辑

可瘪管定常流动的若干新现象

祖 莱 (中国科学院力学研究所,北京)

(清华大学工程力学系,北京)

在较宽的参数范围内进行了可瘪管定常流动实验。 当流速-波速比较高时,发现 了若干新现象: (i) 当管道开始被压瘪,或已压瘪的管道即将完全开启时,流态发生 突变,从定常流变为脉动流(或相反);同时,流量、压力发生阶跃;(ii)压差-流量曲 线出现双峰; (iii) 在正阻尼区亦可能发生持续的振荡.

讨论了实变发生的原因和激振机理.

一、引言

人体内体液输运管道均由软组织构成,管壁很薄, 当外部压力高于管内压力时,管壁易被 压瘪。此时,流体运动与管壁大变形相耦合,性状和一般工程管流很不一样,称为可瘪管(Collapsible tube)流动。它的规律的研究,对于认识许多生理、病理现象有重要意义^[1]。比如,在生 理范围内,较大的静脉血管往往局部被压瘪,而静脉回流的特性对于整个心血管系统的功能来 说很重要。又如,呼气、排尿等流量都有一个极限,且呼气极限流量可用来评价肺功能。再如, 人的发声和气流通过由于肌肉收缩,而被压瘪的喉道时引起的自激振动有密切的关系。此外, 作为血压测量标志的 Krotkof 声和被局部压瘪的肱动脉内的血液流动有关,许多病理肺声亦 起因于支气管被局部压瘪.

因此,数十年来人们对此做了一系列研究。 四十年代, Holt^[2] 用可瘪管流动实验说明了 生理学上"瀑布"现象产生的原因。五十年代, Rodbard^[3] 将它和局部血流调节机理联系起来。 六十年代以来,研究可瘪管流动的人很多,生理背景各异。有代表性的是 Conrad 等人^[4]的实 验. 他们的实验揭示了可瘪管定常流动的三个主要特点:

- 1. 若上游端压力 (p_1) 和外部压力 (p_2) 不变,则流量(0)-开始随下游端压力 (p_2) 降低而增 大; 但当 $p_2 \leq p_c$ 时,流量趋于一极限值,它与 p_2 无关,此即流量极限 (flow limitation),又 称'瀑布现象'。
- 2. 若改变上游压力而固定其它条件,则所得压差 $(\Delta P = P_1 P_2)$ -流量曲线 呈 N 形, ΔP 有一个峰值.

本文 1983 年 2 月 5 日收到, 1985 年 10 月 9 日收到修改稿.

3. 当 $\frac{d(\Delta P)}{dQ}$ < 0 (负阻尼区)时,流动往往不稳定,可能发生振荡。

对这些异常现象,人们做了不少工作^[5,6]。目前,关于流量极限问题,看法比较一致。但关于流动振荡的机理,说法不一。Conrad 认为 $\frac{d(\Delta p)}{dQ} < 0$ 是流动振荡的必要条件;Shapiro 则把流动振荡归因于可瘪管流动趋于临界状态(流速等于当地管壁弹性波速,称为临界)时引起的'堵塞'。Pedley 提出了两种新的激振机理,同时指出,必须设计新的实验以考察目前提出的激振假说。弄清这一点是十分必要的,因为它和多种无创诊断方法有关。

另一方面,现有实验的条件和结果,大多以有量纲量的形式给出,难于作比较。鉴于此,我们在相似性分析^[7]的基础上,在较宽的参数范围内进行了实验研究。

二、实验方法

在体条件下,控制可瘪管流动的主要因素是:来流条件、下游负载、外部压力和管道在受压时的力学性质,作为简化模型,上述因素可用图1所示系统表示,上游贮液箱液面高度(H₀)

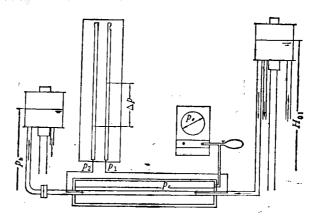


图 1 实验装置梗概

控制来流条件,下游贮液箱液面高度 (P_b) 控制出口条件,密封箱压力为 P_c 。进而假设管壁力学性质可用管律(管内外压差 $P_c = P - P_c$ 。与截面积A的关系)来表示:

$$\frac{p - p_e}{K_h} = f\left(\frac{A}{A_h}\right). \tag{1}$$

这里, A_0 为 $P=P_c$ 时管截面积, K_P 为截面刚度。相似性分析表明,若流动是一维的,有六个相似参数: $\frac{L}{R_0}$, $\frac{H}{L}$, R_c , F, 和 Λ , C_{P_c} , C_{P_b} 三者之二。这里,L——管长, $R_0=\sqrt{\frac{A_0}{\pi}}$, H——参数高度,

