LJD 状态方程的简便公式

周富信 唐沧雅 陈致英 (中国科学院力学研究所)

提要 为了实际使用更方便,我们提出了 LJD 状态方程的一个简便公式。这个简化了的 表达式是基于 LJD 理论在 θ 从 10 到 290 和 τ 从 0.3 到 1.0 范围内的数值结果得来的,而该 理论中所用的分子间相互作用势是 $6-\exp(\alpha=13)$ 势。用这式子计算的结果与数值结果相比 最大偏差约为 10%,而对爆轰产物所涉及的范围则在 6% 以内。

在涉及凝聚炸药爆轰的理论中,广泛使用基于微观理论的状态方程是物理力学的任务之一。关于稠密流体的严格理论虽然有新的进展,如分布函数方法、扰动法和 Monte-Carlo 方法等¹¹ 但它们都不便于实用。Lennard-Jones 和 Devonshire (LJD) 的笼子模型虽然是一个足够精确的近似理论¹²,然而使用起来还是相当复杂。本文在 LJD 方程基础上提供了一个简便的公式,可供实际计算之用。

钱学森以 LJD 方程给出的 P-V-T 数据为基础,采用误差最小的原理,给出一个简便公式^[3]. 我们试图改用 6-exp 势,并扩展到更高密度范围,这样得到的数值结果处理起来复杂得多. 为此,我们把状态方程中对应于配分函数中的"格子能"部分和"运动能"部分分别处理"。同时,为了考虑非最近邻分子的相互作用,我们推导了多层笼子的势能,并对层数的影响作了计算.

一、计算公式

6-exp 势的形式:

$$u(r') = \frac{kT^*}{1 - 6/\alpha} \left\{ \frac{6}{\alpha} \exp\left[\alpha \left(1 - \frac{r'}{r^*}\right)\right] - \left(\frac{r^*}{r'}\right)^6 \right\}$$
 (1)

式中 k 为 Boltzmann 常数,r' 是两个分子的间距, α 为一常数,通常取 12—15 间的值,本文参考文献 [4] 的结果取 13,r* 为分子间相互作用的特征分子间距即势阱最低点之 r',T* 为分子间相互作用的特征温度即与最低势能对应之温度。

在 LJD 模型中,使用 6-exp 势可导出如下状态方程:

$$\frac{PV}{RT} = 1 + M_P + C_P \tag{2}$$

式中 M_P 和 C_P 分别代表配分函数中"运动能"部分和"格子能"部分对状态方程的贡献,其表达式如下:

本文于 1982 年 3 月 26 日收到.

¹⁾ 前者代表分子处于笼子中心时的势能,后者代表分子移开笼子中心时势能的改变。

$$M_P = -\frac{1}{\theta(1 - 6/\alpha)} \left(\tau G_{A'} + \frac{2G_M}{\tau^2} \right) \tag{3}$$

$$C_{P} = \frac{1}{\theta(1 - 6/\alpha)} \left\{ \tau^{1/3} \sum_{n=1}^{t} z_{n} n^{1/2} \exp\left[\alpha (1 - n^{1/2} \tau^{1/3})\right] - \sum_{n=1}^{t} z_{n} / n^{3} \tau^{2} \right\}$$
(4)

其中

$$G_{M} = \frac{\int_{0}^{0.55} x^{2} M \exp \left[-\frac{\Lambda - M/\tau^{2}}{\theta (1 - 6/\alpha)} \right] dx}{\int_{0}^{0.55} x^{2} \exp \left[-\frac{\Lambda - M/\tau^{2}}{\theta (1 - 6/\alpha)} \right] dx}$$

$$\Lambda = \frac{6}{\alpha} \sum_{n=1}^{t} z_{n} \exp \left[\alpha (1 - n^{1/2} \tau^{1/3}) \right]$$

$$\times \left\{ \frac{1}{\alpha \tau^{1/3}} \left[\frac{1}{x} \left(1 + \frac{1}{\alpha n^{1/2} \tau^{1/3}} \right) \sinh(\alpha x \tau^{1/3}) \right] - n^{1/2} \cosh(\alpha x \tau^{1/3}) \right\}$$

$$M = \sum_{n=1}^{t} z_{n} / n^{3} \left[\left(1 + \frac{x^{2}}{n} \right) \left(1 - \frac{x^{2}}{n} \right)^{-4} - 1 \right]$$

$$G_{A'} = \frac{\int_{0}^{0.55} x^{2} \frac{\partial \Lambda}{\partial \tau} \exp \left[-\frac{\Lambda - M/\tau^{2}}{\theta (1 - 6/\alpha)} \right] dx}{\int_{0}^{0.55} x^{2} \exp \left[-\frac{\Lambda - M/\tau^{2}}{\theta (1 - 6/\alpha)} \right] dx}$$

