
with a curved (initial) equilibrium configuration might expe-
rience both the snap-through and pull-in instabilities. At the
same time, many MEMS devices are designed with the initial
curved/V-shaped configurations in order to utilize the snap-
through instability as an actuation mechanism [16]–[24]. The
pull-in instability is not expected for those MEMS devices

[16]–[24] in modeling sense because of their loading types
analyzed above. However, in reality, electrostatic voltage could
be left over during the fabrication to become a pronounced
factor affecting the behavior of structures [26], and pull-in may
happen for those curved/V-shaped MEMS devices [16]–[24] if
the left-over electrostatic voltage is large enough. So far, the
study of combining the two instabilities, to the authors’ best
knowledge, has not been presented.

In this paper, we first examine these two instabilities for
a one-degree-of-freedom (one-DOF) system. As the analysis
shows that both snap-through and pull-in instabilities are a sad-
dle node type of bifurcation (or fold catastrophe) [1], [2], their
differentiation lies in the physical aspect. For snap-through, the
structure does not collide with the electrode substrate, whereas
for pull-in, the collision happens. In addition, for the structure
with a certain initial curved configuration, snap-through does
not necessarily happen as the external load increases [13], [14],
[22], [35]; but pull-in happens for sure when the (electrostatic)
attractive load reaches the critical value. The model for a
beam with an initial curved configuration under an electrosta-
tic loading and its numerical computation are presented. The
computational results are also compared with the experiments.
Two types of responses are found: the structures either collide
with the substrate without snap-through or snap-though first and
then collide. As the pull-in instability results in the collision and
failure of the MEMS system, there is a maximum displacement
for the structure to reach without pull-in. Because the larger
maximum structure displacement can provide better sensitivity
and tuning range, a large range of structure deflection can be
extremely useful for a wide variety of tuning applications [27].
The axial loading is shown to be a parameter that can change
the structure maximum displacement of a flat beam [29], [31].
Here, the initial curved configuration is also demonstrated to be
an effective way of enlarging the maximum displacement.

II. SNAP-THROUGH AND PULL-IN INSTABILITIES OF A

ONE-DOF SYSTEM

Fig. 1(a) shows two trusses with length L tied with a spring
K1. The trusses are rigid and pinned at an apex. α is the initial
angle, and Q1 is the angle with the presence of load P . The
equilibrium equation for this one-DOF tied arch is given as
follows [1]:

F =
P

4K1L
= (cosQ1 − cosα) tanQ1. (1)

Equation (1) gives the equilibrium path of the system, as
shown in Fig. 2. Fig. 2 plots the F–(α−Q1) curve, where
F is treated as a control parameter. Physically, α−Q1 is the
system rotation angle, and the initial angle α is set as π/36.
For the loading process, F starts with zero and increases. The
corresponding starting point in Fig. 2 is B when F = 0 and
α−Q1 = 0. The system follows the BC curve until point C
during the loading process. At C, the slope is infinite, and two
curves of BC and EC meet. In Fig. 2, the solid line indicates
the stable equilibrium and the dashed line for the unstable one.
C is the point where the stable and unstable equilibria meet.
At C, if F is increased further (infinitesimally), snap-through
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happens. Equilibrium jumps from C to D, which results in the
discontinuous displacement change, and the whole structure
turns upside down, as shown in Fig. 2. When F is unloaded,
the equilibrium will follow the DE curve until point E. At
E, the slope is again infinite, and any infinitesimal decrease
of F will again cause snap-through and the equilibrium jumps
from E to A. It needs to be emphasized here that the snap-
through model above is a particular one for a one-DOF system.
2L cosα is the spring original length, and 2L cosQ1 is the
length with a load P . Before the trusses snap-through, α > 0,
Q1 > 0, and α ≥ Q1, so 2L cosα ≤ 2L cosQ1, which physi-
cally means that, after lateral loading, the spring elongates, and
the spring force becomes tensile. The elongation is guaranteed
by the rollers, as indicated in Fig. 1(a). However, for the beam
structure of a continuous system, as analyzed later, the ends
are not movable or very stiff [35]; and the various loadings,
including the compressive one, can thus be exerted at the ends.
Johnson et al. show that there are three types of the arched
beam response: no instability, snap-through instability at a limit
point, and snap-through instability at a bifurcation point [35].
For an arched beam with the two ends fixed, the beam span is
actually shortened during its deflection before the snap-through
under a lateral load. Because of this, and also depending on the
initial thrust at the ends, the axial force inside the beam can be
compressive. If the compressive axial load is so large, the struc-
ture can lose stability due to buckling (pitchfork bifurcation).
When the buckling happens, the beam loses resistance to the
lateral load, and snap-through occurs, which is the type of snap-
through at a bifurcation point [35]. Equation (1) is incapable of
predicting this type of response, as analyzed above that the one-
DOF model always predicates the elongation of the spring.

