十国海光

第11卷 第5期

横流 CO₂ 激光器的二维增益分布

陈丽吟 楚泽湘 陈海韬

(中国科学院力学研究所)

提要: 用一维气流、准二维放电模型算出垂直于电极平面的等增益线二维分布。研究了放电区气体流速、放电参数以及气体成分等对小信号增益沿流动方向变 化规律的影响。对于每一气体压力,有与最佳增益曲线对应的流速范围。将计算结 果与实验结果进行了比较。

Quasi two-dimensional gain distribution of a transverse flow CW CO₂ laser

Chen Liyin, Chu Zexiang, Chen Haitao (Institute of Mechanics, Academia Sinica)

Abstract: A quasi two-dimensional transverse electrical discharge model is developed with which contours with constant unsaturated gain G_0 in X-Z plane are obtained. The effects of the initial conditions on the spatial distribution of T, p, u, E/n and G_0 along the flow axis are numerically investigated. It shows that there is an optimum flow velocity corresponding to the best gain distribution for a given operating pressure. The calculated results are compared with the experimental ones.

本文研究放电区中光轴、电流方向和气 流方向三者相互垂直的放电横流 OW CO₂ 激 光器。在此放电区中,同时发生分子(原子)的 电离和复合、电子态和振动态的电激励、各组 元间的碰撞弛豫消激发以及光吸收、发射和 振荡等过程,形成了一种复杂的非平衡流动 问题。过去的理论工作以解析分析居多,但 由于模型过于简化,难以对增益特性做 详细的描述。例如在 T.A. Cool^[1] 和 H.A. Hassan^[2] 的工作中,假定电激励发生 在光腔上游,气流进入光腔以前便已有粒子 数反转,光腔区中只有分子的碰撞弛豫过程 和光受激发射过程。A.J.Demaria^[33]等 人只求解稳态条件下的速率方程,未能 取得增益系数在整个激励区的分布。 E.Armandillo^[4]曾对平行平板电极横流激 光器的理论和实验工作做过详尽分析,但为 了克服计算中的困难,他采用了一种能使计 算和试验结果一致的电流分布,并假定 OO₂ 离解了50%,这种方法有较大的局限 性。以上工作都建立在一维分析的基础上, 收稿日期: 1983年4月27日

• 257 •

而实验却表明增益系数是二维分布的^{15,60}。 本文提出一种简单的一维气体流动、准二维 放电模型,用数值方法定量或半定量地模拟 垂直于电极平面沿流动方向的二维增益分 布,以及流动参数对增益分布的影响。

一、理论模型

放电模型:考虑一个以金属板 ABCD 为 阳极, EE'K'K 为阴极(可以是管、板或 针),极间垂直距离 AE = H 的电极构形(图 1)。工作气体从 AEKD 平面流入。 在两极 间加入适当电压,产生辉光放电,形成了侧面 为 AEFB、宽为 L 的放电区。 除 EE'K'K 附近为阴极暗区, ABCD 附近为阳极暗区 外,其余大部分为正柱区。假定气体温度、流 速、压力及电流密度等宏观量沿 y 方向都是 相同的,而沿 a、 z 两方向却有差异,形成 a-z 平面的二维图象。再假定气流中的动量、质 量和能量传递过程沿 2 方向可以忽略, 近似 將每一 x-y 平面层看成是彼此独立的。只要 给出某一高度上的电流密度和电场强度,便 可以对该高度进行一维流体力学计算,得 出该 x-y 平面上的气流温度、浓度以及小信 号增益的一维分布。再对不同高度 2 进行计 算,这样,便组成我们的准二维放电流动模 型。

在正柱区内电流密度 *j* 是按(1)式分布的,它是高度 z 的函数:

• 258 •

7

 $j = \frac{HJ}{[Hb + (a-b)z]L} \tag{1}$

式中J是总电流, a = AB, b = EF, H 为极 间距离。调节a、b、H和L, 可以灵活地改 变 a - 2 平面上的电流密度, 以适应器件的形 状及布置。

