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Abstract

Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical
structures that allow these animals not only to adhere robustly to rough surfaces but also to detach
easily upon movement. In order to improve our understanding of the role of elastic anisotropy in
reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to
anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-
slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry
oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented
pulling force. The critical force and contact width at pull-off are calculated as a function of the
pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion
strength which can vary strongly with the direction of pulling. This study may suggest possible
mechanisms by which reversible adhesion devices can be designed for engineering applications.
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1. Introduction

Adhesion systems in biology, including those of gecko and many insects, have attracted
significant attention in recent years (e.g., Hiller, 1968; Autumn et al., 2000, 2002; Autumn
and Peattie, 2002; Russell, 2002; Arzt et al., 2002, 2003; Gao and Yao, 2004; Glassmaker
et al., 2004; Hui et al., 2004; Gao et al., 2005; Spolenak et al., 2005; Huber et al., 2005; Yao
and Gao, 2006). On one hand, the adhesion mechanisms in biology must be robust enough
to function on rough surfaces. On the other hand, bio-adhesion must be easily releasable
upon animal movement. While structural hierarchy seems to play a critical role in robust
adhesion, elastic anisotropy appears to play a key role in the reversibility of biological
adhesion (Autumn et al., 2000; Gorb and Scherge, 2000; Niederegger et al., 2002; Yao and
Gao, 2006). For example, the tissue on gecko’s feet is made of hundreds of thousands of
keratinous hairs called setae, the tips of which further contain hundreds of smaller hairs
called spatulae with typical diameters on the order of a few hundred nanometers. This
hairy microstructure results in a hierarchical and strongly anisotropic tissue which leads to
robust and reversible adhesion.

Recent developments in experimental techniques to measure adhesive forces at the level
of individual setae (Autumn et al., 2000, 2002 ) and spatulae (Kesel et al., 2003; Langer
et al., 2004; Huber et al., 2005) are calling for more systematic theoretical and experimental
studies of adhesion mechanisms in biology. A systematic study of biological adhesion
mechanisms should be of interest not only to the understanding of biological systems but
also to the development of novel adhesive materials or devices for engineering
applications.

Reversible adhesion has been studied at the level of a single seta of gecko (Autumn et al.,
2000; Gao et al., 2005). Autumn et al. (2000) reported that a single seta exhibits strong
adhesive force at a pulling angle around 30°. Gao et al. (2005) numerically simulated the
pull-off force of a single seta and found that the asymmetrical alignment of seta allows the
pull-off force to vary strongly with the direction of pulling. Such anisotropic adhesion
behavior of a discrete structure is in fact quite similar to that of an elastic tape on substrate
(Kendall, 1975; Spolenak et al., 2005; Huber et al., 2005). On the other hand, at the tissue
level, there has been relatively little study on how reversible adhesion can be achieved on
larger scales (Yao and Gao, 2006). An interesting observation is that, while geckos and
some insects have adopted hairy tissues for robust and reversible adhesion, some other
insects seem to have achieved this via smooth tissues. For example, the attachment pad of
cicada exhibits a smooth outer membranous layer covering an anisotropic microstructure
made of highly elongated foams (Scherge and Gorb, 2001). The attachment pad of
grasshopper shows a smooth membrane covering arrays of cross-linked rod-like fibers that
are branches of thicker principal rods located deeper in the cuticle and oriented at some
angle to the cuticle surface (Slifer, 1950; Kendall, 1970). These biological adhesion systems
show two kinds of microstructure designs, i.e., the hairy and the smooth attachment pads.
Through a comparative study of various biological attachment pads in more than 300
species of insects, Gorb and Beutel (2001) and Beutel and Gorb (2001) pointed out that the
main similarity of both designs is that the structured pad surfaces or particular properties
of the pad materials guarantee a maximum real contact area with diverse substrates. Yao
and Gao (2006) argued that the most important feature of biological adhesion systems
that leads to reversible adhesion is the strong elastic anisotropy in the overall property of
the tissues. They used an interfacial crack model to show that adhesion between two
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three-dimensional anisotropic elastic solids exhibit orientation-dependent failure strength.
In other words, the binding strength of two anisotropic elastic continuum, even without a
microstructure, would vary strongly with the direction of pulling.

