高频感应纯氢等离子体炉的研究

中国科学院力学研究所

朱清文

高频感应纯氢等离子体有重要的应用前景, 但实现这一技术 难度 较 大,我们所知,国外只有美国TAFF实现了这一技术。本文详细地分析了 纯氢等离子体的特点和实现纯氢等离子体的理论和技术问题。解决了放电 特性,放电功率,放电半径和等离子体电阻等重要参数的计算方法和计算 问题,提出了选择高频设备和等离子炬参数的依据,并导出包括各影响因 素的效率表达式, 正确地选择了设备和关键参数, 解决了关键的 技术问 题,实现了纯氢等离子体,为纯氢等离子体炉的发展提供了基础。

一、前言

高频感应等离子体炉由于能提供洁净高温 热源,工质不受限制等特点,在化工冶金和科 学研究等领域中有重要的应用, 在过去得到了 很大发展并有潜在的应用前景(1)。具有还原 特性的氢等离子体由于焓值高, 弧 区 温 度 均 匀, 反应粒子在弧区逗留时间长, 有利于还原 难熔的稀有金属氧化物或卤化物,很引人注 意。TAFF实现氢弧主要模拟火箭,进行氢的 输运性质的研究(2)。我们主要研究实现纯氢 等离子体的理论和技术问题。为工业和科学应 用提供基础。

在理论分析方面,同时满足Maxwell方程 和Ohm定律是很困难的。一般是采用无限长放 电柱轴对称, 忽略流动和对流传热, 有时忽略 辐射的简化模型,用近似分析或数值法求 解。(3)(4)(5)在分析计算中双渠道模型(6)(7) 有较重要价值。多数情况,等离子体和气体速 度是假定的, Boules (8) (9) 模型是通过用数值 法求解动量、连续、能量和电磁诸方程计算出 来的。为了使计算简化,而又考虑实际情况和 给出足够精度的计算结果, 文献 (10) 提出了考 虑气体流动、对流传热和热辐射的等效温度能

量平衡计算方法。

当前为满足工程要求, 应给出放电特性和 重要的放电参数的计算方法和计算, 提出选择 高频振荡设备和等离子炬参数的依据, 但很少 有文献系统地涉及和分析这些问题。本文从实 现纯氢等离子体出发,满意地解决了 这些问 题同时对氢等离子体的特点, 耦合匹配, 实现 纯氢等离子体的技术问题作了详 细 地 分 析。 本文的方法也可对其他 等 离 子 体 作 同 样 分 析。

二、氢等离子体的特点和放电特性

等离子体的放电特性在很大程度上决定于 气体的物理性质。表【列出了氢等离子体问其 他等离子体几个重要物理性质的比较, 从中看 出氢具有高的导热系数、导电系数、焓值和弧 电阻率。

1、基本方程:

$$\nabla \times \overrightarrow{E} = - \vartheta \overrightarrow{B} / \vartheta t$$
 (1)

$$\nabla \times \vec{H} = \vec{D} / \vec{\partial} t + \vec{J}$$
 (2)

$$P = \sigma \overline{E^2}$$
 (3)

 $\nabla \cdot \lambda \nabla T + P - R = \rho C p (DT/Dt)$ (4) 式中, 它为电场强度向量; \dot{B} 为磁感应强

度向量, 1 为电流密度向量, 1 为欧姆热, 2 为 导电系数, 2 R为辐射热量, 2 T为温度, 2 P为氢体 密度, 2 Cp为定压比热。

表I

氢、氮和氢等离子体的物理性质

	•		10000°K		10 % 电 离 度		电 离	相同安		其 他
	目	导热系数	导电系数	焓 值	弧电阻率	温度	电 位	匝数温	热辐射	性质
ì	体	瓦/厘米•°K	1/欧•厘米	大卡/公斤	欧/厘米	°K	电子伏	度 °K		
	氢	4 × 10 ⁻²	70	111100	10-1	10000	15.4	低	低	反磁性
	氮	10-2	30	11971.4	2.5×10 ⁻²	11000	15.8	中人	高	
	죖	4 × 10 ⁻³	30	1400	10-2	12000	18.69	髙	一路高	