$$R_{e} = \frac{\rho R_{0}U_{0}}{\mu}, \quad F_{r} = \frac{\sqrt{gH}}{U_{0}},$$

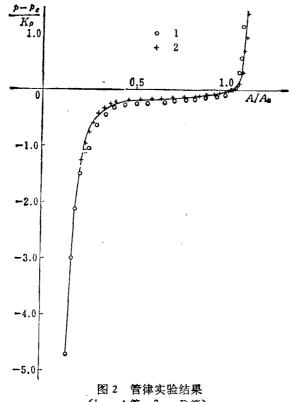
$$\Lambda_{0} = \frac{U_{0}}{\widetilde{C}_{0}}, \quad C_{P_{e}} = \frac{P_{e}}{\rho \widetilde{C}_{0}^{2}},$$

$$C_{P_{b}} = \frac{P_{b}}{\rho_{0}\widetilde{C}_{0}^{2}},$$

$$(2)$$

-流体密度, μ ——流体粘度, g——重力加速度, U_0 ——特征速度, \widetilde{C}_0 ——特征波速, 取

$$U_{o} = \sqrt{\frac{2(H_{o} - p_{\rho})}{\rho}},$$


$$\widetilde{C}_{o} = \sqrt{\frac{K_{\rho}}{\rho}}.$$
(3)

对生理流动来说,严格的流动相似是难于实现的。而且生物组织受压状态下的力学性质 很难测量。除较大的静脉血管、大气管外几乎无所知。 因而很难确切地给出生理可瘪管流动的 A_0 , $C_{2,2}$, C_{2} , 等变化范围。但现有实验证明流量极限在生理条件下确实存在,这表明尽管流 速不高, 临界条件——当地流速-波速比为1——是可能达到的。 我们的实验主要考察流速-波速比变化范围较大时,可瘪管流动的特性。流速-波速比较小时的性状,Conrad 等已作了 不少实验。

1. 实验段

选择四根质地均匀的乳胶管作为实验段安装在直径为 1.5cm 的不锈钢管 上。 接头间距 49.0-55.5cm. 整个实验段装在透明的密封箱内。箱容积 6917cm3, 管腔与密封箱 的容积比 为 0.015.

乳胶管密度 0.9g/cm³, 我们测量了它们的周向杨氏模量和管律(图 2)^p, 在本实 验范围

¹⁾ 原始数据取自夏靖友、佘建伟,等毕业论文(清华大学)。

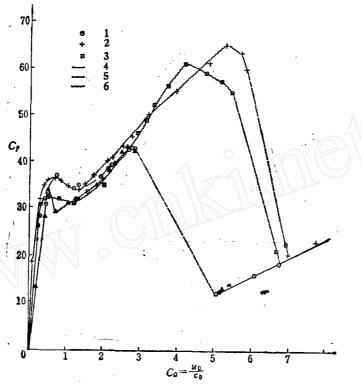


图 3 A 管压瘪和开启过程中 C₂-C_Q 关系 (1——压瘪过程,2——开放启程,3——定常流,4——突变,5——振荡)

内, 周向杨氏模量约为 $1.38 \times 10^7 \text{dyn/cm}^2$, 泊松比 σ 为 0.5. P = P。时管运截面刚度为 K_P 。

$$K_{p} = \frac{Eh^{3}}{12(1-\sigma^{2})R_{0}^{3}}.$$
 (4)

这里 4 为管壁厚度。表 1 列出了四个实验段的主要参数。

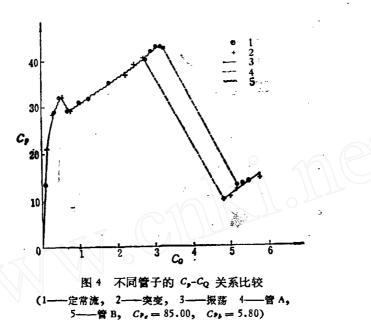

 $K_p(10^5 \text{N/m}^2)$ h(cm) $R_0(cm)$ h/R_0 $\tilde{C}_{o}(cm/s)$ A# 0.051 0.814 0.063 3.9720 19.93 В# 0.052 0.802 0.065 4.2100 20.52 0.031 0.809 0.038 0.8641 9.30 $D^{\#}$ 0.083 0.796 0.104 18.3888 42.88

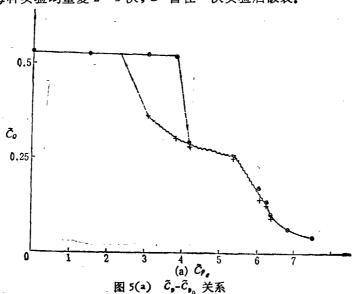
表 1 实验段参数

实验段长度-管径比约为 60.

