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Abstract: Based on Navier-Stokes equations and structural and flight dynamic equations of motion, dynamic responses in
vertical discrete gust flow perturbation are investigated for a supersonic transport model. A tightly coupled method was
developed by subiterations between aerodynamic equations and dynamic equations of motion. First, under the assumption of
rigid-body and single freedom of motion in the vertical plunging, the results of direct-coupling method are compared with the
results of quasi-steady model method. Then gust responses for the one-minus-cosine gust profile are analyzed with
two-freedoms of motion in plunging and pitching for the airplane configurations with and without the consideration of

structural deformation,

0 Introduction

Gust load is one of the important dynamic loads considered in aircraft structure design. Due to its
multidisciplinary nature with aerodynamics, flight dynamics, aeroelasticity and atmospheric turbulence, up
to now, only the doublet-lattice, unsteady linear aerodynamic code (DLM) coupled with the equation of
motion of flexible vehicle was used for the gust response analysis [1].

Gusts in nature tend to random. The early design methods for gust loads were based on a single discrete
gust having one-minus-cosine velocity profile. Recently the statistical discrete gust (SDG) method and the
power spectral density (PSD) method [2] in the frequency domain are used to define the gust loads, however,
which are still hard to combine with the modern Navier-Stokes numerical method.

In the recent years, for the motion of rigid vehicles, the path of stores during the separation phase has been
mainly investigated with the computational fluid dynamics (CFD) algorithm coupled with a 6
degree-of-freedom (6DOF) algorithm [3] . In sofar as the authors know, the computation of gust response
with the coupling method has still not been reported. In the paper, the fully implicit multiblock
Navier-Stokes aeroelastic solver implemented by the authors [4], coupled with the flight and structural
dynamic equations of motion, has been developed to simulate gust dynamic responses, which can model the
motion of rigid or flexible vehicle. Since it is hard to find the structural data of flexible vehicle, the
supersonic transport (SST) designed by National Aerospace Laboratory of Japan (NAL) [5] is taken for our
calculated case. To study the effects of dynamic response due to flow perturbation and airplane motion, only
the consideration of vertical plunging motion, a comparative study was first done for the airplane in the
harmonic flow perturbation with the direct-coupling method and the quasi-steady mode! method. Then the
gust responses in a one-minus-cosine gust velocity profile are analyzed with two-freedoms of motion in
plunging and pitching with and without the consideration of structural deformation.
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1 Aerodynamic Equations and Numerical Method

Aerodynamic governing equations are taken as the unsteady, three-dimensional thin-layer Navier-Stokes
equations, which is solved with LU-SGS method, employing a Newton-like subiteration. Second-order
temporal accuracy is obtained by utilizing three-point backward difference in the subiteration procedure. The
inviscid terms are approximated by the modified third-order upwind HLLEW scheme. For the isentropic
flow, the scheme results in the standard upwind-biased flux-difference splitting scheme of Roe, and as the
jump in entropy becomes large in the flow, the scheme turns into the standard HLLEW scheme. Thin-layer
viscous term is discretized by second-order central difference. For multiblock-grid application, the
Navier-Stokes equations are solved in each block separately. To calculate the convective and viscous fluxes
in the block boundary, data communication is performed through two-level halo cells.

2 Equations of Motion and Numerical Method

In the present study of dynamic response, the airplane is permitted freedom in vertical plunging and
pitching, and the following assumptions are made,
a. The disturbed motion is symmetrical with respect to the airplane’s longitudinal plane of symmetry.
b. The airplane is initially in horizontal flight at cruise velocity.
¢. The vertical gust perturbation is normal to the flight path, and is uniform in the spanwise direction.
d. For the consideration of structural deformation, only the structural deformation of the wing is
considered and its deformation is approximated to the elastic plate model.

2.1 Direct-coupling method
With the above assumptions, the equilibriums of total force along the z-axis and total pitching moment
about the y-axis are: '

[ [t ey pasay = [ Ao,y yasaty Ga),

[ txy.yaasay = [[mpte . tysasay (3b)

For the equilibrium of an element, we obtain:
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In the system of equations, the unknown quantity w(x, y, ¢) represents the disturbed displacement of elastic
airplane from its original equilibrium state. The pressure change of Ap(x, y,t)based on cruise condition is
calculated by the unsteady aerodynamic equations, which depends on the instantaneous values of
displacement, velocity, acceleration of airplane, as well as the past history of the motion.

n
Introducing natural modes with the Rayleigh-Ritz method, we have W(%,); t)=z¢i (x, ¥)q,(8),

i=1
where ¢,(x, y) is normalized natural mode shapes of the airplane including rigid modes and g¢;(t)
generalized displacement. Then Equations (3a-3¢) can be deduced to

G +26,0,9; +wi2qi =F,IM;, (i=12;meo =w,=0) 4
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with the initial conditions  ¢;(0)=¢,(0)=0 and where M, = H 02 (x, Y)p(x, V)dxdy

F; = JI Ap(x, y,)¢;(x, y)dxdy . The first equation in Eq. (4) is the equation of motion in vertical plunging. In

the equation, the generalized mass M, represents the mass of airplane, and ¢, the plunging displacement.
Similarly, the second equation is the equation of motion in pitching. M,,q, represent the pitching moment
of inertia and angular displacement in pitching, respectively. ®,,¢; are the natural frequency of structural
modes and the damping ratio in the ith mode, which are 0 for the first two equations of motion of rigid
body.

