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Abstract. A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded
planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed
by using the boundary element method combined with the finite-part integral method. According to the analytical
theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement
discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly
calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a
finite body are evaluated.
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dimensional finite body, square root model.

1. Introduction

The investigation of three-dimensional crack problems is very important in practice. Since
analytical solutions to these problems have been limited to the case of an embedded crack in
an infinite body with a relatively simple load, many numerical methods have been developed,
such as the finite element method (FEM), the Schwartz alternating technique combined with
the finite element method, the boundary element method (BEM), and so on. Among these
methods, the FEM is relatively expensive and has poor precision, and the BEM has the
advantage of simpler discretization and inexpensiveness. Cruse and Vanburen solved 3-D
crack problems using the constant boundary element method as early as 1971 (Cruse and
Vanburen, 1971). Later, the BEM has been widely used and developed. For instance, Jia and
Shippy et al. analyzed the crack problems by using the singular boundary element method
(Jia et al., 1989), and they applied the

p
r displacement and 1=

p
r traction behaviors near

the crack front and presented a multi-domain approach to the solution to the problem of an
infinite elastic body containing a planar crack. Levan and Peseux proposed a principal value
integral equation using a tensor formalism for flat cracks, and presented a discretization with
no actual principal value computation (Levan and Peseux, 1988). Although the BEM has many
advantages, it is still difficult to solve crack problems using only the BEM. Due to Ioakimidis
(1982), the hypersingular integral equation has been applied to fracture mechanics. It has been
well recognized that this method has great power in solving linear elastic crack problems
in infinite elastic bodies. The general advantage of this approach is that arbitrary shaped
cracks under arbitrary distributed crack-face tractions can be conveniently treated through
numerical integration over the crack surface. Therefore, the hypersingular integral equation
approach has been widely used and developed by many authors. Takakuda et al. derived

JEFF. INTERPRINT: PIPS Nr.:133497 ENGI
frac4147.tex; 5/09/1997; 12:11; v.7; p.1



192 T.Y. Qin et al.

the hypersingular integral equations of a flat crack in an infinite body for normal and shear
tractions (1985). Lin’kov and Mogilevshaya achieved the analogous equations too (1986).
Mayrhofer and Fischer have given an analytical solution for a two-dimensional hypersingular
integral equation (1992), but their solution is limited to elliptical crack problems. Sohn and
Hong treated crack problems in an infinite body through solving these equations, and solved
several crack problems in a finite body by using the finite-part integral method combined with
the Schwarz alternating method (Sohn and Hong, 1985) and also employed the displacement
behaviors on the crack-front elements (Sohn and Hong, 1992), but they assumed that the
displacements in these special elements vary only linearly along the crack-front direction
and vary in

p
r behavoir in the direction normal to the crack front. Tang and Qin proved

strictly Takakuda’s equations and that the unknowns near the crack front have the square root
behavior. Moreover, they accurately derived the singular stresses near the smooth point of the
crack front (Tang and Qin, 1993).

In this paper, based on our work (Qin and Tang, 1993), a set of hypersingular integral
equations to solve planar crack problems in three-dimensional finite elastic solids subjected to
arbitrary loads is derived, and its numerical method is presented. According to the analytical
theory (Tang and Qin, 1993), the square root models of the displacement discontinuities in
elements near the crack front are employed, and thus the numerical approach given by paper
(Qin and Tang, 1993) is improved. The stress intensity factor numerical solutions to several
typical crack problems are given in the last section.

2. Basic formulae and integral equations for a planar crack in a finite body

2.1. COMPONENTS OF DISPLACEMENT AND STRESS

Consider a planar crack S(S�) of arbitrary shape inside a finite body. Suppose that x1 and x2

are Cartesian coordinates in the crack plane andx3 is normal to the crack. Using the Somigliana
representation, the displacements at an internal point p can be expressed as follows (Cruse
and Vanburen, 1971)

uk(p) = �
Z
�

Tki(p;Q)ui(Q) ds(Q) +
Z
�

Uki(p;Q)ti(Q) ds(Q)