2. 测量方法

上、下游压力用装在刚性管口内的静压探针测量,探针外径为 0.18, 0.28cm。平均压力用 U形管压力计读取,读数误差 1mm H₂O。脉动压力用 LDY-3 型低压传感器测量,系统频响 3000 Hz。波形用 SC 16A 型光线示波器记录,走纸速度 100mm/s,波幅用精密血压表标定.密封箱内压力 P_e 也用精密血压表测定,精度 0.25 级,量程 300mm Hg,刻度 1mm Hg。

流量用秒表、量筒测定。 秒表刻度 0.1s, 量筒刻度分别为 20cm³ 和 10cm³, 相应量程分别为 1000cm³ 和 2000cm³.


平均压力测量误差不超过 2%,流量测量误差在 3% 以内。

3. 两类实验

A类: 下游负载 P_* 和外压 P_* 不变,连续改变上游水头 H_* ,测量上、下游出口平均压力 P_* 和 P_* ,及流量 Q_* 当发生振动时,测得出口瞬时压力 P_* 的波形。

B类: 保持 H_0 , ρ_0 不变,连续改变 ρ_0 , 测 ρ_1 , ρ_2 , Q 及 $\tilde{\rho}_2(t)$.

除 C# 管外,每种实验均重复 2-3 次, C# 管在一次实验后破裂。

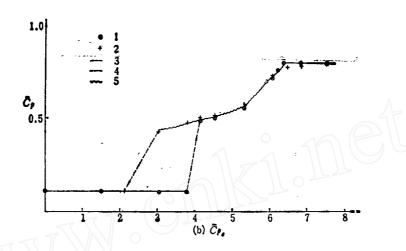
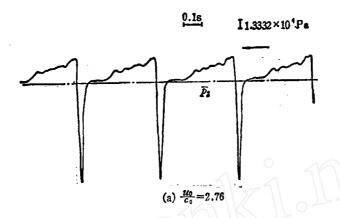
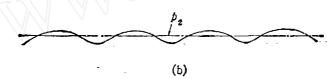


图 5(b) $\hat{C}_Q - \hat{C}_{p_0}$ 关系 (1——压瘪, 2——开启, 3——定常流, 4——突变, 5——振荡, 管 D, $A_0 = 4.78$, $C_{p_0} = 5.80$)

三、实验结果


结果用下列无量纲参数表示:

$$C_{\rho} = \frac{\Delta p}{K_{\rho}} = \frac{\Delta p}{\rho \widetilde{C}_{0}^{2}}, \quad C_{\rho_{e}} = \frac{p_{e}}{K_{\rho}},$$


$$C_{Q} = \frac{Q}{A_{0}\widetilde{C}_{0}} = \frac{u_{0}}{\widetilde{C}_{0}}, \quad u_{0} = \frac{Q}{A_{0}}.$$

