板厚对焊接接头在空气中和海水中疲劳性能的影响

薜以年 徐纪林 李 禾 李延苹

(中国科学院力学研究所)

提 要

本文讨论了国产海上平台用钢E36—Z35的十字型板状焊接接头在空气中和海水中的弯曲疲劳试验,试件厚度分别为 16mm。32mm和40mm。试验结果表明。板厚的增加使焊接接头在空气和海水中的疲劳强度均明显降低,并建议在空气中的疲劳强度修正式公式为 $\triangle S = \triangle S_0 \left(\frac{t_0}{t} \right)^{1/3}$ 和疲劳寿命厚度修正公式为 $N = N_0 \left(\frac{t_0}{t} \right)^{4/3}$,在海水中的厚度修正公式为 $\triangle S = \triangle S_0 \left(\frac{t_0}{t} \right)^{1/4}$ 和 $N = N_0 \left(\frac{t_0}{t} \right)$,相比之下,厚度对海水腐蚀疲劳强度的影响比在空气中稍小一些,对于板厚为16mm和40mm的焊接接头试件在海水中的疲劳寿命和空气中的寿命相应为36%和57%,可见随着板厚的增加,海水腐蚀疲劳寿命比空气中寿命的缩短要少一些。本文还从断裂力学方法出发,讨论了板厚影响焊接接头疲劳寿命的原因。

一、引言

导管架海上平台是大型的焊接纲结构,其疲劳设计规范是基于大量的S-N试验数据所制定的,由于试验设备的载荷容量和试验费用等的限制,这些试验所用试件的厚度一般在 20 mm左右的范围内,实际上导管架平台结构的厚度均大于20mm,然而厚度增加会使构件焊接的疲劳强度明显降低,因此上述设计规范对厚度较大的焊接结构是不安全的。·Gurng[1]曾提出焊接接头疲劳强度的厚度修正半经验公式为

$$\Delta S = \Delta S_0 \left(\frac{t_0}{t} \right)^{1/4} \tag{1}$$

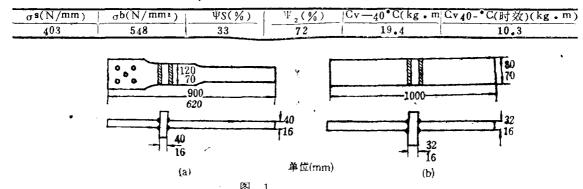
其中 ΔS 0是 对 应 于厚度为t0的疲劳强度(应力范围),如果疲劳寿命曲线 $N\Delta S^m=C$ 中,的m=3,则

$$N = N_0 \left(\frac{t_0^3}{t} \right)^{3/4}$$
 (2)

其中 N_0 是对应于厚度为 t_0 的疲劳寿命。以上公式已编入1984年英国能源部关于离岸结构的指导性文件[2]中,对于焊接头 $t_0=22$ mm,管节点 $t_0=32$ mm。但是从研究中发现,上述厚度修正公式还不够成熟,有些试验数据表明此公式不是保守的。

近年来国际上很重视研究厚度对板状焊接接头疲劳强度的影响,在这方面做了许多工作(3),通过板状焊接试件的研究,可以探讨导管架管节点疲劳强度的厚度效应,但是大多数是空气中的试验,在海水中的试验比较少,有的仅是在一定应力水平上来察看厚度对疲劳寿命的影响。

作者进行了国产海洋平台用纲E36-Z35的十字型板状焊接接头在空气中和在海水中自由腐蚀条件下的弯曲疲劳试验,共65个,试件厚度分别为16mm、32mm和40mm,连同以前25mm厚的A537进口 纲材焊接接头试件的试验数据[4],将它们放在一起,分析了板厚对疲劳强度的影响。结果表明,板厚的增加使焊接接头在空气中和海水中的疲劳强度均明显降低,相比之下,海水腐蚀疲劳强度受厚度的影响比在空气中稍小一些。在这些工作的基础上,本文提出了试验结果所相应的板厚修正公式。文中还分析了厚度影响的主要原因,认为占较大比例的裂缝扩展寿命随板厚增加而降低,是由焊贴处应力强度因子表达式中的焊缝放大系数M*所引起的,在一定的初始裂缝长度下,M*随板厚增加而速速增大,即应力强度因子增大,从而使裂缝扩展速率增大,裂缝扩展寿命随之缩短。


