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Abstract

A dynamic coupling model is developed for a hybrid atomistic—continuum computation in micro- and nano-fluidics. In the hybrid
atomistic—continuum computation, a molecular dynamics (MD) simulation is utilized in one region where the continuum assumption breaks
down and the Navier—Stokes (NS) equations are used in another region where the continuum assumption holds. In the overlapping part of these
two regions, a constrained particle dynamics is needed to couple the MD simulation and the NS equations. The currently existing coupling
models for the constrained particle dynamics have a coupling parameter, which has to be empirically determined. In the present work, a novel
dynamic coupling model is introduced where the coupling parameter can be calculated as the computation progresses rather than inputing a
priori. The dynamic coupling model is based on the momentum constraint and exhibits a correct relaxation rate. The results from the hybrid
simulation on the Couette flow and the Stokes flow are in good agreement with the data from the full MD simulation and the solutions of the

NS equations, respectively.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problems in microfluidics involve a broad range of
scales from the atomistic scale to the continuum one (e.g.
see Squires and Quake, 2005; Gad-el-Hak, 2004). A full
atomistic description, such as molecular dynamics simula-
tion, is capable of describing the fluid flows at the micro-
and nano-scales. However, it is computationally prohibitive
due to the limitations of computer memory and computa-
tional time. On the other hand, A full continuum description,
such as the Navier—Stokes (NS) equations, is computationally
available but unable to describe the fluid flows in the regions
where the continuum assumption breaks down. One of those
examples is the slip boundary condition on fluid—solid inter-
faces (see Thompson and Troian, 1997; Pit et al., 2000). In
order to take the advantages of both the atomistic and con-
tinuum descriptions, a hybrid atomistic—continuum method
(e.g. see O’Connell and Thompson, 1995; Li et al., 1998;
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Nie et al., 2004; Koumoutsakos, 2005; Cui et al., 2006) has
been recently developed. In the hybrid method, an atomistic
description is combined with a continuum one, see Fig. 1. It de-
scribes the fluid as an amount of particles in one region where
the MD is used, and as a continuum hydrodynamics in another
region where the NS equations are used. These two descriptions
are coupled in the overlap region. Thus, the boundary condi-
tions for the NS equations, which are not explicitly available
at micro- and nano-scales, can be obtained from the MD sim-
ulations. Meanwhile, the macroscopic information on the NS
equations is given to the molecules via the interactions of the
particles with the molecules. The computation time in the hy-
brid method is expected to be much shorter than the full MD
computation in the entire domain, since most of the computa-
tion region is solved by the NS equations. The challenge is how
to couple the continuum dynamics with the MD to ensure the
continuity of the physical quantities, such as mass, momentum,
energy and their fluxes, in the overlap region. Unlike the previ-
ous hybrid method in turbulent reacting flows (see Muradoglu
et al., 2001), which is a particle-then-continuum approach, the
present one is a particle-and-continuum approach.
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Fig. 1. A schematic diagram for the hybrid method. Circles indicate the
particle region; Straight lines indicate the continuum region. C — P is the
upper surface of the particle region and P — C is the lower surface of the
continuum region. The overlap region is in between the two surfaces.

There are two coupling approaches available: the flux-based
method (e.g. see Delgado-Buscalioni and Coveney, 2003) or the
state-based method (e.g. see Hadjiconstaniou and Patera, 1997).
The flux-based coupling makes the fluxes of mass, momen-
tum and energy calculated from the MD and the NS equations,
respectively, consistent. In the overlap region, the fluxes calcu-
lated from the MD simulation are exchanged with the ones cal-
culated from the NS equations. Therefore, the coupling model
can naturally satisfy the conservation laws. Unfortunately, the
coupling may induce some numerical instability due to the
Dirichilet problem. Flekkoy et al. (2000) developed a robust
flux-based coupling model. Their results demonstrate some ad-
vantages over the state-based method; The state-based coupling
is to transfer the state information between the MD simulation
and NS equations. In the overlap region, a constrained particle
dynamics is constructed and serves as a bridge to transfer the
information so that the averaging of particle information gives
a macroscopic state to the NS equations and the macroscopic
information from the NS equations iss given to the particles.
The particles interact with molecules in the atomistic region
and thus transfer the information into the molecules.

