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Summary A relationship between the cumulative length of microcracks and the amplitude and duration of 
tensile impulse in spallation was established based on the application of statistical microdamage mechanics, 
which included a statistical formulation and dynamic laws of microdamage under loading. Since the degrees of 
spallation, called incipient, intermediate and complete spallation, can be characterized by the cumulative length 
of microcracks, a physical interpretation of an empirical criterion to spallation was presented. @ 1997 Elsevier 
Science Ltd. 
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1. INTRODUCTION 

In 1910 B. Hopkinson reported for the first time that spallation was caused by a tensile stress wave 
resulting from the reflection of compression waves at the interfaces adjacent to low impedance 
medial1]. Since then, the critical conditions for spallation, i.e. spallation criteria, have been proposed 
and studied by many researchers. First, the strength criterion of spallation was suggested[2]. That is, 
spallation will occur if 

a > a ~  (1) 

where a is the tensile stress and a¢ is the dynamic strength of a material. It is obvious that the strength 
theory of spallation is the extension of the static strength theory of materials. However, many 
experiments have demonstrated that the spallation strength of materials varies with the tensile 
impulse duration, while the static strength of materials is usually of constant value no matter what 
kind of loading is applied[3]. Usually, spall fracture is classified into several stages according to the 
damage level, which is indicated roughly by terms such as "initial", "intermediate" or "complete". The 
complete spallation refers to the complete separation of the material whereas the initial and 
intermediate spallation indicate cracking of a few isolated grains and partial separation of the 
material respectively. 

Butcher et al. I-4] revealed that spallation was a time-dependent process, which marked the birth of 
the cumulative damage theory of spallation, i.e. that nucleation, growth, and coalescence of 
microdamage constituted a spallation process[4]. Thus, the difference between the spall fracture and 
the quasistatic fracture "arises because, while the impulsive load is usually of sufficient intensity to 
nucleate a large number of cracks, the duration of its application is too short to permit propagation of 
individual cracks over large areas"[5]. Hence, the spall fracture depends on the duration of the stress 
wave. There are two approaches to the study of spallation. One is the establishment of an empirical 
spallation criterion which determines whether or not spall (i.e. some preselected spall level) will occur 
under given experimental conditions. The other is to describe the spall damage development with 
a continuous field variable[6]. The latter one introduced the concept of continuous damage as 
a replacement for the discrete description of spall and generalized the spall criteria to continuous 
measures of spall. This method is entirely phenomenological even though it is effective and the 
literature on it is not only very extensive but also growing at an ever increasing rate. Therefore, 
micromechanical studies of spall damage of materials to evaluate the continuous theory of spall 
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damage are badly wanted. Curran et a/.[7] have investigated the spall failure of materials and 
suggested a method which is composed of the statistical descriptions and microscopic dynamic laws of 
microdamage; they refer to their approach as "'microstatistical fracture mechanics"[7]. This micro- 
statistical approach connected the spall fracture with the micromechanical development of spall 
damage directly and hence had a firmly physical basis. However, a spallation criterion based on this 
approach has not been given. In this paper, we try to give some tentative results in this area. In Section 
2, we introduce an empirical criterion for spallation based on the ideas of Butcher et al. [4] and some 
definitions of damage functions for characterizing the spall levels. Section 3 gives the relationship 
between the criterion and the process of spallation based on the concepts of statistical microdamage 
mechanics, and in Section 4 the evaluation of spallation criteria with the experiments and discussions 
on the results are given. Some preliminary conclusions are presented in Section 5. 