Fig. 1(b) shows a plate with a spring K2 under an elec-
trostatic loading. The governing equation, which describes the
balance of the elastic spring force and electrostatic force of this
one-DOF system, is given as follows [31]:

K2w =
C

(d− w)2
(2)

where w is the plate displacement, d is the gap distance be-
tween the plate and the electrode before actuation, K2 is the
spring stiffness, and C is a constant given as C = εAV 2/2
[27], [29], [31]. (ε: dielectric constant of air; A: plate area; and
V : voltage.) By simple manipulation, (2) is nondimensionalized
and rewritten as follows:

y3 − 2y2 + y − Co = 0. (3)

Here, y is the dimensionless variable defined as y = w/d and
Co = C/(K2d

3). Equation (3) is a cubic equation and can be
analytically solved by the Cardan solution [36]. In a cubic equa-
tion, Q is the parameter that indicates the solution scenarios of
the three roots. Q is given as

Q =
(p

3

)3

+
(q

2

)2

. (4)

Here, p = −((−2)2/3) + 1 = −(1/3), and q = 2(−2/3)3 −
(1/3)(−2) − Co = (2/27) − Co.

Fig. 3. Pull-in instability of a plate under an electrostatic load and its three
roots/equilibria with the change of Co.

When Q < 0, there are three real roots. When Q = 0, there
are three real roots, where at least two roots are the same.
When Q > 0, there are 1 real roots, 2 complex conjugate roots.
The three roots of (3) are given in Fig. 3, as Co changes
from 0 to 4/27. The three real roots exist until Co = 4/27. At
Co = 4/27, Q = 0. After Co = 4/27, only y3 exists in the real
domain. y3 can be physically excluded as a solution because
y3 ≥ 1, which means the penetration of the plate through the
electrode. y2 can be excluded as a solution because it is an
unstable solution. Therefore, only y1 is the stable and phys-
ically reasonable solution for (3). In Fig. 3, it is shown that,
at Co = 4/27, y1 = y2 = 1/3, and this 1/3 is the maximum
dimensionless displacement of the one-DOF plate model before
the pull-in instability [27], [31]. When Co > 4/27, y1 and y2

cease existing in the real domain, and only y3 is left in the
real domain. By further increasing Co, the solution will jump
from y1 to y3 in the real domain, which indicates the pull-in
instability and that the structure collides with the electrode.

Now let us examine and compare these two instabilities of
snap-through and pull-in. It first appears that the two equa-
tions of (1) and (3) govern two types of different instability
phenomenon. However, the readers should be aware that there
are other modelings for snap-through and pull-in. The two one-
DOF examples presented in this paper are the particular cases.
For example, the snap-through model of two elastic trusses
by Nachbar and Huang [8] gives the cubic equation that is
similar to the pull-in instability governing (3). As shown in
both Figs. 2 and 3, for both snap-through and pull-in, the slopes
of the curves become infinite at the critical points, and their
curves share the same pattern: that three solutions/equilibria
coexist in a certain loading range. Their equilibria both jump
at the critical fixed loads. In the mechanics point of view, these
two instabilities are the same type of saddle node bifurcation
(fold catastrophe) [1], [2]. Physically, when pull-in happens,
the equilibrium y1 tries to jump to y3. However, as y3 > 1,
the plate must hit the substrate first before it can reach the
stable equilibrium of y3. Once the plate hits and adheres to the
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Fig. 4. (a) Dimensions of the system. (b) Coordinate system.

substrate, the governing equation of (3) is no longer valid, and
other types of equation should be introduced [37]. In contrast
to the pull-in instability, the snap-through instability can be
repeated in loading–unloading cycles. In the following study
of the beam with the initial curved configuration under an
electrostatic loading, snap-through is defined as the one that the
beam flips but does not hit the substrate, and pull-in is the one
that hits the substrate.