The present paper is aimed to develop a model of reversible adhesion within the
framework of adhesive contact mechanics which has so far been largely limited to isotropic
materials (Johnson et al., 1971; Derjaguin et al., 1975; Roberts and Thomas, 1975; Muller
et al., 1980; Greenwood and Johnson, 1981; Barquins, 1988; Maugis, 1992; Carpick et al.,
1996; Chaudhury et al., 1996; Baney and Hui, 1997; Greenwood, 1997; Johnson and
Greenwood, 1997; Barthel, 1998; Greenwood and Johnson, 1998; Robbe-Valloire and
Barquins, 1998; Kim et al., 1998; Morrow et al., 2003; Schwarz, 2003; Chen and Gao,
2006a, b, ¢ ; Chen and Wang, 2006). Our model provides a connection between the
interfacial fracture model for reversible adhesion by Yao and Gao (2006) and the contact
mechanics models. In particular, we consider the plane strain problem of a rigid cylinder in
contact with a transversely isotropic elastic solid subjected to an arbitrarily oriented
detachment force in the plane of the analysis. The contact region is assumed to be non-
slipping such that both tangential and normal tractions are transmitted across the contact
interface.

The plan of the paper is as follows. First, the Barnett-Lothe tensors for transversely
isotropic materials are introduced to facilitate the subsequent analysis. Next, the
anisotropic contact model is set up and the Griffith energy balance between elastic and
surface energies is used to determine the relationship between the applied pulling force and
the size of the contact region. Of special interest is the critical force at pull-off as a function
of the pulling angle and the orientation of the symmetry axis of the material.

2. Barnett—Lothe tensors for transversely isotropic materials

Transversely isotropic materials are a special class of anisotropic materials that are
isotropic in a plane (taken to be the x¢—z( plane) and anisotropic out of this plane. The
vector normal to the isotropic plane, taken to be the y,-axis, forms a symmetry axis of the
material. Such materials are described by five independent elastic constants: Young’s
modulus and Poisson ratio in the isotropic plane (£ and v;); Young’s modulus, Poisson
ratio and shear modulus associated with the out-of-plane direction (E,, v, and Gy3).

In subsequent analysis we will make use of the Barnett—Lothe tensors (e.g., Ting, 1996)
whose expressions for orthotropic materials have been given by Dongye and Ting (1989)
and Hwu (1993). For transversely isotropic materials, they are defined as

S 0 S12 L L]] 0 1
- so1 0 ’ 10 Ly ’ ( )

where
S12 = =Y X1, S21 = X1Y2X1s (2

Ly = oy El, Ly =oy,Es, (3)
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3. The model

To understand the mechanism of reversible adhesion in anisotropic solids, we consider
the plane strain contact model described in Fig. 1. A rigid cylinder of radius R is shown to
be in contact with a transversely isotropic elastic half space whose symmetry axis is
inclined at an angle 0. An external force F is applied to pull the cylinder in a direction ¢.
The width of the contact region is 2a. A Cartesian coordinate system (x, y) is attached to

- Rigid cylinder

Isotropic plane

=

Transversely Y
isotropic elastic half
space

Fig. 1. A rigid cylinder of radius R contacting a transversely isotropic elastic half space with the axis of material
symmetry inclined at an angle 6 with respect to the normal of the surface. A Cartesian coordinate system (x, y) is
fixed at the center of the contact region of width 2a. An external pulling force F is applied on the cylinder at an
angle ¢ from the y-axis.
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the center of the contact region, with the y-axis pointing into the elastic half space. The
contact region is assumed to be perfectly bonded, with P(x) and Q(x) denoting,
respectively, the normal and tangential tractions along the contact interface. The pulling
force is assumed to be properly aligned such that there is no net bending moment on the
contact region. The edges of the contact region resemble two opposing interfacial cracks
under plane strain deformation. As in almost all contact mechanics theories (Johnson,
1985), the contact width is assumed to be small compared to the radius of the cylinder.