二、 试件和试验条件

试件采用国产海洋平台用钢E36-Z35,该钢板具有抗Z向撕裂的特点,其化学成分和机械性能见表1和表2,表中数据是各种板厚以及各块钢板测试值的平均值。试件均为十字型板状焊接接头,其中一类是悬臂弯曲加载形式(图1(a)),厚度有16mm和40mm两种;一类是受四点弯曲加载形式(图1(b)),厚度有16mm和32mm两种。试件的焊接工艺与制作管节点的要求相同。本试验包括在空气中的疲劳试验和海水腐蚀疲劳试验都是在海水腐蚀疲劳专用试验设备^[5]上进行的,试验方法参见文献^[4]。

表1 E36-Z35钢板的化学成分

C	S	Si	Mn	P	Cu	NÞ	Al
0.16	0.0012	0.33	1.35	0.009	0.04	0.027	0.04

表2 E36---Z35钢板的机械性能

在空气中进行试验的加载频率对疲劳寿命影响很小,本试验取 1Hz,应力比R=-1;在海水中进行试验的加载频率取0.2Hz,接近海浪载荷的频率,应力比R=-1,试验在自

由腐蚀条件下进行,海水温度为20°C±1°C,海水按ASTM, D1141-75配方由人工配制 而成,海水循环流过包围试件焊缝的塑料海水槽,使焊缝局部表面不断有海水流过,大约2分钟至5分钟在海水槽中更换一次,平均流速为11/min,海水成分和参数范围见表3 和表4。

表3 湾水成分(g/1)(接ASTM, D1141-75配制)。

NaCI	Mg Cl 2	Na 2 SO							NaF	
24.53	5.20	4.09	1.16	0.695	0.201	0.101	0.027	0.025	0.003	
			1 12 00	to be 12	PT-9					
		表	4 海外	く参数范	围					
			THE REAL PROPERTY.	The contract of the contract o	and the second s	eta Marena (Araba) (Araba)	Palarimonistic (1988 / Artica	tern treasure for the contract of the contract	a ton strationary makes the	
PH	值	盐度(g/1)	氯度	(g/1)		含氧	量		源度	
W = 0 =		32-36		0-20	0.2 200	1 1 to for (11	1 2mg /1)		19-200	
7.5-8.5		32-30		18-20 132 35		19%物和(1112mg/1)			13 20	

三、试验结果

本试验结果以焊趾处弯曲应力状态的表面最大应力范围和试件疲劳破坏的加载循环次数关系给出。应力范围 ΔS 和破坏次数 N_f 在直角对数坐标系里一般呈线性关系

$$\log \Delta S = a + b \log N_f \tag{3}$$

试验数据通常比较分散,这里将 ΔS 和 N_f 的试验数据在对数坐标系中进行线性回归分析,得到的 ΔS - N_f 关系作为平均寿命的疲劳强度曲线。

1. 空气中的试验结果

焊接接头在空气中共进行了34个试件的疲劳试验,试验结果在图2中给出,相同厚度试件的试验数据进行线性回归分析,得到了不同厚度的平均寿命曲线,其回归系数(斜率)和相关系数对应于16mm、32mm、40mm分别为

$$b_{16} = -0.240$$
, $b_{32} = -0.303$, $b_{40} = -0.251$; $r_{16} = -0.846$, $r_{32} = -0.927$, $r_{40} = -0.969$.