O’Connell and Thompson (1995) developed a constrained
particle dynamics with an empirical coupling parameter. In
their computations, the coupling parameter is taken as 0.01 a
priori. Recently, Nie et al. (2004) proposed a modification of
O’Connell and Thompson’s model using an external force. It
implies that the coupling parameter is equal to unity. These
coupling models have been used to successfully simulate the

sudden-started Couette flows. However, in the simulation, the
coupling parameter has to be given a priori. There is no any
general approach to determine the coupling parameter to date.
In the present work, a dynamic coupling model is proposed to
locally calculate the coupling parameter for describing the state
of flow in the overlap region. This will be achieved by invoking
the momentum consistence constraint.

The paper is organized as follows: in Section 2, the dynamic
coupling model for the coupling parameter will be presented
and its properties discussed. The dynamic coupling model is
tested against the sudden-started Couette flows and the Stokes
flow (oscillatory shear flows). The results of these tests will be
presented in Section 3. The concluding remark will be made in
Section 4.

2. A dynamic coupling model in the hybrid method

We consider a hybrid atomistic—continuum method for
micro- and nano-fluidics. In the hybrid method, a computa-
tion domain is decomposed into three regions: an atomistic
region where a MD is used, a continuum region where the
NS equations are used and an atomistic—continuum overlap
region to which a constrained particle dynamics is applied.
The constrained particle dynamics has to be constructed so
that the particle description is consistent with both atomistic
and continuum descriptions.

We start with the continuum region. In the region, the NS
equations for incompressible flows are used
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Here, u is the velocity of fluid, p the density, p the pressure
and v the kinematic viscosity. A two-dimensional flow in the
x—z plane is considered and the NS equations are numerically
solved using the projection method on the stagger grids (e.g.
Tannehill et al., 1997), see Fig. 2.

In the atomistic region, the MD simulation is implemented
(e.g. see Frenkel and Smit, 1996). The molecular interaction
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Fig. 2. A schematic diagram for the staggered grids in the continuum region.
Crosses and triangles indicate the x and z components of the velocities,
respectively. Ax and Az are the length of the grid in x and z directions.
Dashed lines denote the cells where the boundary conditions for the NS
equations aree needed.
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potential is given by a shifted Lennard-Jones (LJ) potential
truncated at r =r,

(/18 = (6/re)' 2 + (a/r)01, 3)

where ¢ and o are the characteristic energy and length scale
separately. r. is a cutoff length, which implies that the inter-
actions vanish when the particle separations are larger than r,.
Then, the equation of motion for each molecule is

d I', @V',‘
% @
r;

VE = 4¢(o/r)!? —

The equations of motion are integrated using the Verlet
scheme. The temperature of the fluid is maintained to be
constant, which is achieved by a Langevin thermostat.

In the overlap region, a constrained particle dynamics is con-
structed in order to achieve the mass and momentum consis-
tencies between the atomistic and continuum descriptions. The
momentum consistence implies that the local mean of the par-
ticle momentum is equal to the instantaneous macroscopic mo-
mentum

(mivi) =Myuy, (5)

where m; is the mass of the ith particle in the Jth cell, v; the ith
particle velocity, M, the total mass of the fluid in the Jth cell
and u; the fluid velocity in the Jth cell. The symbol “( )” de-
notes an ensemble average. In order to achieve the momentum
consistence, we start the constrained particle dynamics with the

conventional Newton equation for particles
dzxi F,‘
dr? - m; ’

(6)

where Xx; is the displacement of the particle i. The force, F;, is
determined by the LJ potential

avL]

Fi=-)" o (N

J#

According to the Langevin equation, an external force is
introduced in Eq. (7) to take into account the velocity
difference between the particle velocity and the macroscopic
velocity. Thus, Eq. (6) can be written as

dZX,' 1 ani dX]
dr? m 0x; + o Z ®)