III. ARCH-SHAPED BEAM UNDER AN

ELECTROSTATIC LOADING

In this section, the continuous system of an arch-shaped
beam under an electrostatic loading is studied. Fig. 4(a) shows
the schematic diagram and dimensions of the system. L, b, and
h are the span, width, and thickness of the beam, respectively.
The beam is clamped at the two ends. d is the gap distance be-
tween the beam ends and electrode, and H is the midspan arch
rise from the beam ends. The coordinate system is indicated in
Fig. 4(b). The governing equation for an arch-shaped beam un-
der a distributed load is given as follows [6], [7], [9], [11], [12]:

E∗I
d4(w − wo)

dx4
+ P

d2w

dx2
+ Po

d2wo

dx2
+ q(x) = 0. (5)

The governing equations of those studies [6], [7], [9], [11], [12]
are for dynamics of an arch-shaped beam. Here, only the
static response is studied, and therefore, (5) truncates those
time-related terms. E∗ is the effective Young’s modulus of the
beam. For the narrow beam, E∗ = E is the Young’s modulus of
the beam. For the wide beam bending in a cylindrical surface,
E∗ = E/(1 − ν2), and ν is Poisson’s ratio of the beam [29].
I is the moment of inertia of the cross section, and I = bh3/12
for a rectangular cross section. w and wo are the deformed
and initial coordinates of the beam centerline measured from
the x-axis, as shown in Fig. 4(b). P is defined as P = −Po +
(E∗A/2L)

∫ L

0 [(d2wo/dx
2)2 − (d2w/dx2)2]dx. A = bh is the

cross-sectional area, and (1/2)
∫ L

0 [(d2wo/dx
2)2 − (d2w/

dx2)2]dx is the (nonlinear) axial displacement due to the beam
midplane stretching. Po is the initial thrust, and Po here has
the opposite sign as that defined by Hsu [9] in order to comply
with the rule that a positive Po indicates tension and a negative
Po indicates compression [29], [31]. q(x) is the distributed
transverse load. Here, q(x) is the electrostatic loading, and
q = −(εbV 2/2(d− w)2). ε is the dielectric constant of air, and
V is the applied voltage. With the substitutions of P and q, (5)
is rewritten as follows:

E∗I
d4(w − wo)

dx4

+


−Po +

E∗A
2L

L∫
0

[(
d2wo

dx2

)2

−
(
d2w

dx2

)2
]
dx


 d2w

dx2

+ Po
d2wo

dx2
− εbV 2

2(d− w)2
= 0. (6)

When wo(x) = 0, (6) recovers the equation of equilibrium
that was derived by Abdel-Rahman et al. [29] for a flat
beam under an electrostatic loading. The above governing
equation is for a shallow arch model that takes into account
the nonlinearity effect of midplane stretching only (the
(1/2L)

∫ L

0 [(d2wo/dx
2)2 − (d2w/dx2)2] term). For a deep

arch model, the elastica model is needed for a much more
complex stress–strain relation in the structure [13], [14]. It is
also worth mentioning that (6) is capable of studying the
buckled microstructures [32], [33]. When the electrostatic
force term of εbV 2/2(d− w)2 is set to zero, (6) recovers the
governing equation that describes the buckling and postbuck-
ling of the microstructures given by Fang and Wickert [32]. If
a comparison is made for the continuous system of a beam
with the one-DOF system, there are two springs in (6): the
axial spring with the effective spring constant kx = E∗A/L
and the transverse spring with the effective spring constant
kz ∝ E∗I/L3 [38]. kx is the spring corresponding to K1 in
Fig. 1(a), and kz is the one corresponding to K2 in Fig. 1(b).