Under the above assumptions, the continuity across the interface requires the tangential
and normal displacements along the surface of the elastic half space to be equal to

a,\” = 05 |x|<a: (6)

x

2R’

where ¢ is a constant and R the radius of the cylinder (see Johnson, 1985).
Differentiating Eqs. (6) and (7) with respect to x gives

iy =0 — x| <a, (7

o,
ox

o, _ ®
ox R

These surface displacements can be related to the surface tractions Q(x) and P(x) via
Green’s functions of a tilted transversely isotropic elastic half space (e.g., Ting, 1996).
When this is done, Eq. (8) becomes

1 [ D
- mf(é‘) ds + Wf(x) = C, (9)

T a

where the coefficient matrices can be expressed in terms of the Barnett-Lothe tensors as

D=QDQ", Dy=L", (10)
W oW = W, We—siL'—| . (11
- 0 - 0 0 — - W21 0 5
0 O(x)
C= =X |» = P 12
7,] f(x) (P(x)) (12)
_ cosf —sinf 13
B Lln@ cos 0 } (13)

Superscript “T” denotes matrix transposition, subscript “0” stands for matrices with
material symmetric axis coincident with the normal of the contact interface, i.e., 6 = 0.
We note the following properties of these matrices:
512 821

Q'=0" D '=QLOT, W,="=, Wy =-—, (14)
Ly Ly
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po= | 0 o 0 W= —W (15)
=10 dp| T = 1o L122 ) 21 = 12
The components of the matrix
D*71 D*71
-1 _ 11 12
Y= oy oy (16)
are explicitly written as
Dll = . 20 D22: ) l (17)
Li;cos?20 4+ Lysin” 0 Liysin” 0+ Ly, cos? 0
DY, =D} = ! (18)
12 27 (L — L) cos B sinf’
Eq. (9) can be rewritten in the form
1 /¢ I
f/ ——f()ds+ D 'Wf(x) = G, (19)
T 48— X
where
1 0 o
I= , G=DC. (20)
0 1
The solution to Eq. (19) with boundary conditions
/ P(x)dx = —F cos ¢, O(x)dx = F sin¢ (21)
—a —a

can be obtained following a similar procedure used in Chen and Gao (2006a). The
calculations are quite lengthy but the methodology of solving such integral equations is
standard. We skip all the details and present only the final solution. The interfacial
tractions in the contact region have the solution

0(x)\ [2Re(T}—-T7) o)
P(x) [ 7| =2D% Im{d(T{ = T7)} [
where
e xd (a+x)"(a—x)"d, / Ha+1)(a—1) a4
U7 4R — 1) 47iR(1 — ) —a t—Xx
+ri(a+x)(a—x) e, (23)
v (@)@ )Td e / “Hattfa—0
L™ 4R(1 + 1) 4riR(1 — i) u t—x
+ i@+ x) (@ —x) e (24)
The order of stress singularity r is given by
1.1
r=1+ie, ¢ -1 (25)

2 nl—n’
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where ¢ is called the oscillation index and 5 a bimaterial constant (analogous to Dundurs
(1969) parameters f for isotropic materials),

1 1
= Wiy = — —5|. 26
!\ DRD% D .
The constants d; and x; in Egs. (22)—(24) are
1 1 1
di =t | — = @27)
Dy, | Di\D3 DR
V1= —F(D* D%, si
Ky = 1 (D1, €05 ¢ + D1y SN D) L ip gin . (28)

a —F, T
4 a0 @ =07 dx | propy 1ot D%, - 1/D8

The stress intensity factor for an interfacial crack between two dissimilar anisotropic
solids can be defined as (Wu, 1990; Hwu, 1993; Ting, 1996)

K = lim «/2n(a—x)A<<(a_x>i£1>>A1f= { K,E } 2=1,2, (29)
X—da — I

where
BN N
A=QAy, Ayg= \/Qlﬁ’f \/ZIJH , (30)
Vidy 2y
g =¢, & =—¢ 3D

The angular bracket (( )) stands for a diagonal matrix, i.e., {({p,)) = diag[p, p,]. Constants
dy; and d»; have been defined in Eq. (15), 2 in Eq. (13), ¢ in Eq. (25) and f in Eq. (12).
Using Egs. (30) and (31), the stress intensity factors in Eq. (29) can be expressed

explicitly as
O(x)

K m m
{ 1 }zlimv2n(a—x)l/2[ ! .
K;
dzz d11 .. a— x\ie
1+<\/d”—1/dn>1sm900s6]< ] )}, (33)

x—>a Moy My

where

mp = Re{

cos?0/dr,  sin’0/dy, a— x\ie
ma = (B T nd () 9
_ [cos?0/dy sm 20/d a— x\ it
m“__( Jin Jan )Im{< ) } &