假定: (1) 放电柱在轴向(Z向) 无限长,轴对称,并只沿轴向Z有分量Hz=f(r),放电区有均匀温度T和导电系数 σ 。(2) E只沿圆周向有分量Er=f(r)。(3)等离子体处于局部热力学平衡(LTE)。(4) 放电柱外围气流速度不大。

采用双渠道模型。区域 $0 \le r \le r_a$ 为放电区,边界条件为r = 0,Hz = H(0), $r = r_a$,Hz = Ha。区域 $r_a \le r \le r_o$ 为放热损失区, $\sigma = \sigma$,边界条件为 $r = r_a$, $s = s_o = \int_0^{\pi} \lambda dT$; $r = r_o$, $s = \sigma$ 。 r_a 为放电半径, r_o 为放电管半径,s为热导势, λ 为导热系数。

放电区与放热损失区能量平衡方程:

$$P(T,r_a) = Q(T,r_a)$$
 (5)

式中P为欧姆热,Q为总损失热量(包括辐射热量R,向管壁的传热量 Q_2 以及在有限长管等离子体流带走的热量 Q_1 。)

保持稳定放电,还必须满足:

$$\partial P/\partial T < \partial Q/\partial T$$
; $\partial P/\partial Z < \partial Q/\partial Z$;

$$\partial P/\partial r_a < \partial Q/\partial r_a$$
 (6)

从上面诸方程可导出下列诸方程(10):

$$\int_{0}^{T_{o}} \sigma(T) \lambda(T) dT = (nI_{c}/2)^{2} \qquad (7)$$

$$Q_1 = I(T_o) m_P$$

= $I(T_o) m/(r_o/r_a)^2$ (8)

$$Q_{2} = 2 \pi S_{o} \left\{ 2 / X \alpha_{n} \right\}$$

$$\sum_{n=1}^{\infty} \frac{J_{o}^{2} (\alpha_{n} r_{o}) (1 - e^{-x \alpha^{2}_{n} z})}{J_{o}^{2} (\alpha_{n} r_{o}) - J_{o}^{2} (\alpha_{n} r_{o})}$$

$$+\frac{Z}{\ln(r_o/r_a)}$$
 (9)

$$R = \varepsilon B 2 \pi r L T^4 \tag{10}$$

$$P = 2 \pi H_a^2 / \sigma(r_a/\Delta) F$$
 (11)

$$F = \sqrt{2} \frac{\text{Ber}(\sqrt{2} \, r_a/\Delta) \text{Ber}' \, (\sqrt{2} \, r_a/\Delta)}{(\text{Ber}(\sqrt{2} \, r_a/\Delta))^2}$$

$$\frac{+ \operatorname{Bei}(\sqrt{2} \, r_{a}/\Delta) \operatorname{Bei}'(\sqrt{2} \, r_{a}/\Delta)}{+ \left(\operatorname{Bei}(\sqrt{2} \, r_{a}/\Delta) \right)^{2}} \tag{12}$$

式中, $I(T_o)$ 为等离子体焓值; m_o 为等离子体流量; m_o 为等离子体流量; I_c 为线圈峰值电流;n为线 圈 匝 数; ϵ 为 辐 射 系 数;B为Stefar – Boltzmann常数;S(T) 为 热 导 势 函 数 $\int_0^{\pi} \lambda dT$; $X = \lambda/(\rho UCp)$; α_n 为 $J_o(\alpha r_o)$ yo(αr_o) — $J_o(\alpha r_o)$ yo(αr_o) = 0 的根; J_o 和yo是零阶第一类和第二类贝塞尔函数;U为气体速度。

2、放电特性曲线计算:利用上述诸方程可求出放电半径r。和放电特性 曲线 如图1 所示。计算参数为等离子炬直径30mm,频率 4 MHz,流量为0、0.19M³/h和0.38M³/h。根据文献(2)给出的效率曲线和本计算给出的

放电直径同线圈直径之比(≈ 0.4), 可求得零流量时的最小维持板功率 (MSP) 为58KW, 0.19M³/h流量时为60KW, 0.38M³/h时为62KW, 如表 I 所示。