而 x = r/a, r 是中心分子离开笼子中心的位移, a 是面心立方结构中最近邻分子间的距离, $\tau = \left(\frac{a}{r^*}\right)^3 = \frac{V}{V^*}\left($ 故 $V^* = \frac{V}{a^3}$ $r^{*3} = \frac{n_0 r^{*3}}{\sqrt{2}}$, n_0 是 Avogadro 数 r , r 和 r 是气体的对比体积和对比温度, r 是特征体积; r 是第 r 层分子的数目, r 是计算中考虑的总层数。

二、计算结果

为了考虑多层的贡献,我们分别计算了在 t = 1, 3, 50, 100, 200 情况下的 $\frac{PV}{RT}$ 值。 计算结果表明,在计算中取 t = 50 精度就足够了.

由上述公式,我们用 LJDEOS 程序在 TQ-16 机上进行了计算,表 1 列出了对 6- exp(α = 13) 势的 LJD 状态方程 $\frac{PV}{RT}$ 的计算结果,计算的范围: τ 从 0.3 到 1.0, θ 从 10 到 290. 以凝聚炸药的爆轰为例, τ 从 0.6 到 0.3 和 θ 从 10 到 50,大约对应于爆轰压力从 10 万到 40 万大气压、温度从 2000 到 6000°K.

表 2 列出了 τ 从 0.3 到 0.9, θ 从 10 到 150 的 C_P 值和 M_P 值分别在 $\frac{PV}{RT}$ 值中所占的百分数. 由表 2 可以看出,随着 τ 的增大或 θ 的增大, C_P 值所占份额由大到小, M_P 值所

表 1 对 6-exp($\alpha = 13$) 势的 LJD 状态方程 $\frac{PV}{RT}$ 计算值

$\frac{PV}{RT}$ τ	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	86.9	39.0	20.5	12.3	8.4	6.3	5.2	4.5
30	31.7	15.9	9.8	7.0	5.5	4.7	4.1	3.7
50	20.6	11.2	7.5	5.7	4.7	4.1	3.7	3.4
70	15.8	9.1	6.4	5.1	4.3	3.8	3.4	3.1
90	13.1	7.9	5.7	4.6	4.0	3.6	3.2	3.0
110	11.4	7.1	5.3	4.4	3.8	3.4	3.1	2.8
130	10.2	6.5	5.0	4.1	3.6	3, 2	2.9	2.6
150	9.3	6.1	4.7	4.0	3.5	3.1	2.8	2.5
170	8.6	5.8	4.5	3,8	3.3	3.0	2.7	2.4
190	8.0	5.5	4.3	3.7	3.2	2.9	2.6	2.3
210	7.6	5.3	4.2	3.6	3.1	2.8	2.5	2.2
230	7.2	5.1	4.1	3.5	3.0	2.7	2.4	2.1
250	6,9	4.9	4.0	3.4	2.9	2.6	2.3	2.1
270	6.6	4.8	3.9	3.3	2.9	2.5	2.2	2.0
290	6.4	4.6	3.8	3.2	2.8	2.5	2.2	2.0

表 2 配分函数中"格子能"部分和"运动能"部分对状态方程中 $\frac{PV}{RT}$ 的贡献的百分数

$C_P \frac{PV}{RT} / (\%)$ $M_P \frac{PV}{RT} / (\%)$:			
$M_P \frac{PV}{RT} / (\%)$	0.3	0.4	0.5	0.6	0.7	0.8	0.9
θ							
10	95.1	87.9	75.3	57.4	36.7	17.1	1.4
	3.7	9.5	19.8	34.5	51.4	67.1	79.4
30	86.9	71.8	52.5	33.7	18.5	7.7	0.6
	10	21.9	37.2	52	63.4	70.9	75.2
50	80.2	61.3	41.3	24.8	13	5.3	0.4
	14.9	29.7	45.3	57.6	65.8	70.4	73.8
70	74.7	53.9	34.5	20	10.3	4.1	0.3
	19	35.1	49.8	60.2	66.4	69.5	70.6
90	70	48.3	29.9	16.9	8.5	3.4	0.24
	22.4	39	52.7	61.6	66.5	68.5	68.8
110	65.9	43.9	26.5	14.7	7.4	2.9	0.21
	25.3	42	54.7	62.4	66.2	67.5	67.1
130	62.4	40.4	23.8	13.1	6.5	2.6	0.19
	27.8	44.3	56.1	62.7	65.8	66.5	65.5
150	59.3	37.5	21.8	11.9	5.9	2.3	0.17
	29.9	46.2	57.1	62.9	65.3	0.54	63.9