_ dy dy a—x\i
mzz_Re{ (Ud—“—”dzz)lsmﬂcosﬁl ] ) } (36)
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Using the following two identities:

[d2 fdi\. .
1+ —— —|/——]isinOcosO
( di dzz)

_ (coszH\/dzz " sin”0y d”> Dhi [Dh D (37)
Vdi Vdx DY, Dy DE)
1 — ( %— ?)1 sin Ocos0
\/ 11 \/ 2
_ (Coszevdll +sin26wdzz> —Dhi (DY DE (38)
Vi Vv Di, Dy, DY)’
the stress intensity factors can be written in the form,
32 nBF
K = mw Re{li} — CIm{l,}] - %[Blm{lz} + CRe{l,}], (39)
K= i) + % Re{D»}, (40)
where
20\ M1+ 01— 1)
nealF) [ “
e 9(9) (2_a> 42)
JLa+o7a—grde\ !
and
D* D*Z
A= 2 et = 1 (Yt o0+ Vo2 sin0 ), (43)
Dy, | Dy D3, d dii
%k * / /
D73 Jdr» Vdi
D* D* D*Z / /
C=—172, Tl 1( di cos’ 0 + 4 sin’ 0), 43)
DTz D11D22 \/dzz \/dll
i i(D*, cos ¢ + D¥ sin ¢)
o) = sin g+ 12N L LN ID) (46)

D* D*, |
EATYY i )
DY\ D5, DY

The energy release rate is (Ting, 1996; Wu, 1990)

G = 1K"EK, 47)
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where

1
E=D+WD'W=———D, (48)
cosh” mg

Substituting Eqgs. (14) and (15) into (48) then into (47) yields the energy release rate

_1 D}, D%, D% 1 < ﬁ K_ﬁ 2K1KH>. “9)
4 DT% — DT] D;z COSh2 e DT] Djz DTz
Substituting Egs. (39) and (40) into Eq. (49) leads to
KK 2Ky
Dy, D3 D
B’ al nF? 2aF .
=—712+—12—7Im11}, 50
D, nRz(l—nZ)zl 1"+ =1l RA—1) {1112} (50)
where we have used the identity
4> C* 24C B
T e T Ty T e (51
Dy Dy, Dy, Dy
Applying the Griffith criterion of energy balance
G =1K"EK = Ay, (52)

where Ay is the work of adhesion, then yields a relation between the contact half width a
and the pulling force F:

(F>2 l9(¢) I
M) LA+ - o dep

F /a\2 2R L LA =0 /= 1) de
_ 2 R mld

(0 gy m{ el

Ay
a4/ R \> D :
+ (%) (D*A) 1D
147/ n*(1 —n*)"D3,
_ 4a(D3 — D}, D3,) cosh® e
ﬂAVDTgD}szZ

R

/1 (407 (1 -1 &

L i1

=0. (53)

Using the following relations:

D¥ D¥\? VL L 1 1
Di’l"l_ Zuy 11722 = /L1 L, (54)

DTZ N L11 cos20 + L22 sin20 ’ DTID;E B Diqk%

D¥,  sin’0 + Lycos?0/Ly

D%, cos20 + Ly sin0/L;; (55)
DY, _ (Li/Ly — 1) sin0 cosf 6
DY, cos?0+ Ly sin®0/Ly

and
DY\ D3, (Ly /Ly — 1)*sin*0 cos?0 57

D*2 (cos20 + Loy sin®0/Ly)(sin*0 + Ly, cos*0/Ly;)’
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it can be shown that the normalized pulling force F /Ay depends on the normalized contact

half width a/R via five parameters, L, /L1, R/(DfAy), 1, 0 and ¢.
Numerical calculations will be used in the next section to analyze the influences of the

material anisotropy orientation 6 and the pulling angle ¢ on the critical force at pull-off,
the critical contact half width and the adhesion strength.