相关系数值表明试验数据的分散性不大,同时也表明不同加载类型和不同试件形状对空气中的疲劳寿命没有什么影响。试件基本上都是在焊趾处产生裂缝直至破坏的。

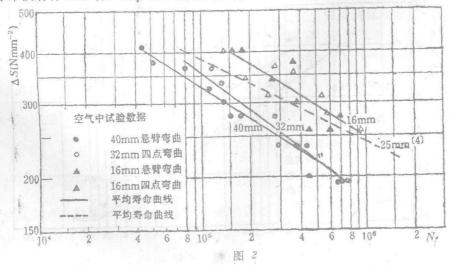
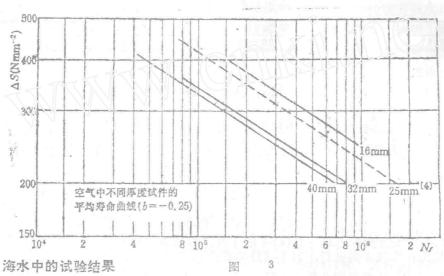
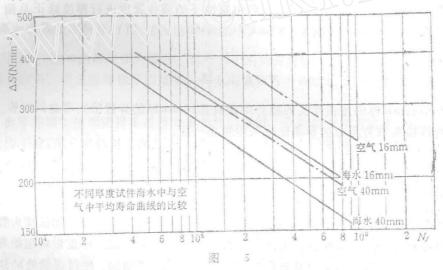



图 2 中还给出了进口平台纲 A 537 厚 25 m m 的试件在空气中的疲劳寿命曲线[4] (b25 = -0.197, r₁₅=-0.927),与本试验的结果一并分析板厚对疲劳寿命的影响,从A537钢材 的化学成分和机械性能[4]与E36—Z35钢材相比,这两种钢材是很相近的。

为 便于分析厚度效应,将各种厚度的试验数据在给定斜率6=-0.25下重新作最小二乘 法 平 均处理, 得到了四条平行的寿命曲线, 见图 3 , 之所以取斜率b=-0.25 , 是因为厚度 为16mm和40mm的试验数据线性回归分析结果的斜率均接近b=-0.25。由图 3 看出,板厚 对疲劳寿命的影响是显著的, 后面将进一步讨论。



焊接接头在海水中共进行了31个试件的腐蚀疲劳试验,试验结果在图4中给出,相同厚 度的试件的试验数据进行线性回归分析,得到了不同厚度的平均寿命曲线,其回归系数对应 于16mm、32mm、40mm分别为

相关系数值表明试验数据分散性不大,同时也表明不同载荷类型和不同试件形状对海水中腐蚀疲劳寿命没有什么影响。试件基本上都是在焊趾处产生裂缝直至破坏的。

由图 4 看出, 32mm板厚试件的疲劳寿命与40mm板厚试件很接近, 这是由于板厚相差不大和试验数据的分散性所致。40mm板厚试件的疲劳寿命比16mm板厚试件的疲劳寿命明显降低。并且由于这两条平均寿命曲线的斜率都接近b=-0.25, 以后就将在此基地上进行讨论。

图 5 中给出了两种板厚(16mm和40mm)试件在海水中自由腐蚀条件下的疲劳寿命与空气中疲劳寿命的比较,结果表明,就平均寿命而言,对于16mm厚的试件。在海水中的疲劳寿命为空气中疲劳寿命的36%;对于40mm厚的试件则为57%。可见被厚增加。海水中自由腐蚀的疲劳寿命比空气中疲劳寿命缩短要少一些。

四、板厚对疲劳寿命的影响

1. 空气中的情形

从图 3 中可以看到,在空气中板厚增加而焊接接头的疲劳强度降低是显著的,但是,如果用半经验公式(1)对疲劳强度进行厚度修正,从本试验的数据来看是不安全的,当用 t_0 =16 mm对 t=40 mm进行疲劳强度修正,则 ΔS_0 =311N mm⁻²(N=4×10°)时,由公式(1)得, ΔS =311N mm⁻²×($\frac{16}{40}$)^{1/4}=247N mm⁻²,而40 mm的试验结果为 ΔS =232N mm⁻²,它低于公式(1)的结果。本文建议在空气中采用下式:

$$-\Delta S = \Delta S_0 \left(\frac{t_0}{t} \right)^{1/3} \tag{4}$$

应用公式 (4) 进保厚度修正,则有 $\Delta S=311N$ mm $^{-2}$ ×($\frac{18}{40}$) $^{1/8}=229N$ mm $^{-2}$,它低于40mm板厚的试验结果,因此厚度修正公式(4) 是偏于安全的。对于疲劳寿命表达式(3),由本试验结果取b=-0, 25,即 $N\Delta S$ m=C中m的=4,由公式(4)可得厚度对疲劳

寿命的修正公式

$$N = N_0 \left(\frac{t_0}{t} \right)^{4/3} \tag{5}$$

可见空气中40mm厚的焊接接头的疲劳寿命只是16mm厚的焊接接头寿命的30%。

2. 海水中的情形

从图 4 中可以看到,在海水中的板厚对焊接接头腐蚀疲劳强度的影响是显著的,并且由本试验结果可以看到,用公式(1)对疲劳强度进行厚度修 正是 合适 的,用 t_0 =16mm对t=40mm进行修正,当 ΔS_0 =23 ϵN mm 2 (N=4×10 5)时,由公式(1)得 ΔS =23 ϵN mm 2 × ($\frac{16}{40}$) 1 / 4 =188Nmm 2 ; 本试验板厚为 4 0mm的结果为 ΔS =19 ϵN mm 2 , 它略高于公式(1)的结果,所以公式(1)对海水自由腐蚀下的疲劳强度进行厚度修正是偏于安全的。和空气中一样,取 δ =-0.25,则 $N\Delta S$ =C中的m=4,由公式(1)可得厚度对海水腐蚀疲劳寿命的修正公式

$$N = N_0 \left(\frac{t_0}{t} \right) \tag{6}$$

可见在海水中40mm厚的焊接接头的疲劳寿命只是16mm厚的焊接接头寿命的40%。在海水中厚度对焊接接头疲劳寿命的影响比空气中稍小一些。

五、厚度影响焊接接头疲劳寿命的原因

疲劳寿命主要分为两个阶段, 裂缝起始阶段和裂缝扩展阶段。对于焊接接头裂缝起始阶段的寿命只占总寿命的20%左右, 大部分寿命是在裂缝扩展阶段。厚度影响起始寿命的原因与通常非焊接试样疲劳寿命的尺寸效应相类似, 是由于板厚增加, 使得焊缝处的缺陷、杂质等相应增多, 再加上焊接残余应力增大所致。

关于焊接接头裂缝扩展阶段的厚度影响, Gurney[6] 用断裂力学方法进行了分析,由 Paris公式

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C\left(\Delta k\right)^{\mathrm{m}}$$

其中

$$\Delta k = M_k Y_u \Delta S \sqrt{\pi a} \tag{8}$$

 M_{ν} 是焊缝形状引起的焊缝放大因子, Y_{u} 是无焊缝的修正系数,由Paris公式(7)积分得

$$\int_{a_i}^{a_f} \frac{\mathrm{d}a}{(M_k Y_u \sqrt{\pi a})^m} = C(\Delta S)^m N \tag{9}$$

于是可求得从初始裂缝长度 a_i 到疲劳破坏的裂缝扩展寿命N。

通常, M_* 是用有限元方法计算得到的,计算中考虑焊缝形状的细节,如几何参数焊缝角 θ 和焊趾曲率半径 ρ 。计算结果表明, M_* 随裂缝深度与板厚比 $\frac{a}{t}$ 的减小(在 $\frac{a}{t}$ 较小时)而迅速增大,这说明对相同深度的初裂缝, M_* 随板厚增加而迅速增大,也就增大了应力强度因子范围,使裂缝扩展速率变快,缩短了裂缝扩展寿命。

六、结 论

由本工作的试验结果,可得到如下的主要结论:

- 1. 板厚的增加使焊接接头在空气中和海水中的疲劳强度均明显降低,相比之下,厚度对海水腐蚀疲劳强度影响比在空气中稍小一些。
- 2. 根据 k试 b 运结果,建议焊接接头在空气中的疲劳强度享度修正公式为 $\Delta S = \Delta S$, $(\frac{t_0}{t})^{1/3}$
- ,相应的疲劳寿命厚度修正公式为 $N=N_{\circ}(\frac{t_{\circ}}{t})^{1/3}$,在海水中的疲劳强度厚度修正公式为 $\Delta S=\Delta S_{\circ}(\frac{t_{\circ}}{t})^{1/4}$,相应的疲劳寿命厚度修正公式为 $N=N_{\circ}(\frac{t_{\circ}}{t})$ 。
- 3. 对于厚16mm的焊接接头试件,在海水中的疲劳寿命为空气中的36%,对于厚40mm的试件则为57%,可见随着板厚的增加,海水腐蚀疲劳寿命比在空气中疲劳寿命的缩短要少一些。
- 4、板厚的增加使焊接接头疲劳寿命缩短的原因,从断裂力学方法来分析,主要是由于焊缝放大因子M_k在一定初裂缝深度下,随着板厚的增加而迅速增大,即增大了应力强度因子范围,使裂缝扩展速率变快,从而缩短了占总寿命较大比例的裂缝扩展寿命。

参加本工作的还有石茂、王亚立、于桂清和唐驰。

参考 文献

- [1] Gurney, T.R., Some Connents on Fatigue Design Rules for Offshore Structures, Proc.2nd international Symposium on Integrity of Offshore Structures, 219-234, 1981.
- [2] Offshore Installations Guidance on Design and Construction, 3rd ed., '984, UK. Department of Energy, 1984.
- [3] Berge, S. and S.E. Webster, The Size tffect on the Fatigue Behaviour of Welded Joints, Paper PS 8, International Conference, Steel in Marine Structures Delft, 1987.
- [4] 薛以年、徐纪林、李禾、李延萍, 焊接钢接头的海水腐蚀疲劳试验研究, 海洋工程, 第五卷, 第二期, 1987年。
- L5] 薛以年、李禾、李延萍,焊接钢接头的海水腐蚀疲劳及其试验装置,中国钢结构协会海洋钢结构专业委员会第一次学术交流会论文集,1985年。
- [6] Gurney, T. R., The Incluence of Thickness on the Fatigue Strength of Welded Joints, 2nd International Conference on Behaviour of Offshore Structures, 1979.

THE INFLUENCE OF PLATE THICKNESS ON FATIGUE BEHAVIOUR OF WELDED JOINTS IN AIR AND IN SEA WATER

Auc Yinian, Xu Jilin, Li He and Li Yanping

Institute of Mechanics, Academia Sinica)

ABSTRACT

Bending fatigue tests have been carried out on cruciform welded joints of E36-Z35 steel n air and in sea water with plate thickness of 16mm, 32mm and 40mm. The test results show asignificant reduction in fatigue strength of welded joints in air and in sea water with necessing plate thickness. The present paper proposes thickness correction for fatigue strength $\Delta S = \Delta S_0 \left(\begin{array}{c} t_0 \\ t \end{array} \right)^{1/3}$ and for fatigue life $N = N_0 \left(\begin{array}{c} t_0 \\ t \end{array} \right)^{3/4}$ in air, and thickness

correction for latigue strength $\Delta S = \Delta So(\frac{t_0}{t})^{1/4}$ and for fatigue life $N = N_0(\frac{t_0}{t})$

in sea water. Thus the influence of plate thickness on the fatigue strength in sea water is less than that in air. The test results show that the fatigue life of welded joints in sea water with plate thickness of 16mm and 40mm are 36% and 57% respectively of the fatigue life in air. Thus the reduction of the fatigue life in sea water is less than that in air with increasing plate thickness. In addition, an explanation for effect of plate thickness on fatigue life of welded joints is made by using the theory of fracture mechanics.