�
Z
S+

T+
ki(p;Q)~ui(Q) ds(Q);

p 2 
; k; i = 1; 2; 3; (2.1)

where ui and ti are displacement and traction boundary values respectively, ~ui = u+i � u�i is
the ith displacement discontinuity of the crack S; T+

ki(p;Q) is the value of Tki(p;Q) at point
Q 2 S+, and Uki(p;Q) and Tki(p;Q) are Kelvin’s point force solutions of three-dimensional
elastostatics

Uki(p;Q) =
1 + v

8�E(1� v)r
[(3� 4v)�ki + r;kr;i]; (2.2)

Tki(p;Q) = � 1
8�(1� v2)r2

�
�
@r

@n
[(1 � 2v)�ki + 3r;kr;i]� (1� 2v)(r;kni � r;ink)

�
; (2.3)

frac4147.tex; 5/09/1997; 12:11; v.7; p.2



Three-dimensional crack problem analysis using BEM with finite-part integrals 193

in which v is Poisson’s ratio, E is the elastic modulus, r is the distance between point p to
boundary point Q.

Using the displacement expression (2.1) and the constitutive relations, the corresponding
stresses at point p are obtained

�ij(p) = �
Z
�

Skij(p;Q)uk(Q) ds(Q) +
Z
�

Dkij(p;Q)tk(Q) ds(Q)

�
Z
S+

S+
kij(p;Q)~uk(Q) ds(Q); p 2 
; k; i = 1; 2; 3; (2.4)

where S+
kij(p;Q) is the value of Skij(p;Q) at point Q 2 S+, and the integral kernels Skij and

Dkij are

Skij =
E

8�(1� v2)r3

�
�

3
@r

@n
[(1� 2v)r;k�ij + v(r;i�jk + r;j�ik)� 3rt;kr;ir;j] + 3v(r;inj + r;jni)rk

+(1� 2v)(3r;ir;jnk + ni�jk + nj�ik)� (1� 4v)nk�ijg (2.5)

Dkij =
1

8�(1� v2)r2 [(1 � 2v)(r;i�jk + r;j�ik � r;k�ij) + 3r;kr;ir;j]: (2.6)

2.2. HYPERSINGULAR INTEGRAL EQUATIONS

The integral equations for the crack problems can be written as (Cruse and Vanburen, 1971;
Takakuda et al., 1985)

E

8�(1� v2)

Z
S+
=

1
r3 [(1 � 2v)��� + 3vr;�r�]~u� d�1 d�2

�
Z
�

Sk�3(p;Q)uk(Q) ds(Q)

= �
Z
�

Dk�3(p;Q)tk(Q) ds(Q); P 2 S+; �; � = 1; 2; (2.7)

E

8�(1� v2)

Z
S+
=

1
r3 ~u d�1 d�2 �

Z
�

Sk33(p;Q)uk(Q) ds(Q)

= �
Z
�

Dk33(p;Q)tk(Q) ds(Q); P 2 S+; (2.8)

ckiui(P ) +

Z
�

Tki(P;Q)ui(Q) ds(Q) +
Z
S+

T+
ki(P;Q)~ui(Q) ds(Q)

=

Z
�

Uki(P;Q)ti(Q) ds(Q); P 2 �; (2.9)
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Figure 1. (a) Element mesh of part of boundary �; (b) Element mesh of crack surface S.

where
R
= is the symbol of the finite-part integral, cki is the constant related to the boundary

point P . Notice that Equations (2.7�2.8) are hypersingular integral equations, and (2.9) is the
general boundary integral equation. Simultaneously solving these equations, we can obtain
all the displacement discontinuities ~ui(i = 1; 2; 3), from which the stress intensity factors can
be calculated.

3. Numerical technique

Equations (2.7�2.9) are hypersingular integral equations coupled with the boundary integral
equation, and can be numerically solved by use of the boundary element method combined
with the finite-part integral method. Assuming that the crack surface S+ and the boundary
� are divided into a number of elements as shown in Figure 1, Equations (2.7�2.9) can be
reduced to a set of linear algebraic equations, which can be expressed in a matrix form as

A � f~uig+ B � fuig = C � ftig; Pn 2 S+; (3.1)

D � f~uig+ H � fuig = G � ftig; Pn 2 �; (3.2)

wherePn are the nodal points ofS+ or�; f ~uig is the vector of the displacement discontinuities
at all the nodal points of S+; fuig and ftig are the vectors of the boundary displacements
and tractions respectively at all the nodal points of �, and A, B, C, D, G and H are the
coefficient matrix whose components are integrals over each element. Now the main task is
to numerically calculate these integrals.