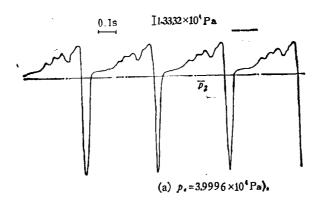
$$(5)$$

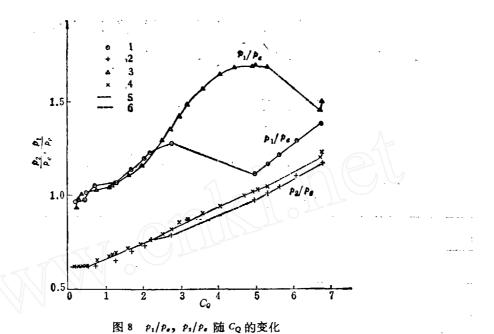
- 1. 当管道开始被压瘪(管壁开始失稳)或即将完全开启时,流态发生突变,从定常流突变为振荡流(或相反);同时,流量锐减(或剧增),压差猛增(或陡降). 此过程对初始扰动很敏感.图 3,4 是 A 类实验的结果,图 5(a),(b)是 B 类实验结果,二者都说明突变的存在.
- 2. 压差-流量曲线有两个峰值、如图 3,4 所示,对压瘪过程来说,第一峰高于第二峰。前者发生于突变刚结束时, $\frac{P_1}{P_e}$ 略小于 1;而后者发生于 $\frac{P_1}{P_e}$ 略小于 1 的时候,开启过程与此相反,第一峰低于第二峰,低峰发生于 P_1/P_e 略高于 1 处,而高峰发生于突变即将发生时, P_2/P_e 略高于 1.
- 3. 图 3,4 都表明持续的振荡不仅可发生在 $\frac{d(\Delta p)}{dQ}$ < 0 (负阻尼)的区域,也可发于在 $\frac{d(\Delta p)}{dQ}$ > 0 (正阻尼)的区域。因而 Conrad 的振荡条件不是必要的。
- 4. 压瘪过程和开启过程流态有显著差别,最突出的是压差-流量图上,开启突变峰比压瘪过程相应的峰值高得多,而相应的流量差不多。
 - 5. 图 6 和图 7 是典型的压力波形, $\tilde{p}_{\lambda}(t) = p_{\lambda} + p'(t)$. 可见至少有两类振荡:
 - 1. 大幅尖波. 此时 $[\tilde{p}_{2}(t)]_{max} > p_{e}$, 且波谷很深

Ii.3332×10⁴Pa 0.1s

图 6 压力波型(A 类实验)

((a) $u_0/C_0 = 2.76$, (b) $\Lambda = 0.47$; 图中 10mmHg = 1.3332×10^4 Pa, $\rho_0 = 30$ mmHg = 3.9996×10^4 Pa).




图 7 压力波型(B 类实验) (图中 10mmHg = 1.3332 × 10*Pa).

2. 小幅圆波。此时 [p̂2(t)]max 可小于 Pe.

四、讨 论

1. 关于突变

由图 8 可见,若 P_{c} , P_{b} 不变而 H_{0} 连续降低或升高,则当突变发生时, P_{c} 有阶跃,但趋势不

变 $(H_0 \downarrow, P_2 \downarrow \downarrow; H_0 \uparrow, P_2 \uparrow \uparrow)$; 而 P_1 不仅有量的阶跃,趋势亦有质变 $(H_0 \downarrow, P_1 \uparrow \uparrow; H_0 \uparrow, P_1 \downarrow \downarrow)$. 乍一看来,这似乎是因为管道被压瘪(或开启)时,截面积减小(或增大),流量下降(或上升),上游管段内流体被滞留(或排空),以收 P_1 增大。 然而,这种过程存在于所有可瘪管流动,

 $(1--p_1/p_1, 2--p_2/p_1, 压瘪; 3--p_1/p_1, 4--p_2/p_1, 开放).$

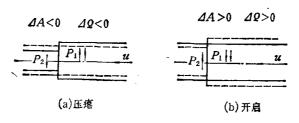


图 9 突变模型

而突变却只发生在 u_0/\widetilde{c}_0 足够大的时候。 故上述过程不是突变发生的原因。

实验中,突变总是在 $(H_0 - P_b)$ 足够大时,由 H_0 (或 P_c)的微小改变引起的. 若将这种微小的改变看作扰动,则可认为 H_0 (或 P_c)是恒定的. 这样突变可抽象为图 9 所示的简单模型. 压瘪突变时, $P_1 \uparrow \uparrow$, $P_2 \downarrow$, $A \downarrow \downarrow$, $Q \downarrow \downarrow$,相当于一个左行的水-弹性激波; 开启突变时, $P_2 \uparrow$, $P_1 \downarrow \downarrow$, $A \uparrow \uparrow$, $Q \uparrow \uparrow$,相当于一个右行激波.

是否具备形成激波的条件?这要看流速 "能否达到当地波速。 据 Flaherty 等人^[6]分析,薄壁弹性圆管受压时有三个临界压力: P_0 , P_c , P_c . 当 $(P-P_c)=P_0$ 时,圆管失稳变为椭圆形,刚度剧降;当 $(P-P_c)=P_c$ 时,相对内表面开始接触,刚度增大;当 $(P-P_c)=P_1$ 时,相对内表面接触处曲率为零,刚度进一步增大。 Bonis 等^[9]进一步指出, P_0 和 P_c 处波速变化是不连续的, $P_c<(P-P_c)<P_0$ 时,波速相当低,约为 $0.9\tilde{C}_0$ (以 C_* 表示)。 可以设想,在压瘪