> 电子密度 n_{\bullet} 的分布近似地由下式给出: $n_{\bullet} = \frac{j}{2}$ (2)

$$n_{e} = \frac{j}{\nu_{D} e} \tag{2}$$

式中vo为电子迁移速率, e为电子电荷。

在阴极表面及附近的暗区中,电子运动 速度很小,有效振动激发速率也很小。因此, 有效的电子密度为零。为满足这一条件,我 们设从阴极附近某处起,电子密度按正弦函 数向阴极过渡到零。

对于平行平板电极,电场 *E* 为常数,但 由于沿 *x* 方向气流温度逐渐升高,粒子数密 度 *n* 相应减少,故此 *E*/*n* 沿 *x* 方向是逐渐 升高的。对于针(管)对板电极,*E* 沿 *x* 方向 下降,*n* 也是沿 *x* 方向减小。实验表明^[5], *E*/*n* 在正柱区中变化不大,这里近似取为常 数。

图2 能级图

正柱区中气体分子之间以及分子与电子 之间存在频繁碰撞,并进行能量交换,其过程 简单地用图 2 来描述。假定转动和平动处于 平衡,并忽略电离及 CO₂ 在电子作用下的分 解反应。按传统的方法将 CO₂ 和 N₂ 分子的 振动态简化为相互独立的简振 振型 *I*、*III* 和 N。每个振型是一个谐振子,用振动温度 T₄来描述,粒子数用玻尔兹曼分布表示:

$$n_i^{(l)} = n_i^{(0)} e^{-\frac{i\hbar \nu_i}{kT_i}} \tag{3}$$

n_i⁽¹⁾ 表示 i 振型第 l 振动能级的分子数密度,
 ν_i 为频率, T_i 为振动温度, h、k 分别为 普 朗
 克及玻尔兹曼常数。

按图 2, 这三个振型的粒子数生 成 率 方 程为:

$$\frac{dn_{1}}{dt} = \left(\frac{dn_{1}}{dt}\right)_{\text{WM}} + \left(\frac{dn_{2}}{dt}\right)_{\nu_{1} \to T} + \left(\frac{dn_{2}}{dt}\right)_{\nu_{1} \to 3\nu_{1}} + \left(\frac{dn_{2}}{dt}\right)_{\mu_{2} \to 3\nu_{3}} + \left(\frac{dn_{2}}{dt}\right)_{\mu_{2} \to 3\nu_{3}} + \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to \nu_{T}}$$

$$\frac{dn_{3}}{dt} = \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to 3\nu_{1}} + \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to \nu_{T}} + \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to \nu_{T}}$$

$$\frac{dn_{3}}{dt} = \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to 3\nu_{3}} + \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to \nu_{T}}$$

$$\frac{dn_{3}}{dt} = \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to 3\nu_{3}} + \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to \nu_{T}}$$

$$\frac{dn_{3}}{dt} = \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to 3\nu_{3}} + \left(\frac{dn_{3}}{dt}\right)_{\nu_{3} \to \nu_{T}}$$

$$+\left(\frac{dn_3}{dt}\right)_{iij} + \left(\frac{dn_3}{dt}\right)_{iij} \qquad (5)$$

$$\frac{dM_N}{dt} = \left(\frac{dM_N}{dt}\right)_{\nu_N \to \nu_1} + \left(\frac{dM_N}{dt}\right)_{\nu_N \star x} + \left(\frac{dM_N}{dt}\right)_{\nu_N \star x}$$

$$+ \left(\frac{dM_N}{dt}\right)_{\text{HORM}} \tag{6}$$

每个 $\left(\frac{dn_i}{dt}\right)$ 项参见[7]附录 B。

二、数 学 表 达 式

在正柱区每一高度上, 气流是定常一维 理想流体,服从下面的守恒方程组:

$$\frac{d}{dx}(\rho u) = 0 \tag{7}$$

$$\rho u \, \frac{du}{dx} + \frac{dp}{dx} = 0 \tag{8}$$

$$\frac{d}{dx}\left(h + \frac{u^2}{2}\right) = \frac{jE}{\rho u} - \frac{1}{\rho u} \frac{dq}{dx} \qquad (9)$$