占份额由小到大,因此,只有把 C_P 和 M_P 分别处理,才有可能得到误差较小的简便公式。

当 n=1 时 C_P 的表达式是比较简便的. 因此我们令 n=1,并在 (4) 式右边乘上一个因式 $\frac{1}{4r+B}$. 用最小二乘法与 C_P 的数值结果拟合,求出待定常数 A 、B 的值.

对 M_P ,我们采用了钱学森的简便公式^[3],即 $M_P = \frac{1}{E\tau\theta^D + C}$,用最小二乘法与 M_P 的数值结果拟合,得到常数 E,D 和 C 的值.

						<u> </u>		
误差 (%) θ	0.3	0.4	0.5	0.6	0.7	0.8	0.9 A	1.0
10	2.6	2.1	1.9	2.0	2.5	3.9	6.5	10.3
30	4.5	3.6	2.1	1.0	1.1	2.5	4.9	7.8
50	5.4	3.5	1.1	-0.3	0.3	0.9	2.9	5.3
70	5.8	2.9	-0.0	-1.6	-1.7	-0.7	1.1	3.7
90	5.8	2.2	1.1	- 2.8	-3.0	-1.9	0.1	3.0
110	5.6	1.4	-2.2	-3.9	-4.0	-2.8	-0.4	3.2
130	5.3	0.5	-3.2	-4.9	-4.9	3, 3	-0.3	3.7
150	4.9	-0.3	-4.1	-5.7	-5.5	-3.4	-0.0	4.5
170	4.5	-1.1	-4.9	-6.4	-5.8	-3.4	0.5	5.4
190	4.1	-1.8	-5.7	-7.0	-6.0	-3.1	1.2	6.4
210	3.6	-2.5	-6.3	-7.4	6.0	-2.7	1.9	7.3
230	3.2	-3.1	-6.9	-7.6	-5.8	-2.2	2.7	8.2
250	2.7	-3.8	-7.3	-7.8	5.6	-1.6	3.5	9.1
270	2.2	-4.3	-7.7	-7.8	-5.3	-1.0	4.2	9.9
290	1.7	-4.8	-8.1	-7.8	-5.0	-0.4	4.9	10.6

表 3 简便公式计算结果与数值结果的百分误差

这样,我们得到了 $6-\exp(\alpha=13)$ 势的 LJD 状态方程的简便公式如下:

$$\frac{PV}{RT} = 1 + \frac{1}{E\tau\theta^D + C} + \frac{156}{7\theta(A\tau + B)} \left\{ \tau^{1/3} \exp\left[13(1 - \tau^{1/3})\right] - \tau^{-2} \right\}$$
 (5)

式中, A = 0.443, B = 0.887, E = 0.0152, $D = \frac{2}{3}$, C = 0.183.

该简便公式与数值结果的百分偏差列于表 3 中,从中可以看出,用 (5) 式所引起的偏差最大在 10% 左右,对爆轰产物涉及的范围而言,这个偏差在 6% 以内. 此外,当 θ 趋于无穷时,(5) 式右边趋向于 1,这符合状态方程在此条件下应趋向理想气体方程的性质.

参考 文献

- [1] Hansen, J. P. & McDonald, I. R., Theory of Simple Liquids (1976).
- [2] 钱学森,物理力学讲义,科学出版社,北京(1962),第九章。
- [3] Tsien, H. S., Jet Propulsion (1955), 471.
- [4] Fickett, W., Phys. Fluids, 6(1963), 997.

THE SIMPLE FORMULA OF LJD EQUATION OF STATE

Zhou Fuxin Tang Tsangya Chen Zhiying (Institute of Mechanics, Chinese Academy of Sciences)

Abstract

In order to make the practical calculations more convenient, a simple formula of LJD equation of state is provided. This formula is based upon the numerical results of LJD theory, in which the intermolecular potential has 6-exp (α =13) form. The range of θ is from 10 to 290 and that of τ is from 0.3 to 1.0.

The largest deviation of this formula from the nomerical results is about 10% and under the conditions of detonation of condensed explosives the deviations are lower than 6%.