Here, N is the total number of particles in the Jth cell. ¢ is a
parameter for coupling intensity, which controls the relaxation
of the particles in the overlap region to the local continuum
values. Other Langevin-type models include O’Connell and
Thompson’s model and Nie et al.’s model. In O’Connell and
Thompson’s model, the coupling parameter is taken as £=0.01
to guarantee the relaxation of the local mean of the particle ve-
locity to the macroscopic velocity over some time scale; Nie
et al.’s model implies ¢ = 1.0, which constrains the local mean
of the particle velocity equal to the instantaneous macroscopic

velocity. An appropriate value of the coupling parameter is
critical to the hybrid method.

In order to determine the coupling coefficient, we sum up
Eq. (8) over the Jth cell and then solve it for the parameter ¢:

¥ L (@ri(@)/de* = F;(t)/m)
wp(t) — A/NDYN i)

The coupling parameter obtained might be different in each
cell and at each time step. It is dynamically determined by the
current states and does adjust the particle dynamics themselves
as the computation progresses. Therefore, the dynamic coupling
model satisfies the constraint on momentum consistence, and
controls the relaxation rate of the local mean of the particle
momentums to the macroscopic momentum.

We argue that the coupling parameter & must be positive. If
the velocity difference u; — (1/N;) Y dxi/dr is positive, the
coupling parameter has to be positive to accelerate the particles,
and on the other hand, if the velocity difference is negative, the
coupling parameter has to be positive to decelerate the parti-
cles. Therefore, we may take the magnitude of the coupling pa-
rameter in practice. This ensures the convergence of the results
from the MD portion to the ones from the continuum portion.

Mass continuity can be achieved by moving particles across
the boundary of the overlap region. Since mass change only
happens in the thin layer near the boundary, we define a con-
strained layer adjacent to the interface between the continuum
region and the particle region. In this layer, a certain number
of particles are inserted into or removed from the MD region
according to the mass flux evaluated by the NS equations. The
number of particles that should be inserted or removed across
the boundary is

n=—Apu,Atpp/m, (10)

i+ AN =

(€]

where A is the area of the cell boundary that are perpendicular
to the interface and Atrp is the time step for integrating the
NS equations. If n is positive, n particles are inserted into the
regular intervals over the time unit Atrp. They are placed near
the interface in z direction and randomly in x and y directions.
To prevent the distance between the inserted particles and the
previous ones from being too small, we will repeat the above
process if it happens. The initial velocities of these inserted
particles are equal to the continuum velocity at the surface to
ensure that the average of particle velocities is consistent with
the macroscopic velocity. If n is negative, n particles that are
closest to the interface are removed. At each interval At p, the
nearest integer of n is taken.

Furthermore, in order to obtain the continuity of momentum
flux near the interface, an external force in z direction should
be imposed to the particles in the constrained layer. The sum
of those external forces in a cell should be determined by the
following equation:

ZE’=A(—P+2M%>. (11)
- 0z

Here, F! is the external force acting on the ith particle, P
the local pressure and u, the velocity in z direction obtained
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by solving the NS equations. Eq. (11) indicates that the forces
on the particles in the constrained layer are determined by the
continuum dynamics. To prevent the particles from flying away
from the MD region, we introduce a force Fi’ as follows:

Fl=8 p (12)

Zjeve(a))

Here, F denotes the right-hand side of Eq.(11) and g(z;) is
an arbitrary weight function which depends on the particle’s
position in z direction. The function should guarantee that the
external force for each particle at the interface C — P is ap-
proaching infinite and the one for each particle on the bottom
surface of the constrained layer is equal to zero. Thus, the par-
ticles are effectively constrained in the MD region.

3. Numerical results

The hybrid method developed in the last section is first used
to simulate a sudden-start Couette flow in order to demonstrate
its validity. The Couette flow with non-slip boundary condi-
tions is often served as a benchmark test to validate various
hybrid methods. Further, we will consider the Couette flows
with slip boundary conditions. Finally, we will apply the hy-
brid method to an oscillatory shear flow, since the oscillatory
induced unsteadiness is a challenge to the hybrid method.