$$u \frac{dn_i}{dx} = \omega_i \quad (i = 2, 3, N) \quad (10)$$

$$p = \rho \frac{R}{M} T \tag{11}$$

式中ρ、u、p、h、E、ω、和 M 分别表示气体 密度、流速、压力、每克气体的焓、电场强度、 动力学速率和混合物的分子量。因为这里不 考虑传热,也不输出激光,因而

$$\frac{dq}{dx} = 0$$

7

方程(10)右端由方程组(4)~(6)表示。将方 程(9)对 x 积分,整理后得:

$$T = \frac{h_0 - HV - EU + EX}{\frac{R}{M} \left[\frac{7}{2} (\psi_{\text{CO}_a} + \psi_{\text{N}_a}) + \frac{5}{2} \psi_{\text{He}} \right]}$$
(12)

其中 HV 为振动能,

$$EX = \frac{jE}{\rho_0 u_0} x, EU = \frac{1}{2} (u_0^2 - u^2),$$

下标表示正柱区进口条件, ψ_M 为组元M在混 合气体中的分子百分比。M=1、2、3代表OO₂、 N₂、He。从方程(7)、(8)和(11)可以求出:

$$u = \frac{1}{2} \left(B \pm \sqrt{B^2 - 4(R/M)T} \right) \quad (13)$$
$$P = P_0 + \rho_0 u_0^2 - \frac{1}{2} \rho_0 u_0$$

$$(B \pm \sqrt{B^2 - 4(R/M)T})$$
 (14)
其中 $B = (P_0 + \rho_0 u_0^2) / \rho_0 u_{0_0}$

计算的步骤是: 给定进口参数 T_0 、 P_0 、 u_0 、 ψ_M 和正柱区形状 a、b、H、L 及 j和 E的分布,将方程组 (4)~(6)和 (12)耦合求 n_4 和 T。积分从 x=0开始,一直到 BOGF 端之后。由方程 (3)求 T_i ,由方程 (11)、 (13)、(14)求 P、u、 ρ 。将求得的 n_{100} 和 n_{001} 代入公式(15),就可求出某高度 z 值 沿 x轴的小信号增益 G_0 :

$$G_{0} = \left(\frac{\lambda^{2}}{4\pi \tau_{21} \nu_{o}}\right) \times \left(n_{001} \frac{43.4}{T} e^{-\frac{211.5}{T}} - n_{100} \frac{46.0}{T} e^{-\frac{235.6}{T}}\right)$$
(15)

式 中 λ=10.6 微米, τ₂₁ 是 自 发 辐射 寿 命 (5.38 秒), ν_o 是碰撞频率。由于运转压力较 高,这里只考虑压力加宽。

用龙格-库塔法进行数值积分。所用电 激励速率系数、电子迁移速率、电子温度均取 自[8]。所用碰撞弛豫速率系数取自[9~12]。

三、计算结果和讨论

本文计算的主要参数范围是: To= 293 K, Po=20~50(托), uo=30~310 米/秒,

• 259 •

气体组分[CO₂]:[N] = [0.03~0.05]: [0.29~0.17],其余为[He],

 $j=10\sim30$ 毫安/厘米², $E/n=(1.9\sim3.0)\times10^{-16}$ 伏·厘米²。

图 $3\sim7$ 是在高度 z=1.5 厘米处,沿流 动方向的小信号增益和流动参数的计算值。 从这些图可以看到,气流压力 P 沿 x 方向变 化不大,温度 T 和速度 u 略有上升, $T\approx T_2$, T_N 略大于 T_3 。如果继续提高气流速度,则 计算得的最大温升和最大速度差减少,如 表 1 所示。这说明流速增加可以有效地排除 废能,可以克服由于温升而使下能级堵塞造 成增益下降的瓶颈效应。这是流动激光器比 静止激光器优越之处。因此,气流压力P可 以取得高些。

图 3 和图 4 的区别主要是气流压力不同。图 4 中各参数曲线沿 ∞ 方向变化都比 图 3 的曲线陡。这说明压力升高对分子间的 碰撞消激发反应影响较大的缘故。图 6 表