The integrals over the elements of boundary � can be evaluated by the general boundary
element method. To improve the numerical solution precision, the elements of S+ are divided
into two groups. One is the crack-front element group which is joined with the crack front,
and the other is the internal element group. The integrals over the latter elements can be
calculated as in paper (Qin and Tang, 1993). In this paper, we only treat the integrals over
the crack-front elements. Among these integrals, there are not only general integrals, but
also hypersingular integrals. For the sake of convenience, it is assumed that the crack-front
elements are rectangular elements (triangular elements can be analogously treated), and their
internal sides parallel to the sides on the crack front (such as cd==ab in Figure 1(b)). If the
reference point is not in the integrating element, the integrals are normal, and ~ui is assumed
as follows

~ui =

s
1� �

2
[1

4(1� �)(1 � �)~u
(d)
i + 1

4(1� �)(1 + �)~u
(c)
i + 1

4(1 + �)(1 � �)
p
Dc

(a)
i

1
4(1 + �)(1 + �)

p
Dc

(b)
i ]; (3.3)
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Figure 2. Crack-front element.

where (�; n) are the local dimensionless coordinates as shown in Figure 2(a), c(a)i and c(b)i are
unknown constants related to the crack-front point a and b respectively, and D is the distance
between side cd and side ab. The relative integrals can be calculated as normal one. It is
noticed that ~ui defined by (3.3) has the

p
r behavior near the crack front, which is consistent

with the analytical theory [10]. If the reference point coincides with one of the nodes of the
integrating element, the integrals are hypersingular, which can be written as follows

Im =

Z
Sm

=
1
r3 [(1� 2v)��� + 3vr;�r;r�]~u��1 d�2; (3.4)

Im =

Z
Sm

=
1
r3 ~u3 d�1 d�2: (3.5)

These hypersingular integrals must be specially treated, and the computing technique will
be given. First, it is assumed that the reference point P coincides with the internal point d.
Linking point d with b, the element is divided into two triangular elements Sm1 and Sm2 as
shown in Figure 2(a). The displacement discontinuities can be expressed as

~ui =

r
�

D
[Ld~u

(d)
i + La

p
Dc

(a)
i + Lb

p
Dc

(b)
i ]; Q 2 Sm1; (3.6)

~ui =

r
�

D
[Ld~u

(d)
i + Lc~u

(c)
i + Lb

p
Dc

(b)
i ]; Q 2 Sm2; (3.7)

where La; Lb; Lc, and Ld are the area coordinates of Sm1 and Sm2 respectively, � is the
perpendicular distance from the integrating pointQ to the crack front ab, and can be determined
as follows

� =

�
1� r

R

�
D; Q 2 Sm1 (3.8)

� =

�
1� (1� Sc)

r

R

�
D; Q 2 Sm2; (3.9)

in which Sc is the area coordinate of point w, and R is the distance between point d and point
w. The hypersingular integrals related to (3.6) can be written as

Idd =

Z
Sm1

=
1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� r

R
Ld d�1 d�2
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=

Z
Sm1

=
1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� r

R

�
1� r

R

�
d�1 d�2

=

Z
�
[(1� 2v)��� + 3vR;�R;�] d�

Z R(�)

0
=

1
r2

r
1� r

R

�
1� r

R

�
dr

= 3�(1� 2 ln 2)
Z 1

0

1
R3(�)

[(1� 2v)��� + 3vR;�R;�] dSb; (3.10)

Ida =
p
D

Z
Sm1

� 1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� r

R
La d�1 d�2

=
p
D

Z
Sm1

� 1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� r

R
(1� Sb)

r

R
d�1 d�2

=
p
D

Z
�

1
R(�)

(1� Sb)[(1 � 2v)��� + 3vR;�R;�] d�
Z R(�)

0
� 1

r

r
1� r

R
dr

= �4�(1� ln 2)
p
D

Z 1

0

1
R3(�)

[(1 � 2v)��� + 3vR;�R;�](1� Sb) dSb; (3.11)

Ida =
p
D

Z
Sm1

� 1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� r

R
Lb d�1 d�2

=
p
D

Z
Sm1

� 1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� r

R
Sb

r

R
d�1 d�2

=
p
D

Z
�

1
R(�)

Sb[(1� 2v)��� + 3vR;�R;�]d�

Z R(�)