3、等离子体电阻:在高频感应等离子体系统中,要有效地向等离子体传输功率,必须使槽路电阻(包括等离子体反射 电 阻p'。)等于或接近高频振荡器电子管内阻,即所谓匹配问题,所以需要计算出等离子体电阻,从而求出槽路电阻,满足设计选择参数的要求。

假定 $F = r_a/\Delta Q$, 并将 $H_a = (nI_c/2)^2$, $\sigma = 2/(\Delta^2 \mu \sigma)$ 已知的关系式代入(11)式,

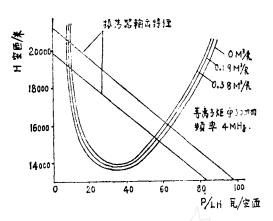


图 1 氢等离子体放电标性

表Ⅱ

最小維持板功率 (MSP) 状态时参数值

文目	流 量 M³/h	MSP KW	放电半径mm	等离子体电位 欧 姆	数数	备 注
(2)	冷 气 体 流 速0.5fps	60.0	9.53		等离子炬ф28mm 频率 4 MHz	等离子体电阻
(14)	~ 0	56.0		0.1613	等离子炬 \$60mm	是根据实测数
	61.0	56.0		0.1613	频率 3.4MHz	据反算。
本	~ 0	58.8		0.1740	等离子炬ф28mm	
本试验	0.19	64		0.1790	频率 3.5MHz	
本	~ 0	58	9.45	0.1694	等离子炬ф30mm	
计	0.19	60	9.60	0.1730	频率 4 MHz	
算	0.38	62	9.72	0.1762	,	

则得:

$$P = 1 / 2 \omega \mu n^2 I_c^2 \pi r_a^2 Q$$
 (13)

又由于 $P = 1/2 I_c^2 \rho' c$, $\rho' c$ 为工 作 线 圈 电阻的等离子体反射部分。单位长度工作线圈的空载电感 $L' c = \mu n^2 \pi r c^2$, 所以,

$$\rho'_{c} = (r_{a}/r_{c})^{2} Q \omega L'_{o}$$
 (14)

若线圈空载电阻为ρ₀,则工作线圈总电阻 ρ_c为:

$$\rho_c = \rho_o + \omega L_o (r_a/r_c)^2 Q \qquad (15)$$

根据上式即可求出等离子体存在时的工作 线圈电阻。若槽路型式已定,可选择槽路元件 参数,用电工学熟知关系求出槽路当量电阻, 以使达到同电子管匹配状态。表 I 列出了计算 的等离子体电阻值以及同试验值的比较。

4、热箍缩效应:由于氢具有高的导热系数和焓值,高频感应放电又是在很薄的趋肤层内进行的,因此热箍缩效应强,这可从下面推导的关系式看出。电流密度J为:

$$J = i/\Delta \tag{16}$$

式中i为等离子体单位长度上的 环 电 流, Δ 为趋肤层深度。我们知道电离度X同 电 流 密 度J成正比,同电场强度E成反比,即

$$X \propto J/E \propto i/\Delta E$$
 (17)

由环电 Ee=2 $\pi r_* \text{E}, \Delta \infty 1/\sigma^2, P=\text{ei},$ 很容易得:

$$X \propto P^2 / (r_a^2 E^4) \tag{18}$$

在输入同样功率时, 氢和氮电离 度X的比值:

$$X_{H_2}/X_{N_2} = (E_{H_2}/E_{N_2})^{-4} \cdot (r_{a_{N_2}}/r_{a_{H_2}})^2$$
 (19)

可近似假定 $E_{H_2} = 20v/cm$, $E_{N_2} = 2v/cm$, 则:

$$X_{H_2}/X_{N_2} = 10^{-4} (r_{aN_2}/r_{aH_2})^2$$
 (20)

由上式示出,在输入同样功率条件下,氢 等离子体的电离度比氮小得多。同样在相同电 离度情况下,氢等离子体的放电半径比氮小得 多,亦即热箍缩效应强得多。在实验中,观察 得非常明显,开始用氩起弧,弧柱粗;当转换 为氢时,弧柱明显收缩。以上都说明了要稳定 维持氢等离子体放电比氩、氮、氧需要更多的 能量,所以高频感应维持氢等离子体放电是很 困难的。