2. CUMULATIVE DAMAGE CRITERION 

According to the cumulative damage theory of spallation, Tuler[8] and Butcher et al.[4] proposed 
a general spallation criterion which can be written as: 

j .~,r{( j" (J"(});" dt  = K ( 2 }  

where a is the tensile stress, the duration of tensile stress is from T,, to T, % is the threshold stress for 
spallation and ;, and K are fitted parameters. Shen et  a/.[9] indicated that a can be regarded as the 
amplitude of a square impluse in normal plate impact. Therefore, Eqn (2} can be rewritten as: 

{ a / %  1 ) 'A T=K '  (3) 

where ,;~ and K' are fitted parameters and zXTis the duration of tensile stress. 
Generally, one can use Eqn (2) or (3) to deduce a spall criterion for the preselected amount of spall 

damage. So, a damage variable must be well defined firstly to properly characterize the degrees of 
spallation. A series of plate impact tests to establish the spallation criterion for an aluminium alloy 
were conducted with a light gas gun. The specimens were taken from a rolled sheet of an aluminium 
alloy similar to 2219-T6 A1. The physical and mechanical properties of the material are shown in 
Table 1. 

The details of experiments were presented in Ref. [9]. Fig. I shows that paralleled microcracks 
occurred in the metallographic section of an incipient spalled specimen. Figures 2 -3 are metallo- 
graphic sections of spalled specimens for different F 1 values. In fact these microcracks were cut from 
penny-shaped microcracks inside materials. Shen et al. [9] defined two kinds of damage functions to 
characterize the degrees of spall. One is 

F 1 = 1 cr {4} 
(7 b 

where a r is the experimentally determined residual ultimate tensile strength of a certain degree of 
spalled specimen and a b is the ultimate tensile strength of undamaged aluminium alloy. The other is 

1' 
F 2 = / (5} 

-Fable I. The physical and mechanical properties of the 
aluminium alloy 

Density 2.83 g/cm 3 
Tensile yield strength 333 MPa 
Tensile ultimate strength 449 MPa 
Elastic modulus 81 GPa 
Speed of sound 5~27 m s 
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Fig. 1. Microcracks formed in specimen under impact loading 

Fig. 2. Crack feature of specimen with F = I/3 magnification × 50 

where l' is the total  length of cracks in a certain section of a specimen and I is total  length of this section 
(see Figs. 2&3). 

The  measurements  showed that  there was a one- to-one correspondence  of two above  damage  
functions. Fig. 4 shows the measured  results. It should be noted that  F 1 is a mechanical  and 
macroscopic  quant i ty  and F 2 is a geometr ical  and microscopic  quanti ty.  Hence,  the geometr ical  
damage  function, F 2 ,  is also a fairly good  representa t ion of spall levels. 

The  fitted spal lat ion criteria f rom the exper imental  da ta  in the form of Eqn (3) were : 

( a / 4 5 0 -  1) 1"171 A T =  1.798 for F 1 = 1/3 (6) 

(tr/450 - 1) 1"381 A T =  2.438 for F x = 1/2 (7) 

(cr/450 - 1) a'~95 A T =  3.853 for F 1 = 1 (8) 
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Fig. 3. Crack featurc of specimen with F = I.,, ~ magnification x 50 
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Therefore,  the spa l la t ion  cr i ter ion for the a lumin ium al loy for different degrees of  spa l la t ion  becomes 

(a/450 I )"~F '~AT=K(FII .  (9) 

Shen e t  al .  [9] indica ted  that  K should be a measure  of the necessary t ime for the co r re spond ing  
damage  level from d imens iona l  analysis.  However ,  the impl ica t ion  of the var ia t ion  of n with F~ was 
not  clarified. Clearly,  the a p p r o p r i a t e  physical  basis of the above  empir ica l  cr i ter ion is required.  