The parameters in our simulation are given as follows: the
mass of each fluid atom is m, the density p=0.8 1lma =3, the cut-
off length . =2.20. The characteristic time 1= (ma? /€) 172 the
temperature of the fluid is kept constant at 7 = 1.1¢/kp, where
kp is Boltzmann’s constant, the damping rate of the Langevin
thermostat is 7~!, and at these given T and p, the fluid is in a
well-defined liquid phase with viscosity u = 2.14et673.

The Couette flow is the viscous fluid confined between two
parallel plates, with its initial velocity equal to zero. At =0, the
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top plate at z=H =46.9¢ is moving with a velocity U, =0¢/7 in
x direction and the bottom one at z =0 is fixed, see Fig. 3. The
sudden-start Couette flow is simulated in a rectangle domain of
46.90 x 46.9¢ in the x—z plane. A periodic boundary condition
is imposed in the streamwise direction. In the hybrid method,
the computation domain in 0<x <46.9¢ and 0<z< H is di-
vided into two regions: the upper one at 15.630 <z < H is the
continuum region which is described by the NS equations with
9 x 6 uniform grids Ax x Az =5.21¢ x 5.210, and the bound-
ary condition at z = 15.63¢ of the NS equations is taken from
the results of MD; the lower one at 0 <z <<31.260 is the parti-
cle region which is described by MD, with extending one grid
to y = 4.81¢ in the spanwise direction; the overlap region at
15.636<z<31.260 is solved by the constrained particle dy-
namics described in the last section.

Standard no-slip conditions are imposed at the top wall, while
the bottom wall at z =0 is simulated by two (11 1) layers of a
face-centered cubic (FCC) lattice consisting of solid particles
with the same mass and density as the liquid. Those particles are
fixed in the MD simulations and interact with fluid particles in
terms of a shifted LJ potential. The LJ potential with the charac-
teristic energy "/ =0.6¢, length scale 6"/ =1.0¢ and character-
istic density p*/ = 1.0p yields a non-slip boundary condition;
the LJ potentials with the parameters (¢, 6%/, p*f) = (0.6,
0.750, 4p) and (0.2¢, 0.750, 4p) yield two different slip bound-
ary conditions (Thompson and Troian, 1997).

The time step used in the MD portion is Aty p = 0.0057,
while in the NS region we use Atys = 50Atyp = 0.257.
The time coupling scheme in the overlap region is shown in
Fig. 4. First, n,, = 50 time steps in the MD are conducted, then
the average is performed over the time interval and the aver-
aged information is transferred to the NS equations at the cen-
ter point of the interval; then, the NS equations are advanced
for one time step and the information is sent to the MD, where
the extrapolation of velocity field may be needed.
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Fig. 3. A schematic diagram of the flows simulated. (a): The geographic configuration, H denotes the distance between the two plates. The two lines of
circles in the bottom represent the solid substrate. Uyyg)) is the moving velocity of the top plate in the x direction;(b): sudden-start Couette flow where Uygq)l

is constant;(c): oscillatory flow where Uy evolves in a sinusoidal way.
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Fig. 4. Time coupling in the hybrid scheme. (1). MD advances n) time steps;
(2) the averaging of n, steps of MD results gives the information of the
center moment to NS; (3) NS advances n. steps; (4) the NS results give the
information to MD, then MD evolves n, steps again, note that NS can only
provide the information up to the middle point of the interval.
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Fig. 5. Velocity profiles at different times from the hybrid method and ana-
lytical solutions of the Navier—Stokes equations. Lines denote the analytical
solution from the Navier—Stokes equations; empty squares denote the result in
the continuum region and solid circles denote the one in the particle region.

The overlap region has three cells in the normal direction and
the constrained layer consists of the cells nearest to the interface
C — P. In the continuum region, the projection method is
used. We first run the simulation in the MD region for 2007 to a
relatively steady state from the initial positions and velocities.
The hybrid simulations run for 20007 to achieve a steady state.