其他影响放电半径的是气体速度和速度分布型式。放电半径对等离子体放电 有 很 大 影响, 当r₄/Δ值较小时,等离子体对高频电磁能的吸收几乎是透明的,若增大该值,就要减小趋肤层深度Δ,这主要靠提高频率来达到。

5、等离子炬管壁的极限热负荷:在氢等 离子炬中,由于氢的导热系数高,流向管壁的 热流如此之大,以至在点燃弧运转1~2分钟 内,石英管壁变色,脆裂和熔化。单位面积上 传热量为:

$$\alpha_{1}(T_{W}^{\bullet} - T_{o}) = -\lambda \frac{dT}{dr} \Big|_{r} = R_{o}$$

$$\alpha_{1} = \alpha (1 + \delta/R_{o}) / (1 + \alpha(R_{o} + \delta)\lambda^{-1} \ln (1 + \delta/R_{o}))$$

$$\lambda = 1 / (T^{\bullet}(R_{o}) - T^{\bullet}(R_{o} + \delta))$$
(21)

$$\int_{\mathrm{T}^*(\mathrm{R}_o+\delta)}^{\mathrm{T}^*(\mathrm{R}_o+\delta)} \lambda_{\mathrm{W}} d\mathrm{T}$$
 (23)

式中, Tw^{\bullet} 为管壁外表面温度; T_{o} 为周围介质温度; α 为传热系数; R_{o} 为放电管半径; δ 为放电管壁厚。石英管损坏临界温度 大约1200 \mathbb{C} ,极限功率 P_{liM} :

$$P_{\text{tiM}} = 2 \pi R_0 \alpha_1 (T_{\text{tiM}} - T_0) \tag{24}$$

将临界温度、 α_1 系数代入上式,可求出单位面积石英管壁的极 限 功 率 P_{liM} 为17/ δ 瓦/厘

米²,通常δ=0.2厘米,则P_{liM}=85瓦/厘米²。 在本计算中,维持等离子体放电最小板功率 (MSP)需要通过管壁传出838瓦/厘米²,远远大于石英管的极限热负荷,所以为保护管壁 不损坏,必须采取特殊冷却措施。

6、控制放电区流动的主要驱动力:在等离子炬中,部分气体切向进入放电管以造成气流在放电管中的旋转(旋流),在中心形成一个低压区,使部分气体回流,有利于等离子弧的起弧和维持。但由于在 $100 {\rm KW}$ 设备上进行试验,能维持纯氢等离子体稳定放电的氢气流量很小,以 $0.4 {\rm m}^3/{\rm h}$ 流量和放电管 径 $40 {\rm mm}$ 计算,平均气体速度 ${\rm V} \approx 0.08 {\rm m}/{\rm sec}$,这显然难于造成所需流动型式。磁压的影响可由下式表示,磁压增量 ${\rm Pm}$,

$$P_{\rm in} = \frac{B_{\rm c}^2 |r - r_{\rm a} - B^2|_{\rm Cr_{-0}}}{4 \,\mu} \tag{25}$$

$$B_c/B_o = (Ber^2(\sqrt{2} r/\Delta))$$

+ Bei²
$$(\sqrt{2} r/\Delta)$$
¹/(Ber² $(\sqrt{2} r_a/\Delta)$

+ Bei²
$$(\sqrt{2} r_a/\Delta)$$
 ^{$\frac{1}{2}$} (26)

处于最小维持板功率 (MSP) 状态, 计算出Pm = 27.46牛顿/米 2 , 由此引起的速度U=135.9m/sec, 因之, 在放电区控制流动的主要是电动力, 这对于弧的稳定有重要作用。