3. AN I N T E R P R E T A T I O N  B A S E D  U P O N  S T A T I S T I C A L  M I C R O D A M A G E  
M E C H A N I C S  

N o w  we define a new damage  function from the above  ment ioned  exper imenta l  results (see Figs. 2 3) 
as 

/=3 = c' ' m(c')dc'  (10) 
) 
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where m(c') is the number density distribution of microcracks in sectional surface of the plate target, 
i.e. m(c')dc' is total number of microcracks with apparent sizes between c'-c'  + dc' per unit area. So, 
this damage function is the sum of length of total microcracks per unit area in sectional surface. It 
should be noted that F 3 gives the cumulative crack length per unit sectional area whereas F 2 gives 
length of cracks divided by section length. In fact, the measurements of F 2 should be accomplished in 
certain width of heavily damage regions. Therefore, F 3 could be interpreted as F 2 divided by this 
width. In this sense, it is appropriate to use F 3 to characterize the spall levels as well as F 2. 

Next, we try to connect the damage function F 3 with the micromechanical laws such as the 
nucleation rate and growth rate of microcracks. The details of the testing procedure to derive the 
nucleation rate and growth rate of microcracks were given in Refs [9] and [10]. Figure 5 shows the 
number density of nucleation microcracks under different stresses. The fitted nucleation rate by use of 
the exponential form given by Curran et al. [7] is 

~r = No exp[(a - ao)/Ol] (11) 

where ~r is the nucleation rate of microcracks, i.e. the number of nucleated microcracks per unit time 
per unit physical volume of the body, ~r o is the threshold nucleation rate, tr is the amplitude of tensile 
wave, and a o and a 1 are material properties. The fitted values of the parameters in Eqn (11) with the 
experimental data of Shen et al. [9] are 

N o = 1 . 4 3  × 104/~ts'mm 3 

a o = 4 . 5 ×  10 z M P a  

a 1 = 6 . 0 ×  1 0 / M P a  
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The growth rate of microcracks of the aluminium alloy was given in Ref. [10] by a new 
statistical approach and confirmed to be a viscous growth as Curran et al. [7] have revealed 
under impact loading, 

(7 O" o 
A(c) = - - c  (12) 

4q 

where A(c) is the growth rate of microcracks with size c in the physical volume, and a 0 
is the threshold stress for the growth of microcracks which is the same as that of the 
nucleation threshold stress in this case. ~/is a viscous parameter approximately 1.5 x 103pa.s 
[11]. 

It is worth noting that the sizes c and c' are different. The c is the true size of microcracks, 
for example, the true diameter of sphere or penny-shaped cracks; c' is apparent size of 
microcracks on sectional surface, i.e. the diameter of the apparent circle of sphere or the 
length of the apparent crack line of penny-shaped crack, which are sectioned and show 
themselves as circles or crack lines with size c' on the sectional surface. 

For connecting the damage function F 3, the sum of length of total microcracks in 
a sectional surface of a spalled specimen per unit area, with the micromechanical laws of 
microcracks inside materials, the statistical transformation from the sectional number 
density distribution m(c') to the volumetrical number density distribution of microcracks n(c) 
should be completed first. This can be done with the transformation governing equation 
given by Bai et al. [12] (see appendix A) either for spherical voids or penny-shaped cracks all 
lying in the same orientation (paralleled microcracks as showed in Fig. 11 

m(c'} ) "  dc 
, - n{c) , 7 c,2 (13) 

C c N ' C -  

where n(c)dc is the total number ofmicrocracks with sizes c c + dc per unit physical volume 
of the body. The solution of the integral equation was obtained by partly integrating Ref. [ 12] 
(see appendix B) 

2£ . '  c [ ldm(c') m ( c ' ) ] j ,  
n(c) , :: 

rc \ / c  '2 c 2 c' de' ~ - T U ]  uc 
(14) 

the apparent boundary condition, m( ~-~ ) = 0, was used in the derivation. 
Curran and his co-workers [7] started the important work about the statistical evolution 

of microcracks and its effect on mechanical properties of damaged materials based on the 
empirical statistics of microdamage [7]. Bai et al. [12] have put forward a governing 
equation of the statistical evolution of microcracks other than the empirical statistics [ 13]. 
The governing equation of microcracks can be written 

?n ?(nA) 
~ +  &. =n~. (15) 

where ~n/~?t is just the increasing number per unit time, holding c fixed, and ?(nA)/?c is the 
rate by which cracks are converted from one size to another, n N is the nucleation rate of 
microcracks, i.e. nNdc is the number of nucleation microcracks per unit time per unit physical 
volume. 