4. Numerical analysis

Fig. 2 shows the normalized pulling force F/Ay as a function of the normalized contact
half width a/R for different pulling angles ¢ under a set of chosen parameters
Ly /Ly, n, R/(Df,Ay), and 0, and Fig. 3 shows the normalized pull-off force as a function

0.6

0.4

a/R

0.2

0.0

LyplL14=10.0;R/(D" 41 Ay) =100.0

0 =30° 5 =0.2;
— ¢ =0° ¢ =30°
~~~~~~ ¢ =60° —-—-— ¢ =90°

F/Ay

Fig. 2. The normalized contact half width a/R as a function of the normalized pulling force F/Ay for different
pulling angles ¢ = 0,30°,60°,90° under a set of chosen parameters L,/Li, R/(Df Ay), n and 6.

15 - X
lines: R/(D 14Ay) = 100 LyyL;=1000
12 1 dots: RI(D"14Ay) = 1000
- n=0.2;0=30°
3 9
£
=3
SRR
= Lyy/Ly;=100
3] Lyy/Ly =10 Lyy/Lyy=1
0 ——r -
90 60 -30 0 30 60 90
¢

Fig. 3. The normalized pull-off force F/Fy as a function of the pulling angle ¢ for n = 0.2, 0 = 30°, R/(D¥,Ay) =
100, 1000 and different values of Ly, /L, = 1,10, 100, 1000; F,y denotes the pull-off force for ¢ = 0. The solid lines

are for R/(D¥;Ay) = 100 and the dots for R/(D7,;Ay) = 1000.
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of the pulling angle ¢. We find that the normalized pull-off force is almost independent of
the parameter R/(D{Ay). As a reference, the pull-off force for isotropic materials,
corresponding to Ly/L;; = 1, is shown to be relatively insensitive to the pulling angle ¢.
As the value of Ly /L, increases, the material becomes increasingly anisotropic and the
pull-off force shows increasing variation with the pulling angle ¢, exhibiting a maximum
value near ¢ = 0 (i.e., pulling along the stiff direction) and a minimum value at ¢ ~
0 —mn/2 for 0<O0<n/2 or ¢ ~ 0+ /2 for —n/2<0<0 (i.e., pulling along the soft
direction). For Lj;/L;; larger than 100, the maximum pull-off force can be an order of
magnitude larger than the minimum pull-off force.

Fig. 4 shows the normalized critical contact half width at pull-off as a function of the
pulling angle ¢ with the same parameters used in Fig. 3. One can see that the parameter

184 Lines: RI(D"y1Ay)=100
16 | Dots: RI(D"41Ay)=1000

5 n =0.2; 0 =30°

T 1.4

& 4

N

3 1.2
1.0 \

J L22/L11=100
Lyo/L44=10

0.8 1 L22/L11=1000 221511

-90 -60 -30 0 30 60 90
¢ (°)

Fig. 4. The normalized critical contact half width a/aq at pull-off as a function of the pulling angle ¢ for n = 0.2,
0 = 30°, R/(D},Ay) = 100, 1000 and different values of Ly, /Ly = 1, 10,100, 1000; @y denotes the critical contact
half width for ¢ = 0. The solid lines are for R/(D?;Ay) = 100 and the dots for R/(D}Ay) = 1000.

Lines: R/(D"41Ay)=100
15 Dots: R/(D"41A7)=1000 Ly,/L;,=1000
1 =0.2; 0 =30° !
12 -
j=1
s 9]
6 1 Lyy/Ly;=100
Lyy/Ly =1
31 2 Lyy/Ly;=10
\ -
O T T T 1
90 60  -30 0 30 60 90
¢ ()

Fig. 5. The normalized adhesion strength ¢/g¢ as a function of the pulling angle ¢ for n=10.2, 0 = 30°,
R/(D¥,Ay) = 100,1000 and different values of L,/Ly; = 1,10, 100, 1000; oy denotes the adhesion strength for
¢ = 0. The solid lines are for R/(D};Ay) = 100 and the dots for R/(D¥,Ay) = 1000.
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R/(D},Ay) hardly affects the critical contact width. With increasing anisotropy (i.e., as

Ly, /L,; increases), the critical contact width exhibits a minimum value near ¢ = 0.
Another quantity that may be of interest is the adhesion strength which is defined as

_ Fpuiorr

= s 58
2apull-off (58)

where Fpuiofr is the critical force and 2apuofr the critical contact width at pull-off. The
normalized adhesion strength is shown as a function of the pulling angle ¢ in Fig. 5 with
the same parameters used in Figs. 3 and 4. Again, while the adhesion strength does not
vary significantly for different pulling angles in the isotropic case, it exhibits a distinct
maximum at ¢ ~ 6 and a minimum at ¢ = 0 — /2 for 0<O<n/2 or ¢ ~ 0+ /2 for
—n/2<0<0 in the anisotropic cases. When the anisotropy ratio Ly /L exceeds 100, the
maximum adhesion strength can be an order of magnitude larger than its minimum. The