过程中,当 $(P_2 - P_c) = P_0$ 时,此处波速(C_1)陡降,尽管流速变化不大, $\frac{u}{c}$ 也可能大于 1 而变为超临界。但下游是刚性接头,当地波速很高,流动很快从超临界变为亚临界。这种变化是不连续的,是突变。

表 2 中 $\left\langle \frac{u_0}{\widetilde{C}_0} \right\rangle_1$ 为管道开始压瘪时 $\frac{u_0}{\widetilde{C}_0}$ 的平均值,Conrad 实验中的 $\left\langle \frac{u_0}{\widetilde{C}_0} \right\rangle$ 按最大实验流量估算。

	À#	Ba	D*	Conrad 实验	
$\tilde{C}_{o}(\mathrm{cm/s})$	19.93	20.52	42.88	156.63	
C _* (cm/s)	17.94	18.47	38.59	1 40 - 97	
$\left\langle \frac{u_0}{\tilde{C}_0} \right\rangle_1$	2.77	2.52	2.26	0.10	

表 2 本实验和 Conrad 实验有关参数比较

显然,本实验中水-弹性激波是可能形成的,而 Conrad 实验则不然.

此外,若突变系激波所致,那么 $\left(\frac{u}{c}\right)^2$ 决定了突变强度,因而 K,越小;突变越强($(H_0 - P_s)$ 不变)。 若以 $\frac{\Delta P}{K_s}$ 和 $\left|\delta\left(\frac{\Delta P}{K_s}\right)\right/\delta\left(\frac{Q}{A_s\widetilde{C}_s}\right)\right|$ 来衡量突变强度,则有表 3 所示结果。

	C#	A#	B# :	D#
K _p (10°N/m²)	0.8641	3.9720	4.2100	18.3888
$\left\langle \frac{\Delta p}{K_p} \right\rangle_{\#}$	244.21	44.87	35.28	9.67
$\left \frac{\delta(\triangle p/K_p)}{\delta(Q/A_0\tilde{C}_0)}\right $	35.84	13.81	13.02	6.69

表 3 突变强度

显然,突变强度随 K, 递增或变小, 这为上述解释提供了一个旁证.

2. 双峰的形成

 ΔP 表征流动机械能的损失。当管截面形状不变时, $\Delta P - Q$ 曲线总是单调的。 只有当截面形状改变使得 Q 和 ΔP 向相反方向变化时, $\Delta P - Q$ 图上才会出现峰值。造成这种反向变化的原因不同,就可能形成不同的峰值而呈多峰现象。

 C_Q 较小时,压瘪(或开启)过程中流动状态变化是连续的。设流量改变 δQ 引起的压降改变为 $\delta(\Delta P)$,则 $\delta(\Delta P) = \delta(\Delta P)_1 + \delta(\Delta P)_2 + \delta(\Delta P)_3 + \delta(\Delta P)_4$ 。 这里, $\delta(\Delta P)_1$ 是直接由流量变化 δQ 引起的, $\frac{\delta(\Delta P)_1}{\delta Q} > 0$; $\delta(\Delta P)_2$ 表示管被压瘪后最小截面上游段摩阻的变化。当

 $\delta A < 0$ (即 $\delta Q < 0$) 时,上游段加速,摩阻增大, $\frac{\delta(\Delta P)_2}{\delta O} < 0$; $\delta(\Delta P)_3$ 是下游分离损失引 起的, $\delta A < 0(\delta Q < 0)$ 时, $\delta(\Delta P)_3 > 0$, 故 $\frac{\delta(\Delta P)_3}{\delta O} < 0$; $\delta(\Delta P)_4$ 是流量改变引起 Reynolds 数改变所致, $\delta(\Delta P)_4 = \delta(\Delta P)_4' + \delta(\Delta P_4)''$,前者是 Reynolds 数改变引起的摩阻改变,后者 是相应的下游分离阻力的变化, $\frac{\delta(\Delta P_4)'}{\delta O}>0$,而 $\frac{\delta(\Delta P_4)''}{\delta O}<0$ 。通常 $\delta(\Delta P)$,影响不大,但 当发生层流-湍流转变时, $\delta(\Delta P)$, 很重要。由于 $\frac{\delta(\Delta P)_i}{\delta Q}>0$ 和 $\frac{\delta(\Delta P)_i}{\delta Q}<0$ 两种作用并存, $\Delta P - Q$ 图上就会出现峰值。本实验中的低峰(见图 3, 4)起因于此。

当突变发生时, $\delta(\Delta P)$ 和 δQ 的符号总是相反的,即 $\frac{\delta(\Delta P)_0}{\delta Q} < 0$,且 $\left|\frac{\delta(\Delta P)_0}{\delta Q}\right| > \left|\sum_{i=0}^{\infty}$ $\left. \frac{\delta(\Delta P)_i}{\delta Q} \right|$. 故突变是形成 $\Delta P - Q$ 曲线峰的另一个原因。本实验观测到的高峰(见图 3, 4)其因 盖此.