The measurements showed that the number density distribution of microcracks in 
sectional surface of the specimen, m(c'), is the Rayleigh distribution [14]: 

m(c') = A o e I"'~)~ 116) 
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where A o = 2 ~  m(c')dc'/ct is a normalized parameter of the distribution and a is a characteristic 
parameter of the distribution. The measurements also showed the variation of a was a little in 
the evolution of spalled damage in the aluminium alloy while A o increased with increasing 
damage [10]. 

The solution (14) shows the volumetric distribution of n(c) to be Rayleigh distribution too, i.e. 

2 1 
n(c) = ~ -  m(c).  (17) 

So, in this case the sectional size distribution is a nice representation of its volumetric counterpart. In 
the light of Eqn (17), the damage function in sectional surface, F3, can be written as 

Let 

Eqn (18) can be rewritten as 

F 3 = ~--2-  c 'n(c)dc.  (18) 

We notice 

F 3 = G t - ~  L. (20) 

Therefore, the cumulative length of microcracks per physical volume is also a good damage function 
for characterizing the degrees of spallation. Thus, let us investigate the damage function L. The rate of 
damage function L is 

r = fo<  ,'c (21) 

because the conservation Eqn (15) can be rewritten as 

t~n t3(An) (22) 
~ = n N  c~c " 

Due to substitution of Eqn (22) into Eqn (21), the rate of damage function can be derived as 

t" f; L =  c 'nNdc  + n ' A d c  - " {23) 
o 

. . . .  • . f o  - O ' o ' ~  

where c o is average nucleation size of microcracks. Concerning Eqns (16) and (17), the last term 
in the right hand side of Eqn (23) vanishes. The evolution rate of microcracks Lcan be obtained as 
follows 

• fa-ao"X tr--aOL 
L = c o N o e x p t - - ~ - l  )+- - - -~q  . (25) 

Suppose that the tensile wave ~ in normal planar impact is applied to an undamaged material at initial 
time t = 0, i.e. 

L(a,t) = 0, when t = 0 

L = c" ndc. (19) 
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then, the solution to Eqn (25) was derived as 

L = 4 r / c  o]Qorr_lcrc~exp, ~ / e x p \ ~ -  / 1 . (26) 

The graph of this function is plotted in Fig. 6. It is clear that the accumulated length ofmicrocracks 
rises faster as the tensile stress and its duration increase, and the surface could be approximated by the 
planar surface at an initial time under low tensile loading. It indicates that at the initial development of 
spallation the accumulated damage varies linearly with time. 

It is evident that the degrees of spallation can be characterized properly by the accumulated length 
of microcracks, i.e. the damage function L. Hence, Eqn (26) can be used as a criterion for continuous 
measure of spallation. For a preselected level of spallation L, the required amplitude a and duration 
t of a tensile wave can be derived with Eqn (26). In the next section, Eqn (26) will be evaluated by the 
experimental data of Shen et  al. [9] and the comparison between the criteria Eqn (26) of this paper and 
the criteria of Shen et  al. [Eqn (9)] was given and discussed. 

4. EXPERIMENTAL EVALUATION AND DISCUSSION 

The details of the experiments of planar impact on the aluminium alloy can be found in Shen et  al. [9]. 
Tables 2 4 show the experimental data for three different groups (F~ = 1/3, 1/2 and 1). 