To nondimensionalize (6), the same nondimensionalization
scheme as that of Abdel-Rahman et al. [29] is used, and the
following quantities are introduced:

Wo =
wo

d
W =

w

d
ξ =

x

L
. (7)

The dimensionless governing equation is given as follows:

d4(W −Wo)
dξ4

+


−α1 + α2

1∫
0

[(
d2Wo

dξ2

)2

−
(
d2W

dξ2

)2
]
dξ


 d2W

dξ2

+ α1
d2Wo

dξ2
− α3V

2

(1 −W )2
= 0 (8)

where the αi’s (i = 1 to 3) are defined as follows:

α1 =
PoL

2

E∗I
α2 = 6

(
d

h

)2

α3 =
6εL4

E∗h3d3
. (9)
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For the convenience of computation, (8) is written in the
following form as Humphreys did [6]:

d4(∆W )
dξ4

+

{
− α1 + α2

1∫
0

[(
d2Wo

dξ2

)2

−
(
d2Wo

dξ2
+

d2∆W

dξ2

)2
]
dξ

}

×
(
d2Wo

dξ2
+

d2∆W

dξ2

)
+ α1

d2Wo

dξ2
− α3V

2

(1−Wo−∆W )2
= 0.

(10)

Here, ∆W (ξ) = W (ξ) −Wo(ξ) is the dimensionless dis-
placement of the beam. In order to compute (10) numeri-
cally, the Galerkin method [29]–[31] is used here. ∆W is
first discretized as follows:

∆W =
N∑

i=1

aiφi(ξ). (11)

N is the mode number. ai is the constant modal am-
plitude to be determined. φi is the ith mode shape of
the clamped–clamped beam. φi = 1/2[δie

βiξ + γie
−βiξ] −

cos(βiξ) + αi sin(βiξ); δi, γi, βi, and αi are the constants
given by Chang and Craig [39] for each φi. By substituting
(11) into (10), multiplying by φi (i = 1 to N), and integrating
from 0 to 1, the set of nonlinear equations, shown by (12) at
the bottom of the page, is obtained. Here, ()′ = d/dξ. There are
a total of N nonlinear equations for N unknown ai’s. With the
discretization of the Galerkin method, the above equations are a
polynomial equation set of ai’s. The Newton–Rahpson method
is applied to find the ai’s, and the related computer codes are
taken from [40].

IV. FABRICATION AND MEASUREMENT

In this paper, the Silicon Glass Anodic-bonding and Deep
Etching Release (SGADER) process [41], which was developed
at Peking University, is used to fabricate the testing device.
The basic processing steps are shown in Fig. 5. The process
of fabricating mechanical structures combines wafer bonding
and deep reactive ion etching (DRIE) technologies. The starting
materials are 4-in medium-doped silicon wafers and Pyrex 7740

Fig. 5. Two-mask SGADER process flow. (a) Shallow trench made by
KOH. (b) Silicon/Glass anodic bonding. (c) Silicon wafer thinned by KOH.
(d) Structure releasing by deep RIE.

glass wafers. First, a shallow trench about 10 µm is etched by
potassium hydroxide (KOH) to shape the anchors [Fig. 5(a)],
which are used to sustain the movable beams and the electrodes.
After the silicon dioxide is stripped by buffered HF (BHF), the
silicon and glass wafers are then anodically bonded together
[Fig. 5(b)] under the conditions of 380 ◦C and −1500 V. The
silicon wafers are thinned to about 50 µm (±5 µm) by KOH
etching [Fig. 5(c)]. Next, the beam and electrode structures are
released through DRIE, and a sputtered aluminum layer is used
as a mask [Fig. 5(d)]. After this step, the standard SGADER
process is finished, and the device is fabricated. Fig. 6, which
shows a 3-D view of the structure in test, together with Fig. 5,




1∫
0

φ1

{
N∑

i=1

aiφ
′′′′
i +

{
−α1+α2

1∫
0

[
W ′′2

o −
(
W ′′

o +
N∑

i=1

aiφ
′′
i

)2
]
dξ

}(
W ′′

o +
N∑

i=1

aiφ
′′
i

)
+α1W

′′
o − α3V 2(

1−Wo−
∑N

i=1
aiφi

)2

}
dξ = 0

1∫
0

φ2

{
N∑

i=1

aiφ
′′′′
i +

{
−α1+α2

1∫
0

[
W ′′2

o −
(
W ′′

o +
N∑

i=1

aiφ
′′
i

)2
]
dξ

} (
W ′′

o +
N∑

i=1

aiφ
′′
i

)
+α1W

′′
o − α3V 2(

1−Wo−
∑N

i=1
aiφi

)2

}
dξ = 0

...
1∫
0

φN

{
N∑

i=1

aiφ
′′′′
i +

{
−α1+α2

1∫
0

[
W ′′2

o −
(
W ′′

o +
N∑

i=1

aiφ
′′
i

)2
]
dξ

} (
W ′′

o +
N∑

i=1

aiφ
′′
i

)
+α1W

′′
o − α3V 2(

1−Wo−
∑N

i=1
aiφi

)2

}
dξ = 0

(12)
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Fig. 6. Three-dimensional view of the arch-shaped microbeam in the study.