The subiteration method can also.be used for Eq. 4. The resulting numerical scheme is

1 -gN _ - 0 -1], 0
[Maf Logacn S P EOS mW"L"SH*A'{af quc}v A{F.*’/M.}} ©

where S =[q,4], AS=S7"-S”. As p > «, a full implicit second-order temporal accuracy scheme for the

numerical simulation of dynamic response is formed by the coupling solutions of fluid equation and the
equations of motion. Numerical experiments indicate, in general, the calculated results are nearly
unchangeable as p 23 .

If the airplane is assumed as the rigid body, then only the first two equations of Eq. 4 coupled with the
aerodynamic equations need to be solved. If the pitching motion can be further neglected, the dynamic
response is only considered in the motion of vertical plunging. For the simpler case, the quasi-steady model
method can be introduced as follows.

2.2 Quasi-steady model method

If the time lag in buildup of lift is neglected and the incremental lift is considered only due to the change
of angle of attack, then the model equation of motion can be written simply as.

Mi =2 p.V2SC, (‘:,(T:) —é) ©)
Here w(r) represents the vertical perturbation velocity profile. The normalized equation can be written as:
2+CCpa2=C,Crow() )

where C, = ,02 1‘:0

, C., is the derivative of lift coefficient which can be determined by steady flow

calculation or wind tunnel experiment. Through the comparison of this method with the direct-coupling
method, the dynamic responses under the quasi-steady assumption can be studied.

3 Results and Discussions

Dynamic responses in vertical flow perturbation are studied for the SST experimental model [S]. For the
solution of structural deformation, the data of the structural oscillating natural modes and frequencies are
provided by the FEM method. The first five structural modes and natural frequencies are considered in the
following calculations. The aircraft is initially assumed at cruise flight, and then encounters a gust turbulence
atmosphere. So the calculation of gust dynamic response needs to start from the cruise steady flowfield.
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Fig. 1 The comparison of the predicted aerodynamic coefficients with experiments

The H-H type multiblock grid with 30 blocks was generated for the SST configuration. The comparison of
the predicted coefficients of lift, drag and pitching moment with the experimental data of wind tunnel is
depicted in Fig. 1. The agreement between experiment.and calculation is fairly good. The cruise lift
coefficient at cruise condition of M, =2.0, a =2°is calculated asC,, =0.112, which is in correspondence
with the experimental value of 0.110. For the quasi-steady model equation of motion of Eq. 6, the derivative
of lift coefficient needs to be known. Based on the curve of lift coefficient, the derivative can be
approximately calculated asC,, =2.15.

3.1 Dynamic response for harmonic perturbation

The SST experimental model is designed for cruise at M, =2.0, a=2°and the flight altitude of
15,000m. A future SST is expected to cruise at a supersonic speed only over the sea and to cruise at a
transonic speed over the land. Due to the strong nonlinearity of transonic flows, the transonic dynamic
response may be interested. We assume the experimental airplane can cruise at M, =0.9 and the flight
altitude of 9,000m. At the cruise flight, due to the equilibrium of various forces and moments, the cruise lift
should be equal to the total weight of airplane, therefore the cruise angle of attack a=2.14° at
M, =09can be calculated based on the curve of lift versus angles of attack. The numerical results also
show the pitching moment about the gravity center of the airplane still exists for this case. In fact, to
guarantee the cruise of the airplane at transonic Mach number, the high-lift-system and the empennage
deflection should be used to keep the equilibrium of forces and moments, however, these influences are not
considered in the paper.