图 3 T、Ti、u、P、G₀沿 x 方向的变化 E/n=2.2×10¹⁶伏・厘米²; ψ₁:ψ₂:ψ₃=0.05:0.27:0.68; MN=5 厘米; P₀=20 托

图 4 T、Ti、u、P、G₀ 沿 x 方向的变化 E/n=2.2×10⁻¹⁶伏·厘米²; ψ₁:ψ₂:ψ₃=1:2:7; MN=5 厘米; P₀=50 托

• 260 •

7

图 5 T、Ti、u、P、G₀、E/n 沿 x 轴的变化 P₀=50 托; (E/n)₀=2.2×10⁻¹⁶ 伏・厘米²; ψ₁:ψ₂:ψ₃=1:2:7; MN=5 厘米

 $E/n=2.2\times10^{-16}$ 伏·厘米²; $u_0=30$ 米/秒; $T_0=293$ K; $\psi_1:\psi_2:\psi_3=1:2:7;$ MN=5厘米

图 7 $G_0 - u_0 \sim x$ 图

 $E/n=2.2\times10^{-16}$ 伏・厘米²; $P_0=50$ 托; $T_9=293$ K; $\psi_1:\psi_2:\psi_2=1:2:7; MN=5$ 厘米

表1 流速和温升、速度增量关系

P(托)	50					20
CO2:N2:Ho	1:2:7					5 :25: 70
uo(米/秒)	30	40	60	90 130 240 3	310	7 0
u-u0(米/秒)	18	17	16	15 14 ,5 14	1 6	1 9
$T-T_0(^{\circ}C)$	175	130	80	47 30 11	7	37

x=10 厘米, T₀=293 K, MN=5 厘米, E/n=2.2× 10⁻¹⁶ 伏・厘米² 明,当比电功率不变时,压力增加会使小信号 增益 Go 沿 x 方向较快地下降。

图 4 和图 5 的差别在于 E/n沿 x 方向 变化不同,图 4 中的 D/n 是常数。图 5 中 E/n 沿 x 轴上升($E \sim$ 常数, n沿 x 轴下降, 用于模拟平行平板电极)。图 4 中增 益 峰 值 为 1.0×10^{-1} 。图 5 中增益 峰 值 为 1.3×10^{-1} , 且 u 和 T 上升也快。

当外加电功率不变时,由图7看到, u_0 从 80 米/秒提高到70 米/秒,增益峰值基本 不变,只是峰值位置后移,有效增益面积扩 大。从而引出结论:对于某一工作压力,存在 最佳流速范围,过份加大流速并无好处。 图7中 $P_0=50$ 托, $u_0=60\sim70$ 米/秒的 $G_0\sim u_0\sim x$ 关系与[6]中的实验结果基本一 致,差别在于实验值 G_0 沿 x下降较快。这是 由于在我们的计算中采用了沿 x 方向均匀分 布的电流密度的缘故。

图 8 给出了相同工作条件下不同 E/n 时的 Go~ x 图。Go 随 E/n 增大而迅速提高,但达到峰值后下降也更陡一些。质量流 量不变,提高 E/n 值意味着比电功率增加。 在目前实验水平,提高比电功率容易发生电弧,破坏正常工作。如能克服这个困难;适当

7

图 9 是 x-z 平面的等增益曲线图。(a)、

(b)、(c)代表三种不同正柱区形状的计算结

• 261 •

果。此图和[5,6]中的实验曲线相似,但曲 线的疏密间隔不同。其原因是文献[6]中阴极 下部有一股冷气流过,与激活介质混合,有效 电子密度减少,因此下方实验曲线收拢,与本 模型不尽相同。文献[5]中由于压力很高,曲 线自然密集。

图 10 给出了本文计 算 与 [6] 中 图 4 的 g=14 曲线比较。 理论和实验曲线的增益峰 值差不多,但前者峰值位置稍向后移,且峰值 后的增益变化比较平缓。主要问题是本文假 定了正柱区中电流密度沿 *a* 方向是 均 匀 的。 实际上,由于电子扩散和来流冲击,辉光区后 移, n_e 沿 *a* 方向并不均匀。