三、关于效率的分析

为保证有高的能量转换效率,除要求等离子体发生器工作在匹配状态外,还必须正确地选择工作线圈和等离子炬参数。振荡功率表现为线圈功率 P。(包括线圈 损耗 P。= Ic²R, 线圈与等离子体缝隙间损耗(一般可忽略)以及放电功率P,R。是线圈空载电阻,Ic是线 圈电流。),因此Pc=Ic²R。+P,现定义线圈效率η。:

$$\eta_c = P/P_c = P/(I_c^2 R_o + P)$$
 (26)

放 电 功率 P由(11)式表 示, $R_0 = r_c n /$ ($\sigma_c \cdot a \cdot \Delta_c$) 此处, σ_c 为线圈材料导电 系 数, a 为线圈管半径, Δ_c 为线圈管趋肤深度。将上

关系式代入(26)式得:

$$\eta_c = 1 / (1 + (r_c/r_a) (h_c/h_a) (\rho_c/\rho_\rho)^{\frac{1}{2}}$$

$$(1/2\pi a n F k^2)$$
(27)

式中, h。、ha 各为线圈和等离子体放电高 度; ρ_c, ρ_p 各为线圈和等离子体电阻率; k 是 与线圈尺寸有关的系数, n为线圈匝数。

在一般情况下,线圈尺寸已定,k值即确 定, (h_c/h_a) 值 可 近似确定, ρ_c、ρ_o 由材料, 气体性质和温度确定,n值从实际考虑小于10, (r_c/r_a) 决定于输入功率、频率、 气体 流量 及其分配型式。频率的选择是 很 重 要 的, 当 $(\sqrt{2} r_a/\Delta)$ 值大于 3 时,F才有较大值,但 但当 ($\sqrt{2}$ r_a/ Δ) 值大于 6 时,则 F值变化较 平坦。因之,频率太低则等离子体吸收功率太 小, 若使等离子体达到指定温度, 必须增加线 圈电流, 并由此增大线圈功率, 这将引起损失 增加,致使效率 η。值降低; 若频率选择太高, 则放电功率增加, 放电区被强烈压向管壁, 这 就增大了管壁的热损失, 同时当感应线圈高度 与其直径差不多大时, 频率增加超过上限, 将 加强某些不利的二维效应, 特别是放电轴中心 附近变冷, 结果降低了按体积的平均温度。现 一般给出的最佳频率范围为:

$$0.5 \cdot 10^{9}/(\sigma d^{2}) < f_{opt} < 1.5 \cdot 10^{9}/(\sigma d^{2})$$
(28)

式中d为等离子体放电直径。进一步指出等离子 体最高温度 $T_0 \propto p^{1/5}, \sigma \propto T^{3/2}, 因为, \sigma(T_0)$ ∞p° 5,所以放电功率在较大的范围内变化时, σ变化不大,这就可认为最佳频率主要决 定于 放电直径。

放电管直径的选择,对于效率也有重要的 影响。选择的原则应该是能使等离子体离开放 电区所带走的热量Q1同放电区向壁面热损失 (包括Q²与R) 的比值为最大。在氢等离子炬 中由于对流传热和热辐射不大, 在可忽略情况

下, 从式(8)和式(9), 使
$$\left(\frac{J(T)m}{K^2}\right) / \left(\frac{2\pi J(T)Z}{A \ln K}\right)$$

= max, 可得K = r₀/r_a = 1.65。若求出放电直 径则放电管直径可确定, 当然计算过程要有一 定的迭代。

放电直径d同线圈直径D的比值对效率 也 有重要影响。实验指出,其值在0.44以下对效 率影响较大, 当在0.44~1 范围中变化时, 效 率变化不大。在氢等离子炬中, 由于需要冷却 水笼置于放电管中, d/D值一般较小, 在我们 的等离子炬中,其值为0.36,所以一般氢等离 子炬的耦合系数较小。

在匹配状态,一般振荡管损失20~30%, 槽路损失2~3%, 工作线 圈 损 失(Ic2R。) 随放电直径减小而增加, 这是由于耦合差和在 给定功率输入必须增加高频电流。当放电直径 减小时,冷却水的温度也略微增加,这是由于 较高的高频电流增加了线圈匝间的电压降。