For the spalled aluminium alloy, the measurements give the parameters in Eqn (261 are as follows: 

% = 3.4 ~m 

,~'o = 1.43 x 1 0 4 / y , s . m m  3 

~1 = 1.5 x 103 P a . s  

cr ~ = 600 M Pa 

a o = 4 5 0 M P a .  
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Table 2. Experimental Results of Group 1, for F t = 1/3 

389 

Test No. Impact Thickness Duration Nominal tensile stress 
velocity of speci- of ~r a (MPa) 

V~ men(mm) AT Experimental Prediction Error Prediction Error 
(m/s) Flyer Target (/as) results Eqn [6] (%) Eqn [26] (%) 

84-98 108.9 5.03 10.08 1.741 914 913 0.13 912 0.22 
84-71 122.4 4.02 8.06 1.393 1029 1010 1.90 1043 1.36 
84-62 160.6 2.40 5.00 0.835 1359 1316 3.12 1355 0.29 
84 88 176.9 1.92 3.94 0.669 1500 1497 0.21 1491 0.60 

Table 3. Experimental Results of Group 2, for F 1 = 1/2 

Test No. Impact Thickness of Duration Nominal tensile stress 
velocity specimen of a a (MPa) 

V~ (mm) AT Experimental Prediction Error Prediction Error 
(m/s) Flyer Target (/ts) results Eqn [6] (%) Eqn [26] (%) 

84 13 122.2 5.00 10.00 1,733 1028 1026 0.13 1027 0.10 
84-70 139.3 4.04 8.04 1.358 1146 1137 0.76 1174 2.44 
84 10 176.1 2.46 4.96 0,856 1494 1410 5.58 1457 2.48 
84-90 187.4 1.94 3.94 0.676 1592 1589 0.18 1603 0.69 

Table 4. Experimental Results of Group 3, for F1 = 1/1 

Test No. Impact Thickness of Duration Nominal tensile stress 
velocity specimen of tr a (MPa) 

V 1 (mm) AT Experimental Prediction Error Prediction Error 
(m/s) Flyer Target (ps) results Eqn [6] (%) Eqn [26] (%) 

83-11 136,8 5.00 10.00 1.735 1153 1152 0.10 1105 4.16 
84-112 148.2 3.98 7.96 1.382 1251 1247 0.35 1244 0.56 
84-73 181.0 2.52 5.00 0.839 1536 1502 2.20 1552 1.04 
84-87 193.4 1.92 3.96 0.670 1645 1643 0.13 1691 2.80 

Thus, the average damage function Lwas calculated to be 1.96 × 105 pm/mm 3, 2.40 × 1 0 5 / ~ m / m m  3 

and 2.77 x 1051am/mm 3 for F 1 = 1/3, 1/2 and l, respectively, with Eqn (26). Therefore, the tensile 
stresses for each group can be predicted inversely by Eqn (26) with above known L and the duration of 
tensile stress AT. The results were listed in the last column of Tables 2-4.  We observed that the results 
of this paper give better agreement with the experimental data. Additionally, the comparison between 
criteria and experimental data is showed in Fig. 7. 

Now,  let us come to Fig. 6 to elucidate that the accumulated damage varies linearly with time at the 
initial or even intermediate stage of spallation. In fact, the tensile stresses a were around 1.5 GPa and 
the durations were about 1.0 #s (see Tables 2-4). Then 

a - go t < 10-1.  (27) 
4~/ 

Hence, expansion of the exponential term in the right hand side of Eqn (26) can be ignored for high 
order terms. Therefore, Eqn (26) can be approximated by 

• / ~  - Cro\ 
L= coNo e x p / m / ' t  (28) 

\ al / 
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which gives a linear relation between L and t. This linear time dependence seems to be consistent with 
the empirical criterion of Refs [8, 9]. 

The new damage function Lversus the damage function F 1 was plotted in Fig. 8. The points present 
a similar relation between F 2 and F1. This illustrates that the damage function L is a good 
representation of spall levels and the criterion based on it should be appropriate. Obviously, the 
criterion requires more material parameters and all the parameters in the criterion have certiain 
physical meanings. Hence, the model is more realistic than the Tuler-Butcher  model. So, using 
a polynomial form of the Tuler Buther criterion to model the experimental data as well as to 
approximate the more realistic model Eqn (26) requires two parameters or more. The parameters 
,i and K'  of Eqn (3) could be understandable in this sense. 