四、结束语

由于采用了均匀电流分布模型,造成诸 物理量沿 *x* 方向变化比较平直。如果能够采 用更为合适的电流分布和场强分布,将使计 算结果更臻完善。

从计算结果看出,只要各 z 层进口参数 相同,因加入电流而引起的流动参数沿 z 方 向的变化很小。以 x=4 厘米处的计算结果

(上接第272页)

$$t_d = \tau_{sp} \ln \frac{I_p}{I_p - I_{th} + I_D}$$

式中 τ_{sp} 为载流子自发复合寿命, I_{p} 为脉冲 电流, I_{D} 为激光器的直流预偏置。

由公式求得的光电延迟时间与图6实验 数据符合得很好。由公式还可得知

 $\tau_{sp} \simeq 3$ 毫微秒。

(5) 退化特性

取 20 支 D₂ 轰击 DH 激光器 在 室 温 充 氮气氛中以恒定光输出功率 1~3 毫 瓦 进 行 老化考验。结果表明:有一部分器件表现为快 退化的特性,即在老化过程中,阈电流 I_{th} 增 加很快,激射寿命小于 200 小时。对于退化 率 $\Delta I_{th}/I_{th0} < 4\%/1000$ 小时的器件(这里 I_{th0} 代表初始阈电流, ΔI_{th} 为经过 1000 小时 • 262 • 为例。当 z 从 0 变到 *H* = 3 厘米时, *Au*~3 米/秒, *AT*~8K, *AP*~0, 说明 忽略不同 z 平面的动量, 质量和能量交换是可行的。

感谢我所 CO₂ 流动激光器 实 验 组 的 同 志们有益的讨论和帮助。

参考文献

- [1] T. A. Cool; J. Appl. Phys., 1969, 40, No. 9, 3563.
- [2] H.A. Hassan et al.; AIAA J., 1972,10, 414.
- [3] A. J. Demaria et al.; AIAA Paper, No. 71-63.
- [4] E. Armandillo, A. S. Kaye; J. Phys. D. Appl. Phys., 1980, 13, No2. 321~328.
- [5] Toshimitsu Akiba et al.; IEEE J. Quant. Electr., 1979, QE-15, No. 3, 162.
- [6] 赵建荣等;《中国激光》,1983, 10, No. 10, 743.
- [7] R. K. Seals; AIAA Paper, No. 71-588.
- [8] G. Befefi 编; "Principles of Laser Plasmas", John Wiley and Sons, Inc., 1976, p. 394.
- [9] R. L. Taylor *et al.*; Review of Modern Physics, 1969, No. 4, 1.
- [10] Gen Inoue; J. Phys. Soc. of Japan, 1975, 38, No. 3, 870.
- [11] J. T. Yarelley; JCP, 1967, 46, No. 11, 4491.
- [12] O. B. Moore; JCP, 1967, 46, 4222.

[7] 개가 과가 과가 해가 하자 하가 하가 하는 분야. 하는 것이 가가 가가 가가 가가 가가 나내

[13] J. C. Stephenson; JCP, 1971, 54, No. 7, 3097.

后阈电流的增量),一般激射寿命都可超过 5000小时。基本上与日⁺ 轰击器件类似^[5]。

北京 401 所协助进行 了 D¹ 轰 击试 验, 上海光机所单振国同志协助用红外透射发光 法拍摄了近场图样,特此致谢。

参考文献

- M. Panish, I. Hayashi; Appl. Phys. Lett., 1970, 16, 326.
- [2] 中国科学院半导体所 DH 激光器组;《激光》,1979,
 6, No. 12, 8.
- [3] B. R. Pruniaux et al.; IEEE Trans., 1972, ED-19, 5.
- [4] Kenneeth Steeples et al.; IEEE Electron Device Letters, 1980, EDL-1, No. 5, 72.
- [5] 中国科学院半导体所 DH 激光器组; 《激光》, 1981,
 8, No. 5, 16.