四、试验装置选择和试验

以上分析清楚地说明了氢等离子体放申具 有几个明显的特点: (1)强烈的热箍缩效应: (2) 热流大大超过放电管壁的极限负荷, 需 要特殊的冷却措施; (3)需要比氧、氮等离 子体维持放电大几倍的功率; (4) 氢的流量 小,难以造成稳弧的速度分布型式,电磁力起 主要控制作用; (5)由于氢等离子炬的特殊 结构型式, 耦合系数 小, 效 率 低, 部 件间易 于放电; (6)氢等离子体弧电阻率大。以上特 点是选择试验装置和进行试验必须 考 虑 的 因 素。

1. 高频振荡设备和槽路型式

决定振荡器的重要参数是功率、等离子体 电阻和频率, 其他参数可根据振荡管等参数选 定。计算表明, 维持氢等离子体放电的最小板 功率约60KW。从实际情况出发,我们选择振 荡器功率为100KW。频率的选择根据式(28), 放电 直 径 根 据 计 算 约 20mm, 估计温 度 约 10000°K, 这样算出的最佳频率范围 为1.7857 ×106~5.357×106,我们选择的频率是4×106 周/秒。从电工理论得知,要向负载传输 最大 功率必须作到阻抗匹配, 已计算出氢等离子体 电阻约0.17欧姆,一般采用普通C类振荡器,电

$$C_2 + 1$$
) U_K , 等效电阻 $R_5 = \left(\frac{C_1}{C_1 + C_2}\right) \frac{L}{C_2 R_P}$

(R_p是等离子体反射电阻,现取 $C_1 = C_2 = 3000$ Pf),若将等离子体反射电阻值0.17 欧姆和电容值代入上式,可求得 $R_E \approx 1000$ 欧姆,因之可以作到匹配状态。

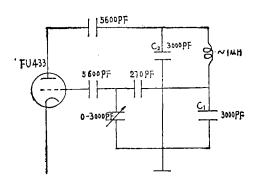
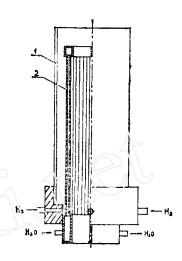



图 2 高频振荡器槽路简图

2. 等离子炬参数选择和结构

等离子炬主要尺寸的选择是 根 据上 面 的分析和计算。最 佳 半 径 比 R₀/r_a=1.65, r_a=9 mm, 所以选择冷却水笼半径15 mm。选 择冷却水管直径 5 mm, 石英管壁厚 2 mm, 再 考虑各部分间的适当间隙,确定放电管外径50 mm,

工作线圈内径56mm。由匹配要求,确定线圈 匝数4.5,线圈铜管直径12mm,为使匝间不放电,选择线圈高度63mm,因之线圈直径 同高度比为0.89,单位长度线圈匝数0.65。

1 — 石英管 2 — 冷却管 图 3 氢等离子炬示意图

等离子炬的结构简图如图 3 所示。冷却水 笼置于放电管中以阻止强大热流对管壁的热损 伤。冷却水笼由两个半圆筒铜管组成,两半圆 简在等离子体放电区由适当间隙隔开,防止短 路形成磁屏蔽,影响高频磁场向等离子体输送 能量。实践证明,只要水笼铜管间的间隙足够 小,就可足以防止强大热流对管壁的热损坏。 氢由四个进气管进入等离子炬中,两个是径向 两个是切向的。

本等离子炬的r₄/r_c≈0.36,这个数值对于 效率和耦合有重要影响,但在氢等离子炬中很 难作到较高值,若减小水笼铜管直径可稍微改 善一些,这需增加冷却水压,会带来一些其他 方面的问题。

3.参数测量和试验结果

所需测量的电参数有交流 功率、功率 因数、直流板压、板流、槽压、槽流(现通过计算得出)、反馈电压等。所需测量的气参数有氢流量。所需测量的水流参数有冷却振荡器电子管、槽路的流量和进出口温度,冷却等离子

短水笼和工作线圈的流量和进出口温度,冷却 焓值测量管的流量和进出口温度。测量电参数 用的是校正过的电压、电流和功率因数表,测 量气和水流量用的是校正过的转子流量计,测 量焓值的水量是用标准水桶和秒表,测量温度 用的是校正过的水银温度计和热电偶。槽路振 荡波形用示波器观察,频率由频率计测出。每 组测量数据都是稳定运行 5 分钟后,等各部分 达到平衡后同时记录。