(2a) (2b) (20)

Fig. 2 Time histories of vertical displacement, incidence and incremental load factor
A vertical harmonic flow perturbation is added to the steady flow of the aircraft at M, =0.9 and

a = 2.14° with w(r) = w, sin(ax) . The ‘quasi-steady model’ method is decided by a second-order ordinary
equation of Eq. (7). Its initial conditions can be assumed as z,_, =0, z,_, = 0 . After the slope of lift curve and
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gust profile are given, then the time histories of vertical displacement z(¢) , the change of angle of attack due
to motion Aa(t)=:i(f)/V, and the incremental load factor An(f)=7Z(r)/g are calculated. The
‘direct-coupling method’ is to get time-accurate solution by coupled unsteady CFD code with the equation of
plunging motion and gust profile directly. Fig. 2 shows the time histories of two methods. The dynamic
responses of ‘quasi-steady model’ method after the translation of lag time are also depicted in the figure.
Overall frequency responses of the two methods are nearly the same, whose nondimensional value is about
0.04. The incremental load factor (equivalent to the lift coefficient) has no large change except at the
position of the minimum, but comparing direct-coupling method, the quasi-steady method predicts the
slower growth of displacement with time, the reverse tendency of change of angle of attack. On the other
hand, the vertical displacement grows near linearly with the time, which is contrary to the real fact, therefore
the effect of pitching motion should be considered. We know only the direct-coupling method can treat
multi-freedom motions.
3.2 Dynamic response for one-minus-cosine gust

The early design methods for gust loads were based on the discrete gust having one-minus-cosine velocity

1
profile, namely, Wg =—2-Wo(l—cos—2%), W, is the design cruise gust velocity, which is specified as

50ft/s at the altitudes from sea level to 20,000ft and then decreases linearly as the functions of altitudes [6].
In the present calculation of cruise altitude of 9,000 m, W, is assumed as 50ft/s. The gust gradient distance
H is taken as the 12.5 times mean geometric chordlengths based on the experimental evidence [6]. Before
and after the discrete gust pulse, there is no gust flow perturbation. In the following, we need to study how
the airplane moves in plunging and pitching, how the loads change and how the structure deforms under the
discrete gust profile. In the paper, total four cases named as °‘Rigid+Plung’, ‘Flexible+Plung’
‘Rigid+Plung+Pitch’, and ‘Flexible+Plung+Pitch’ are simulated. The fourth case is the most complicated
case, which need to simulate the motion of the aircraft in plunging and pitching and its structural
deformation simultaneously.

The time histories of the load coefficients of lift, drag, pitching moment and bending moment are shown
in Fig. 3, which indicates the loads are nearly unchangeable with or without the consideration of structural
deformation due to the stronger structural rigidity of the SST model airplane. When the airplane flights
through the gust pulse, forces and moments also experience a pulse, but a little large maximum load is
predicted without the consideration of the motion in pitching. After the pulse response, the loads tend to
recover the equilibrium state or emerge to oscillate in decay for the methods with and without the
consideration of the motion in pitching. The displacement in plunging and the angular displacement in pitch
are depicted in Fig. 4. Without the consideration of motion in pitching, the displacement in plunging
increases near linearly with the time, which is obviously contrary to fact. Similar to the above analyses of
harmonic perturbation, the method without the pitching motion cannot simulate correctly the response
motion of the aircraft. Under the consideration of airplane motion in plunging and pitching, the responses of
the airplane appear two-freedoms of oscillation. As the airplane plunges up, the airplane pitches down
simultaneously, which can be used for the explanation of the change of loads in Fig. 3 in the corresponding
phase, namely due to the decrease of angle of attack, the lift, drag and bending moments decrease and
pitching moment increases. On the contrary, when the airplane plunges down and pitches up, due to the
increase of angle of attack, the lift, drag and bending moment increase and the pitching moment decreases.
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The maximum amplitudes of the plunging and pitching oscillation are about 0.1 times mean aerodynamic
chordlength and 1.8 degree, respectively. The numerical results also show that the pitching oscillation decays
much faster than that of the plunging oscillation.
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Fig. 3 Time histories of the coefficients of lift, drag, pitching moment and bending moment for rigid and
flexible configurationsat M, =0.9, a=2.14°

Fig. 5 gives the time histories of structural deformation of the generalized displacements. The structural
deformation occurs mainly in the first two modes. Although the deformation is smaller, the airplane
experiences a larger structural deformation in the gust process, which has the same changeable tendency of
the lift coefficient in Fig. 3a. After the pulse response, structural deformation oscillates to revert the original
equilibrium state without the consideration of the motion in pitching, and with two-freedoms of motion, the
structural deformation oscillates in much more complicated form, which couples the natural structural
oscillation of high frequency and the airplane motion of long period in plunging and pitching. The
nondimensional value of high frequency is 0.158 and the low frequency of the aircraft motion is 0.012,
which is the same as the frequency of load responses. Finally, through the comparison of responses with and
without pitching motion, we know both methods simulated the complete different response process of
structural deformation after the gust pulse.
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Fig. 4 Time histories of the vertical plunging displacement and angular displacement in pitch for rigid and
flexible configurations at M, =0.9, a =2.14°
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Fig. 5 Time histories of structural deformation of the first six modes for the flexible configuration with and
without the pitching motion at M, =0.9, a =2.14°
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