larger the Ly,/L;;, the sharper the maximum peak.

b

a
n =0.2; 6=0° 10 - n =0.2; 6=60°
1.4 { — LylLy4=1 — LoplLy4=1
12 === L22/L11=1O 8 === L22/L11=10
IR R L22/L11=100 """ L22/L11=100
10—
= /, ."\\ =] 61
e SN g
0.6 1 AR RN 4 A
4 : . 'R
044 o7 S Tl 2 BN
0.2 - --------- ;_{_."— _ _‘J,'f N
0.0 T T T T ] 0 T T T ]
-90 -60 -30 0 30 60 90 90 -60 -30 0 30 60 90
¢ () ¢ ()
C d
6 - n =0.2: 0 =-30° 10 4 n=0.2;0 =-60°
—— L pyll44=1 — L plLy4=1
57 - m = Lyylly4=10 8 - =7 Lyll44=10
S Lplly=100 1 i T Lp/L44=100
6 -
€ 3- 3
S 5 4]
2 ) rd i N TG
1 _ L7 R 2427 ‘;‘\_; P
0 . T T ) 0 . . . " T )
-90 -60 -30 0 30 60 90 -90 60 -30 0 30 60 90
9(°) 9(°)

Fig. 6. The normalized adhesion strength /oy as a function of the pulling angle ¢ for n=0.2 and
Ly /Ly = 1,10,100. (a) The case of § = 0°. (b) The case of 6 = 60°. (¢) The case of § = —30°. (d) The case of
0 =—60°.
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Similar behaviors of orientation-dependent adhesion strength have also been observed
for other material orientations. A few examples are shown in Fig. 6 where the normalized
adhesion strength is plotted as a function of the pulling angle ¢ for 6 = 0°, 60°, —30° and
—60°. These results all indicate that the adhesion strength exhibits a maximum when
pulling in the stiff direction (¢ = 0) and a minimum when pulling in the soft direction
(p=0—m/2 for 0<0<n/2 and ¢ =0+ n/2 for —n/2<0<0). These results are fully
consistent with, and confirmed from the contact mechanics point of view, the findings of
Yao and Gao (2006) based on an interfacial fracture model between anisotropic elastic
solids.

5. Summary and conclusions

The present paper has been aimed at developing a contact mechanics model for
reversible adhesion in anisotropic elastic solids. In particular, the classical JKR model has
been extended to adhesive contact between a rigid cylinder and a transversely isotropic
elastic substrate. The analysis indicates that the adhesion force or strength exhibits a
maximum value when pulling along the stiff direction and a minimum value when pulling
along the soft direction of the transversely isotropic substrate material. For strongly
anisotropic materials, the adhesion strength could vary more than an order of magnitude
as the pulling angle changes. A switch between attachment and detachment can thus be
accomplished simply by shifting the pulling angle. In contrast, the adhesion strength of an
isotropic material is found to be relatively insensitive to the pulling direction. Such
orientation-dependent adhesion provides a foundation for understanding reversible
adhesion mechanisms in biological systems where adhesion must be not only robust but
also easily reversible upon animal movement. Our analysis provides strong support, from
the contact mechanics point of view, for the conclusion by Yao and Gao (2006) that strong
elastic anisotropy leads to an orientation-controlled switch between attachment and
detachment. The orientation-dependent adhesion induced by elastic anisotropy allows
strong attachment in the stiff direction of the material to be released by shifting to pulling
in the soft direction. This strategy has been summarized as “‘stiff-adhere and soft-release™
(Yao and Gao, 2006).

The finding that elastic anisotropy leads to reversible adhesion provides a feasible
explanation of why most biological adhesive tissues are anisotropic. The fibrillar adhesive
tissue on geckos’ feet is strongly anisotropic as the effective elastic modulus along the fiber
direction is much higher than those normal to the fiber direction. The attachment pad of
cicada shows a smooth top membrane covering an elongated foam structure which is
expected to be strongly anisotropic. Similarly, the pad of the great green bush cricket
(Tettigonia viridissima) is strongly anisotropic with a smooth membranous layer covering
arrays of cross-linked rod-like fibers.
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