Fig. 7. SEM photograph of the arch-shaped microbeam in the study.

facilitates the reader to see how the arch-shaped beam geometry
is formed. Fig. 5 is a cross-sectional view along the A–A′

direction in Fig. 6. The arch-shaped beam with an out-of-plane
arch configuration is hard to be controlled using the planar
microfabrication. Usually, the arch can be formed by utilizing
the mechanisms of the stress mismatch inside different layers
for a multilayer structure or the stress gradients varying through
the thickness of a homogeneous structure. However, in practice,
it is very difficult to control the beam parameters (for example,
the arch rise H and arch shape) with high precision when
utilizing the above mechanisms. Here, a bulk micromaching
technology is used here for the fabrication, which not only
fabricates the beam with a high precision of beam dimensions
by lithography, but also eliminates the residual stress by a well-
controlled process [42]. Fig. 7 shows the scanning electronic
microscope (SEM) photo of the fabricated arch-shaped beam
in test.

The relative displacement of the arch-shaped beam with
varying voltages is measured by a MEMS motion analyzer
apparatus at the State Key Laboratory of Precision Measuring
Technology and Instruments, Tianjin University. Fig. 8 shows
the functional diagram of the MEMS measurement system
based on computer microvision and phase-shifting interfer-
ometry. In the system, a video camera and a frame grabber

are utilized to record the MEMS device motion/deflection in
real time. An integrated computer control and data acquisition
unit, which consists of a variety of standard internal plug-in
cards and external general-purpose interface bus instruments,
is used to supply power, generate signals, control voltages, and
measure the MEMS motion/deflection automatically. A micro-
manipulator system, including a manual X–Y–Z micrometer
position stage, is used for positioning the devices in test. The
hardware platform includes an optical microscope with general
objectives and Mirau interferometer objectives, a stroboscopic
laser source, and a lead zirconate titanate phase shifter for
imaging. A software analysis package processes the captured
images and signals, and generates testing reports. The in-plane
dimension and motion measurement of MEMS devices are
done by image matching of computer microvision; the out-of-
plane dimension and motion measurement MEMS devices are
achieved by a two-beam microscopic interferometry with a five-
step phase shifting.

V. RESULTS AND DISCUSSION

The beam is made of silicon, with E = 160 GPa and
ν = 0.27. For all the beams computed and tested here, b is
fixed as b = 50 µm. E∗ is defined as follows: E∗ = E/(1 −
ν2). The dielectric constant of air is ε = 8.854 × 10−12 F/m.
The arch is an arc of a circle, and for a shallow arch,
we use a parabolic curve to approximate wo for simplicity;
therefore, wo(x) = 4H(x2 − Lx)/L2. The initial thrust Po =
−(E∗A/2L)

∫ L

0 (dwo/dx)2dx = −(8E∗bhH2/3L2). As the
computation accuracy is sensitive to the mode number N
[7], [30], [31], we first do the convergence study for (12).
Fig. 9 plots the dimensionless displacement of the beam center
∆W (0.5) as a function of the applied voltage V for different
mode numbers N . The related dimensions are L = 500 µm,
H = 2.9 µm, d = 2.9 µm, and h = 2.6 µm. The voltage in-
creases until pull-in. Clearly, there is a significant difference be-
tween the result of N = 1 and those of N = 3 and N = 5. The
physical reason is that, with the increase in the applied voltage,
the participation of the (symmetric) third mode φ3 becomes
more and more significant. Furthermore, for N = 1, there is
a numerical fluctuation around the critical pull-in point. As
the system approaches pull-in, the slope of the curve becomes
larger and larger, and the computed ∆W (0.5) becomes more
and more sensitive to the step size of the applied voltage. Any
tiny change of voltage can cause the large change of ∆W (0.5).
This is the why the results of N = 3 and N = 5 agree with each
other at all points, except the pull-in point. Both N = 3 and
N = 5 predict the same pull-in voltage of V = 87 V, but the
pull-in ∆W (0.5) = 0.168 for N = 3, and ∆W (0.5) = 0.201
for N = 5. Although there is an accuracy control mechanism
in the algorithm of the Newton–Rahpson method used in our
numerical computation [40], the fact that the slope approaches
infinity can still cause the significant computation error of
the maximum pull-in displacement. The similar scenario also
happens in the pull-in computations of two nanotubes under
the influence of the vdw force [30] and different flat beams
under an electrostatic loading [31]. The odd modes of the
clamped–clamped beam φi’s (i = 1, 3, 5, 7, . . .) are symmetric,
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Fig. 8. Functional diagram of the software and hardware measuring systems.