本试验结果及其同美国TAFF的比较列于

表 I 。利用氢等离子炬,其他参数也不加调整,用氮作工质的试验结果列于表IV。氢等离子体放电稳定的运转范围如图 4 所示。也恰如文献(2)指出的,当氢的流量低于 0.05 M³/h 时,等离子弧将难以维持。这可能由于空气扩散到等离子体放电区所致。功率的下限受等离子体最小维持板功率(MSP)所限制,板 极 功 率的上限受板压所限,试验表明,当 板 压 高于12000伏时,很容易由于线圈匝间、线圈 和冷却水笼等部分之间的放电而熄弧。

袅Ⅱ

试验数据与TAFF的比较

74 -			-01-104			
试验者	· · · · · · · · · · · · · · · · · · ·	试	验。	美	国 TAF	[? (2)
项 目	A	В	(C	A. \	В	С
板 压 (千伏)	11,5	11	10	11.6	10.1	9.7
板 流 (安培)	10	9,5		9.5	11.3	10.7
板 功 率 (瓩)	115	104.5	110	110	114	104
振荡功率 (瓩)	59.2	56	52.8	68	70	64
频 率 (兆周)	3,5	3,5	3.5	4	4	4
氢 流 量 (M³/h)	0.28	0.245	0.175	0,283	0.17	0.127
水 笼 损 耗 (瓩)	46	44.5	41	44.4	44.2	42
槽 路 损 耗 (瓩)	9	7.51	8.13	8.5	8.1	7
出口功率 (瓩)	4.2	4	1.71	15.2	14.6	15
出口氢焓值 (大卡/公斤)	1.58282×10 ⁵	1.72280×10 ⁵	1.47419×10 ⁵	3.3×10 ⁵	8.8×10 ⁵	12×10

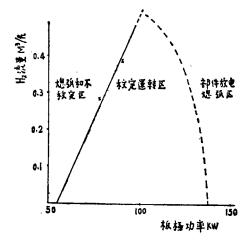


图 4 等离子体系统运转范围

五、分析与讨论

由于我们的设备功率的限制(100KW), 氢等离子体流量只能达到0.4M³/h左右,所以 效率较低。从表 I 可看到,我们的试验数据同 美国TAFF相比,除出口焓值一项外,其 他项基本上一致。从 TAFF三组数据看, A组焓值为3.3×10⁶大卡/公斤(相当于 15000°K),B组焓值为8.8×10⁶大卡/公斤 (大于30000°K),C组焓值为12×10⁶大卡/公斤(远大于30000°K),这在实际上似乎不 可能,从测量和计算氢等离子体温度不超过 12000°K(在TAFF的试验参数和本试验的情况下)。这可能由于他们测量误差造成,因氢等离子体流量很小,若测量热量不准确,则焓值误差就特别大。效率低主要是由于流量小而引起,用氮作工质,如表 IV 所列,在流量这

么小的情况下效率更低。但随着流量的增加,效率也相应提高,从表 IV 推算, 当氢气流量增加到5.6~12.5M³/h时, 效率亦可达到30~50%, 但所需功率要相应增加。

表Ⅳ

氨等离子体试验数据

流量(M³/h) 项 目	~0.15	1	5	10	15
板 功 率 (瓩)	48.75	81	90	100	137.5
振荡功率百分数	51	49	43.9	43.1	42.5
等离子炬和线圈损失百分数	46.4	45.5	\$\7.9	31.8	26.3
氮等离子体功率百分数	2.6	5.5	182	25.1	31.2

从表 I 示出,本文计算出的各主聚参数,最小维持板功率(MSF)、流电半径、等离子体电阻等同试验值和其他文献给出的值相当吻合。

在氢等离子炬中,由于冷却水笼的存在,不仅ra/r.的减小降低了耦合系数和效率,而且易于在线圈和水笼之间放电,因此击穿石英管壁、水笼铜管和线圈铜管。为阻止强大热流对石英管壁的损坏和提高ra/r。值,水笼各铜