It should be pointed out again that Eqn (26) is the result for cases which correspond to ignoring the 
interaction and coalescence of microcracks. This may be the reason for more deviation from 
experimental data for group 3 (F l = 1) shown in Table 4. 
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5. C O N C L U S I O N  

The present  s tudy of spa l la t ion  cri ter ia  has a t t a ined  the fol lowing results  by  mak ing  use of concepts  of 
s ta t is t ical  m i c r o d a m a g e  mechanics :  

(1) A new defined d a m a g e  funct ion (F3) and  a cr i ter ion based  on it can p rope r ly  descr ibe  the 
spa l la t ion  of  an a lumin ium al loy s imilar  to 2219-T6A1; 

(2) M o r e  impor tan t ly ,  a great ly  simplif ied m e t h o d  was suggested when neglect ing the in te rac t ion  
of d a m a g e  and  the stress var ia t ion .  The  der ived cr i ter ion has clear  physical  basis; and  

(3) The  fitted pa rame te r s  of the empir ica l  cr i ter ion are unde r s t andab le  in the l ight of the new 
spa l la t ion  analysis.  

Acknowledgements--The authors are indebted to Professor Mengfen Xia and Professor Fujiu Ke for their valuable help and 
suggestions in accomplishing this work. 
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A P P E N D I X  A 

The derivation o f  Eqn (13) 

The  der iva t ion  of the fundamenta l  integral  equa t ion  govern ing  the t r ans fo rma t ion  of  sect ional  
obse rva t ions  of  meso-s t ruc tures  to their  vo lumet r ic  size d i s t r ibu t ion  is based  upon  the fol lowing 
assumpt ions :  

(1) The  concerned  mesoscopic  s t ructures  have the s implest  conf igura t ion ,  namely  spheres or  
para l le l  penny- shaped  cracks.  

(2) The  spheres and  penny- shaped  cracks  are  homogeneous ly ,  r a d o m l y  d i s t r ibu ted  in the mater ia l .  

I t  wor th  no t ing  tha t  no l imi t a ton  has been imposed  on the form of size d is t r ibut ion .  Firs t ,  we define 
the fol lowing quant i t ies  to descr ibe  the size d i s t r ibu t ion  of these meso-s t ruc tures :  

c - l e n g t h  scale of meso-s t ruc tures ,  i.e. the true d iamete r  of sphere or  pe nny - sha pe d  cracks;  
c' a p p a r e n t  length scale of meso-s t ruc tures  on sect ional  surface, i.e. the d i ame te r  of the a p p a r e n t  
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circle of sphere or the length of the apparent crack line of penny-shaped crack on sectional 
surface 

n(c) volumetric number density of the meso-structures. For instance, n(c}dc represents the number 
of spheres in unit physical volume and in the interval of sphere-diameter c c + d c ;  and 

m(c') /Sectional number density of the meso-structures. For instance, m(c')dc' represents the 
number of apparent circles of spheres, which are sectioned and show themselves as circles 
with diameter ranging c' c' + de' in unit physical area on the sectional surface. 

To determine the number of cracks or voids within a given size range, say from c' i to c' i + 1, and cj to 
cj + 1, we form the integrals 

Mi(c'l = m(c'tdc'. 
't 

and 

NI,.) = f ' ,,(,.)dc. 

Thus we see that the units for m(c') and n(c) are [number]/[ length] 3 and [number]/[ length] 4. 
The basic idea of the derivation of the equation governing the transformation is due to previous 

works [ 15-17] and can be explained as follows. In the case of spheres, the observed number m(c')dc' of 
circles on sectioned surface in the interval of diameter c' c' + de' is attributed to the spheres, which 
have diameters greater than c' and are sectioned in the concerned volume. Furthermore, for an 
assigned sphere, its probability to be sectioned to become circles with diameter c' between 0 and c can 
be determined according to equal probability of circles with the same increment in its height. In order 
to sketch the idea clearly, a penny-shaped crack and its sectional line are shown in Fig. 9. It can be 
verified that the case of spheres follows the same procedure, reasoning and result. 