Fig. 9. Convergence study of the Galerkin method for different mode
numbers N .

whereas the even modes of φi’s (i = 2, 4, 6, 8, . . .) are anti-
symmetric. For the flat symmetric structure under a symmetric
loading, using only odd modes to discretize ∆W in (11) is
proved to be an effective method to reduce both numerical fluc-
tuation and computation effort [31]. However, caution should
be taken for the case of the arch-shaped beam with the symmet-
ric configuration and symmetric loading. As demonstrated by
both the static and dynamic studies of a symmetric arch-shaped
beam under a symmetric loading, the asymmetric deflection
appears in both the static experiment [13] and model [14],
and the antisymmetric mode significantly participates in the
motion, causing a 70% difference of critical snap-through load
in a dynamic model [7]. This phenomenon that the asymmetric
deflection or motion is induced in a symmetric arch-shaped

beam under a symmetric loading is somewhat counterintuitive.
Johnson et al. [35] introduce a dimensionless thrust parame-
ter and analytically show that when this parameter reaches a
certain value, an antisymmetric deflection solution will become
a part of total deflection solution, and the deflection becomes
asymmetric. Although the contribution of antisymmetric modes
in the arch deflection is found trivial in all our computations,
we still keep both odd and even modes, and N is taken as 5.
In our model and experiment, the arch is shallow, and the load
is the distributed electrostatic force. In those two static studies
above [13], [14], the arch is deep, and the load is a concentrated
mechanical force; the symmetric deflection also appears, and
the initial arch configurations play the vital role of determining
whether the symmetric or asymmetric deflection occurs. The
participation of antisymmetric mode in Lock’s study of a shal-
low arch [7] is purely due to the dynamic effect, as reflected
from the governing equation of the Mathieu equation.

Fig. 10 plots the responses of two arch-shaped beams under
an electrostatic loading. Case 1 has the following configu-
rations: L = 500 µm; H = 2.9 µm; d = 6.4 µm; and h =
2.6 µm (H/h = 1.12). Its experimental data are marked with
the cross (+) sign, and the solid line nearby is the numerical
results. Case 2 has the following configurations: L = 500 µm;
H = 2.6 µm; d = 8.3 µm; and h = 2.6 µm (H/h = 1), and
its experimental data are marked with a circle (◦). With the
increase in voltage, snap-through happens at point A for case 1,
and the beam then jumps to point B. With the voltage increasing
further, pull-in happens at point C. For case 2, snap-through
happens at point D, the beam jumps to E, and pull-in happens
at point F . As shown in Fig. 10, the numerical predictions
overestimate both the critical voltages of snap-through and
pull-in for both cases, as compared with the experimental data.
For case 1, the snap-through voltage is 112 V (numerical) and
104 V (experiment); the pull-in voltage is 150 V (numerical)
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Fig. 10. Comparison of the model and experimental data of two arch-shaped
beams. Snap-through first occurs and then pull-in happens with further increase
in the voltage. The experimental data marked with + pertain to the beam with
L = 500 µm, H = 2.9 µm, d = 6.4 µm, and h = 2.6 µm (H/h = 1.12).
The other data marked with ◦ pertain to the beam with L = 500 µm, H =
2.6 µm, d = 8.3 µm, and h = 2.6 µm (H/h = 1).