管之间间隙和铜管直径都应尽可能的小。线圈匝间距离减小对效率有利,但易于放电,因之希望在不引起放电情况下,匝间距离尽量小,为避免放电,最好采取匝间绝缘的措施。另外,由于氢等离子体放电需要的磁场强度大,有很强的磁压缩,致使等离子弧直冲等离子炬头,必须采取保护措施。

在运行中,为得到较高的效率,振荡器一般工作在过压状态。氢流量对工作状态有很大影响。等离子体放电特性与振荡器输出特性的交点是工作运转点(只有右面的交点是稳定的),如图1所示。关于工作状态的

渦整,一般提高板压,增加空载磁场强度H₀,减小反馈,增大边气等是向欠压发展;若减小板压和H₀,增加反馈和中气是向过压发展。

线圈第一圈相对等离子炬头的 位置 对 起 孤有较大影响。放电管垂直安放(向上或向下排气)或平放对于等离子体稳定放电无明显影响,但必须防止氢等离子体在放电管出口的集 水回返到等离子体放电区,这往往会使等离子体熄弧。

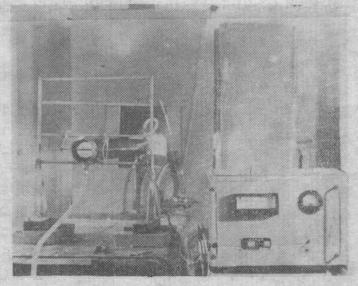


图 5 试验装置

结束语

通过对高频纯氢等离子体的理论和试验研究,了解了其放电的特点和基本规律,解决了实现纯氢等离子体重要参数的理论计算,设备和等离子炬重要参数的选择,合理地选择了设备、槽路和等离子炬型式,并解决了试验过程中的技术问题,实现了高频感应纯氢等离子体,验证理论分析,提供了经验和积累了技术资料,为满足化工、冶金和科学试验等各领域的实际需要创造了条件。

注:参加试验工作的还有阎嘉坪, 黎齐修, 李嘉 祺等同志。

参考文献

- 1.朱清文(1982),力学进展,12,5:378.
- 2. Thorpe, M.L., NASA CR-1343, N-ASA-1143.
- 3. Pridmore-Brown, D.C. (1970), J. Appl. Phys., 41:3621.
- 4. Eckert, H. U. and Pridmore-Brown, D. C. (1971), J. Appl. Phys., 42:5051.
- 5. Eckert, H. U. (1970), J. Appl. Phys., 41:1520.

- 6. Freeman, M. P. and Chase, J. D. (1968), J. Appl. Ph. 4s., 39:80.
- 7. Райзер, Ю. П. (1969), Усц. физ. Наук, 99:688.
- 8. Bouels, M.I. (1976), IEEE Trans on Plasma Sci., PS-4.1:28.
- 9. Bouels, M.I., Gagne, R. and Barnes, R. M. (1980), Can. J. Chem. Eng. 58:367.
- 10.朱清文(1981),力学进展,11,4:323。
- 11 Mensing, A.E. and Boedeker, L. R., NASACR-1312.
- 12.朱清文(1982),高频感应低温 氢等 离子体理论分析,北京第二届低温等离子 体学术会议报告。
- 13.朱清文等(1982),高频低温 纯 氢离子体试验研究,北京第二届低温等离子体学术会议报告。
- 14. 力学和有色金属研究 总 院(1980), 高频纯氢等离子体的研究阶段总结,北京 第一届低温等离子体学术会议报告。
- 15. 陈允明(1981),力学学报,2:165

(上接第47页)

及800℃也有改善。这个结果表明差异控制能得到非常均匀的温度。在大型电炉中,这样的改善甚至会更大。这种技术以推广到包括其它的控制职能,如比例控制。

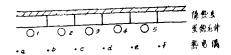


图 3 试验电炉发热元件、控制热电偶及测温用 热电偶的位置剖视图

杨 靖译

译自: "Elektrowärme internation!" 40 (1982) B6 · Dezember B303-B305