3. 关于激振机理

对此目前有好几种说法。Conrad 提出了一个集中参数模型[4,10], 其动力学特性可用 Van der Pol 方程描述,而把振荡归因于 Van der Pol 方程的不稳定性,失稳条件为:

$$-\frac{d(\Delta p)}{dQ} \geqslant |Z|. \tag{6}$$

Z 是整个流体管路的阻抗. 据此,振荡只能发生在 $\frac{d(\Delta P)}{dO}$ < 0 的区域. 而本实验证明,振荡 可以发生在 $\frac{d(\Delta P)}{dO} > 0$ 的区域.

Shapiro 认为振荡起因于流动接近于临界状态时的堵塞效应。本实验表明,对压瘪过程来 说,振荡起始于突变,因而确实与堵塞效应有关。然而,对开启过程而言,振荡的发生(起始), 似与突变无关(突变后振荡突然消失)。这说明,堵塞不是引起流动振荡的唯一原因。

Pedley 认为,由于下游刚性管的支撑,压瘪时最小截面下游流动由于截面迅速扩张而分 离,当地压力升高, $\tilde{p}_{2}(t)$ 可能高于 p_{2} 而把压瘪的管段张开。 随之流量增大, $\tilde{p}_{2}(t)$ 下降而低 于 P_c , 管子再度被压瘪。如此往复,形成振荡。 本实验表明, $\tilde{\rho}_c(t)$ 的峰值在大多数情况下都 高于 p_c ,这为 Pedley 假说提供了一个直接实验证据。但实验还表明,压瘪过程后期,或开启过 程初期,可以观察到 $\tilde{p}_2(\iota)$ 峰值小于 P_e 的持续振荡。这说明存在新的激振机理。

五、结 语

实验证明, $C_Q = \frac{u_Q}{\tilde{C}_Q}$ 较大时可瘪管流动状态会发生突变,同时压差-流量曲线出现双峰。 与此相联系, 在正阻尼区发生持续振荡, 这些是本实验中观察到的新现象,

我们认为,突变起因于水-弹性激波;压差-流量曲线上的双峰则是突变、流动分离和粘性 阻力三者的综合。正阻尼区振荡的发生表明 Conrad 激振条件并非必要;双峰附近都有持续振 荡则说明流动临界堵塞效应是一种激振机理,但非唯一。脉动压力测量为 Pedley 机理提供了证明,但也显示出它的局限性。

应该指出,本实验 Reynolds 数比一般生理流动高。但对这些新现象来说,起决定作用的不是 Reynolds 数而是流速-波速比。当管道刚度不高(活体内的管道大多如此)时,即使流量不大,上述现象也可能发生。

对这些现象还需要做更细致的实验和理论分析。

谨向谈镐生先生、郑哲敏先生、冯元桢先生致谢。 并感谢祖佩贞、裴兆宏、佘建伟、夏靖友 等同志的帮助。

参 考 文 献

- [1] Shapiro, A. H., Proceedings of the 6th Canadian Congress of Applied Mechanics, 1977.
- [2] Holt, J. P., American J. Physiology, 134(1944) 292.
- [3] Rodbard, S., Circulation, 11(1955), 280.
- [4] Conrad, W. A., IEEE Trans. Bio-Med. Eng., 16 (1969), 284.
- [5] Pedley, J., Fluid Mechanics In Large Vessels, 1980.
- [6] 陶祖莱,生物流体力学,第七章,科学出版社,1984.
- [7] —, 丁启明, 席葆树, 中国生物医学工程学报, 2(1983), 208.
- [8] Flaherty, J. E., Keller, J. B. and Rubinow, S. I., SIAM J. Appl. Math., 23(1972), 446.
- [9] Bonis, M., Ribreau, C., J. Biomech. Eng., 103(1981), 27.
- [10] Conrad, W. A., McQueen, D. M. and Yellin, E. L., Med. and Biol. Eng. and Comput., 18(1982), 205.