and 143 V (experiment). For case 2, the snap-through voltage
is 140.5 V (numerical) and 124 V (experiment); the pull-in
voltage is 300 V (numerical) and 270 V (experiment). There is
around 10% error for the snap-through voltages for both cases.
Here, some possible mechanisms that can cause this 10% dif-
ference between the numerical predication and experiment are
discussed. First, when silicon is exposed, an oxide film forms
at its surface, and the beam becomes inhomogeneous [16].
This inhomogeneity will cause the change of effective E∗I
and E∗A, which is not taken into accounte in (6). When the
oxide film is very thin, the inhomogeneity influence is trivial.
However, the compressive residual stress induced by the oxide
film [16] could be significant, and (6) does not take into account
this residual stress effect either. Second, the beam ends experi-
ence larger stress than the other parts of the beam, and plastic
deformation could thus happen around the ends. The plastic
deformation induces additional axial displacement, or during
the deflection, the beam axial force pushes the end supports
away, which also causes additional axial displacement. This,
in essence, will change the effective axial spring constant of
kx = E∗A/L. Hsu introduces a parameter α, which is called
the equivalent spring constant of the elastic supports, and these
two springs (i.e., kx and α) are in serial configuration [9].
The effective axial constant becomes keff = (E∗Aα/2(E∗A +
αL))((1/keff) = (1/kx) + (1/α)) and keff < kx. Therefore,
the effective stiffness K1 becomes smaller, and as indicated in
(1), smaller K1 results in a smaller snap-through load P . Third,
all the dynamic studies [6]–[12] demonstrate that the dynamic
critical snap-through load is always smaller than the static one.
Equation (6) is a static equation. During our experiment, the
voltage is increased very slowly to avoid the dynamic effect.
However, as analyzed above, when the voltage approaches the
critical snap-through value, the curve slope becomes very large.
A tiny load change can cause large deflection, and motion is
thus easily induced. Therefore, the dynamic effect is brought

Fig. 11. Comparison of the model and experimental data of two arch-shaped
beams. For these two beams, no snap-through happens. The beams directly hit
the electrode substrate and adhere to it as pull-in happens. The experimental
data marked with � pertain to the beam with L = 475 µm, H = 2.3 µm,
d = 3.4 µm, and h = 2.6 µm (H/h = 0.885). The other data marked with
� pertain to the beam with L = 500 µm, H = 2.9 µm, d = 4.5 µm, and
h = 2.6 µm (H/h = 1.12).

in to cause the lower snap-through voltage value. Fourth,
the axial load P (P = −Po + (E∗A/2L)

∫ L

0 [(d2wo/dx
2)2 −

(d2w/dx2)2]) acting inside the arched beam also acts on the
(clamped) ends, with an opposite direction, as Newton’s third
law applies. These forces acting on the ends that can be
coupled with friction can induce unwanted moments at the
ends [35]. Equation (6) and related boundary conditions are
incapable of describing such a coupling effect. The first and
second mechanisms in essence change the axial load P in (6)
and axial load also have significant influence on the pull-in
voltage [29], [31]. All these mechanisms can also be the
mechanisms that cause the difference between the numerical
predication and experimental observation on the pull-in voltage.
However, their influence degree on these two instabilities is not
the same. As shown next in the arch-shaped beam with only
the pull-in response, the pull-in voltage difference between the
computation and experiment is much smaller.

Fig. 11 shows the other two types of beam response to
the electrostatic loading. We name these two cases as cases 3
and 4. The related dimensions are L = 475 µm, H = 2.3 µm,
d = 3.4 µm, and h = 2.6 µm (case 3, H/h = 0.885) and L =
500 µm, H = 2.9 µm, d = 4.5 µm, and h = 2.6 µm (case 4,
H/h = 1.12). Unlike the two cases in Fig. 10, cases 3 and 4
do not experience snap-through. The beams do not flip before
pull-in. Their instability pattern is exactly the same as the beam
and plate with flat initial configurations [29], [31]. For case 3,
the experimental data are marked with the 
 sign, and the
solid line nearby is the numerical result. The experimental data
of case 4 are marked with the � sign. Compared with the
two cases in Fig. 10, the pull-in voltages in Fig. 11 that were
predicted by the model agree fairly well with the experimental
data. The pull-in voltage values in case 3 are 77.5 V (numerical)
and 80 V (experiment); in case 4, they are 86.5 V (numerical)
and 90 V (experiment). The dimensionless pull-in maximum
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displacements ∆W (0.5) for case 3 are 0.347 (numerical) and
0.265 (experiment). Those for case 4 are 0.203 (numerical) and
0.178 (experiment). The dimensionless pull-in maximum dis-
placements (both numerical and experimental ones) of cases 3
and 4 are smaller than those of the clamped–clamped beam with
flat initial configurations [29], [31]. However, those of cases 1
and 2 are significantly larger. Therefore, for those arch-shaped
beams with both the snap-through and the pull-in instabilities,
the arch configurations can enlarge the maximum displacement,
which is very helpful for providing better sensitivity and tuning
range [27].