For a penny-shaped crack with diameter, c = 2R,  its probability p(c')dc' showing a crack line with 
a length in c' c' + d c '  on a sectional surface is 

dr 1 c'dc' 
p ( c ' , c l d c -  R - ' . , c '2 (A.1) 

( \  C ~ 

due to 

1.2 = R 2 ---to',2) 2 a n d  d r -  
c 'dc '  

2x//~,2 _ (d2 

C' 
de' 

2R 
/ 

Fi~. 9. 
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If each crack is represented by its mass center, then the number of cracks with diameters between 
c-c + dc in a given volume c" 12 (see Fig. 9) is 

mW)dc"lz=fol c n(c)dcc'12"p(c"c)dc' 

f ~ 1 c'dc' = =c.n(c) dc'c'12 c x / ~ - c  '2 (A.2) 

The integral is due to the contribution made by all the penny-shaped cracks with diameter greater 
than c' and corresponding probability p(c')dc', now, the governing integral equation can be written as 
follows: 

m(c') ran(c) dc (A.3) 
c' = Jc- ~ -  c '2 

where m(c') is the observed quantity on the sectional surface, and n(c) is the unknown volumetric size 
distribution. Obviously, this is a first-kind Volterra's integral equation but with infinite integral limit 
and singular kernel. 

APPENDIX B 

The derivation of Eqn (14) [the solution to Eqn ( A.3 ) J 

Usually, the function m(c') is generally normal in practice. Noticeably, the kernel 1/'x~ T -  C '2  is 
continuous and differential in the range (c', ~),  but with ( -  1/2) power signularity at lower integral 
limit c = c'. This shows apparent similarity to the Abel's integral equation. 

To solve the integral equation, we multiply Eqn (A.3) by 1 / ~  z, and then integrate it with 
respect to c' between the limits c' = z and c' -- oc : 

f/ f/ m(c') dc' , dc' ~ dc (B.1) ,//-_ z2 = c ; .tct / j _  <2 

where z is an intermediate variable, an alternative representation of length scale, either c or c'. The 
integral region of the double integral in the right hand side of Eqn (B. 1) is the shaded angular domain 
in the t - c' plane, as shown in Fig. 10. When we exchange the order of the double integral, expression 

C' 

C=C' 

Fig. 10. 

C 
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(B. 1) should be rewritten with correspondingly changed integral limits as follows 

f f '  f '  c'dc' m(c') de' = n(cIdc 
z N '  C Z -  z N//(  C2 - -  C ' 2 ) ( C  ' 2  - -  Z 2 )  

(B.2} 

let t - 
C 2 - -  ( / 2  

C 2 - - Z - ' '  w e  c a n  obtain 

ji' /" 2 c'dc' = l f '  dt _ zr 
N/{C - C ' 2 ) { C ' 2 - - Z  2 2 o \ , f t ( l - t )  2 

lB.3) 

thus 

'~' ~ f ' m ( c ' )  N(zl = nlctdc =- de' (B.4) 
_ _ ~ Z 2 

where N(zl is the cumulative number density of penny-shaped cracks with diameters not less than z in 
per unit volume. In order to calculate the following differentiation 

dN(z)  2 d ~ '  m(c') dc' (B.5) 

we notice 

and then integrate by part, thus, 

\ ' C ' 2  __ Z 2 , \ C - -  Z 

' z 1 dmtc') + ~--75- de'. 
n(z) = -  ,~ z 2 \ c -  c' de' 

In the derivation, we have used the apparent boundary condition lim m l c ' ) =  O. 
c ' ~ - i  

(B.6) 