Fig. 5 shows the solutions of the sudden-start Couette flow
with the non-slip boundary conditions, using the hybrid method
and the analytical solution of the NS equations separately. To
reduce the statistical errors in the hybrid method, we average
the solutions for 10 independent runs. It can be seen that the
results from the hybrid method follow the ones from the ana-
lytical solutions. Especially, in the overlap region, the veloci-
ties obtained from the NS equations and the MD are smoothly
connected. This indicates that the constrained particle dynam-
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Fig. 6. Steady velocity profiles of the Couette flows under the non-slip and slip
boundary conditions. The inlet indicates the symbols of the results obtained
from the hybrid method and full MD computation.

ics achieves the continuity of the momentum flux. We also im-
plement the hybrid method with constant coupling parameters.
The results obtained are dependent on its values. It is not pos-
sible to pick up the appropriate coupling parameter a priori.

Fig. 6 shows the steady solutions of the sudden-start Couette
flows with two different slip boundary conditions at the bottom
plate. It can be seen that the hybrid scheme reproduced the MD
solution very well. The different slip velocities at the bottom
plates do induce the velocity profiles of different slopes, which
are in good agreement with the previous predictions (Thompson
and Troian, 1997). It is verified that the hybrid method devel-
oped here is valid for the slip boundary conditions.

To test the dynamic coupling model against unsteady flows,
we examine an incompressible and isothermal fluid in an os-
cillatory shear field between two parallel walls. The lower wall
is again kept at zero velocity and the upper wall moves at a
sinusoidal speed

u(H, t) = wa(t) = tmax SIN27 f'1). (13)

This flow has a analytical solution (Wijmans and Smit, 2002).
At large ¢, the solution can be expressed as

u(z,t) = Aumax SN2 ft + ¢), (14)
where

A—{ coshRz/m f/v) — cosRz/Tf/Vv) }1/2
B coshRQH/nf/v) —cos(QH ./ f/v)

s5)

and

_ sinh(z(l—i—i)«/nf/v)
¢ =arg sinh (H(1+ i)/ | (16)
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Fig. 7. Velocity profiles for oscillatory flow. Lines denote the analytical
solution; symbols denote the hybrid result, empty squares denote the result in
the continuum region and solid circles denote the one in the particle region.
The unit of time is 7.

Here, i =+/—1, fis a frequency; arg denotes phase angle com-
plex argument. The set-up here is same as the sudden-Couette
flow illustrated above, but the wall moves at the velocity in
Eq. (13). An average is performed over a time interval t that is
centered at the specific moment. Besides, we ran 10 realizations
of the same system in parallel to reduce the statistical fluctu-
ations. Fig. 7 shows several snapshots of the velocity profiles
in the case of umax = o/t and f = 0.01. Although the veloc-
ities slightly fluctuate in the pure MD region, the agreement
between the velocity profiles from the hybrid method and the
analytical solutions is remarkable, which demonstrates the ca-
pability of the hybrid method for unsteady flows. Note also that
the atomistic and continuum portions of the solution obtained
match closely in the overlap region. The hybrid method allows
the coupling parameter to evolve with the particle dynamics,
which guarantees the relaxation rate.

4. Concluding remarks

A dynamic coupling model has been developed for the hy-
brid atomistic—continuum computation. The coupling model is
based on a Langevin equation. It is “dynamic” in the sense that
it is able to calculate the coupling parameter as computation
progresses. Therefore, the dynamic coupling model can ensure
the continuity of momentum and control the relaxation rates of
the systems under investigations.

Two problems are simulated using the dynamic coupling
model: the Couette flow and the Stokes flow. The Couette flow
tests the dynamic coupling model against its relaxation to the

steady states. The Stokes flow tests the dynamic coupling model
against the unsteady properties. The results obtained show good
agreement with the analytical solutions and the MD simula-
tions. More test cases are needed to investigate the properties
of the dynamic coupling model, such as the wall with rough-
nesses in the Couette flow and Stokes flow with a broad range
of frequencies and amplitudes. Other state-based or flux-based
constraints can be also utilized to determine the coupling pa-
rameter for different purposes.
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