It will be useful to tell when snap-through happens. The static
studies of the arch-shaped beam with mechanical concentrated
load show that the arch-shaped beam can deflect continuously
without snap-through [13], [14], [22]. Qiu et al. give two
criteria for snap-through to occur statically: 1) the ratio of the
arch height to the beam thickness (H/h) is large and 2) the
(antisymmetric) second mode must be constrained [22]. Here,
the arched beams in test are all shallow arches; H/h = 1.12
of case 1, H/h = 1 of case 2, H/h = 0.885 of case 3, and
H/h = 1.12 of case 4. They all have small H/h ratios, and
some have snap-through and some do not. Clamping two or
several curved beams together at their centers are demonstrated
to be an effective method of constraining the second mode [16],
[19], [22]. However, with the participation of the second mode
in motion or deflection, the snap-through can still occur for
shallow [7] or deep arch [13], [14]. Pippard and Patrício et al.
give a clear phase diagram from which whether snap-through
occurs or not can be told [13], [14]. Still, the phase diagram
is obtained point by point by running through different arch
configurations in the experiment or numerical computation.
The loading in the cases of Pippard and Patrício et al. is a
mechanical concentrated load. In our distributed electrostatic
loading case, we face another difficulty of constructing such
a diagram. In Section II, we point out that snap-through and
pull-in are of the same type of instability. They both cause
the infinity of the slope and displacement jump. We can
only differentiate them by the physical criterion of whether
the collision with the substrate occurs. In the response of
cases 3 and 4 in Fig. 11, it could be the scenario that the
axial spring kx first loses the capability of taking further the
electrostatic loading (i.e., snap-through happens first), and then
during the snap-through jump, the transverse spring kz also
becomes incapable of withstanding the further loading (pull-
in happens). The final result is thus that the beam collides
with the substrate, and this is the same scenario as when the
pull-in instability happens first. We cannot differentiate these
two scenarios from either our computation or the experimental
observation. Therefore, in cases 3 and 4, we only observe pull-
in. Only when snap-through occurs first and the structure stays
stable after jump as cases 1 and 2 in Fig. 10 can we observe
that snap-through occurs. In the phase diagram of Pippard [13]
and Patrício et al. [14], only two parameters (the beam span
and the initial arch angle at the clamped ends) are used. In ad-
dition to the geometries of arch-shaped beam, other parameters
like Po and d in (6) are also important in determining snap-
through. It is just too many parameters to construct such a phase
diagram.

VI. SUMMARY

The snap-through and pull-in instabilities are analyzed and
compared first for one-DOF system, and the study is then
extended to the continuous system of the arch-shaped beam
under an electrostatic loading. For the arch-shaped beam under
an electrostatic loading, the snap-through may or may not
occur, and the pull-in instability occurs for sure. The two
types of response of arch-shaped beam under an electrostatic
loading are demonstrated and analyzed. The numerical analysis
overestimates the critical snap-through load, and the possible
mechanisms are discussed. The arch configuration is responsi-
ble for the snap-through instability and contributes to the larger
maximum displacement of the arch-shaped beam with the snap-
through response. Furthermore, by design, the beam initial
arch shape wo(x) can be formed by other mechanisms such
as the residual stress/gradient and thermal loading. The model
presented here is a generalized one, which takes the structure
initial imperfection into account. As long as the initial arch
shape wo(x) is given, the model can be applied. The initial arch
shape studied here is symmetric, and all structure deflections
are found symmetric under a symmetric distributed electrostatic
loading. The model presented in this paper is a static analysis.
The effects of the asymmetry of initial configuration and dy-
namics are not included here and left for our future study.
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