0
� 1

r

r
1� r

R
dr

= �4�(1� ln 2)
p
D

Z 1

0

1
R3(�)

[(1 � 2v)��� + 3vR;�R;�]Sb dSb; (3.12)

where � is the area of element Sm1;
R� is the symbol of the principal-value integral, and Sb is

the area coordinate of point w on the side ab. The hypersingular integrals related to (3.7) can
be analogously treated, here we only give the computing formula for the first one

Idd =

Z
Sm2

=
1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
1� (1� Sc)

r

R
Ld d�1 d�2

= 2�
Z 1

0

1
R3(�)

[(1 � 2v)��� + 3vR;�R;�]

�
"

1
2(3 + Sc)� 3

p
Sc + (3� Sc) ln

1 +
p
Sc

2

#
dSc: (3.13)

Second, if the reference point P infinitely tends to crack-front point a, link point a with c,
and the element is divided into two triangular elements Sm1 and Sm2 as shown in Figure 3.
The displacement discontinuities can be expressed as

~ui =

r
�

D
[Lc~u

(d)
i + La

p
Dc

(a)
i + Lb

p
Dc

(b)
i ]; Q 2 Sm1; (3.14)
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Figure 3. Crack-front element.

~ui =

r
�

D
[Lc~u

(c)
i + Ld~u

(d)
i + La

p
Dc

(a)
i ]; Q 2 Sm2; (3.15)

where � can be determined as follows

� =
r

R
DSc; � 2 Sm1; (3.16)

� =
r

R
D; � 2 Sm2; (3.17)

The hypersingular integrals related to (3.14) can be written as

Iaa =
p
D

Z
Sm1

=
1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
r

R
ScLa d�1 d�2

=
p
D

Z
�
[(1 � 2v)��� + 3vR;�R;�]

p
Sc d�

Z R(�)

0
=

1
r2

r
r

R

�
1� r

R

�
dr

= �8�
p
D

Z 1

0

1
R3(�)

[(1 � 2v)��� + 3vR;�R;�]
p
Sc dSc; (3.18)

Iab =
p
D

Z
Sm1

� 1
r3 [(1� 2v)��� + 3vr;�r;�]

r
r

R
ScLa d�1 d�2

=
p
D

Z
�
[(1 � 2v)��� + 3vR;�R;�](1� Sc)

p
Sc d�

Z R(�)

0
� 1

rR

r
r

R
dr

= 4�
p
D

Z 1

0

1
R3(�)

[(1 � 2v)��� + 3vR;�R;�]
p
Sc(1� Sc) dSc; (3.19)

Iac =

Z
Sm1

� 1
r3 [(1 � 2v)��� + 3vr;�r;�]

r
r

R
ScLc d�1 d�2

=

Z
�
S3=2
c [(1 � 2v)��� + 3vR;�R;�] d�

Z R(�)

0
� 1

rR

r
r

R
dr

= 4�
Z 1

0

1
R3(�)

[(1� 2v)��� + 3vR;�R;�]S
3=2
c dSc: (3.20)
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Figure 4. An elliptical crack in a cylinder.

The hypersingular integrals related to (3.15) can be analogously treated, here we only give the
computing formula for the first one

Iaa =

Z
Sm2

=
1
r3 [(1� 2v)��� + 3vr;�r;�]

r
r

R
DLa d�1 d�2

= �8�
p
D

Z 1

0

1
R3(�)

[(1� 2v)��� + 3vR;�R;�] dSd: (3.21)

If the reference point P coincides with point c or infinitely tends to point b, the related
hypersingular integrals can be analogously treated as above. After computing the integrals
over all the elements, Equations (3.1�3.2) can now be solved, and then all the nodal values
of ~ui and ci are known, from which the stress intensity factors at point Q0 on the crack front
ab can be calculated as follows

KI(Q0) =
E

8(1� v2)
lim

Q!Q0

~u3(Q) � (2=�)1=2 =
E

8(1� v2)

p
2[Sac

(a)
3 + Sbc

(b)
3 ]; (3.22)

KII(Q0) =
E

8(1� v2)
lim

Q!Q0

~un(Q) � (2=�)1=2 =
E

8(1� v2)

p
2[Sac(a)n + Sbc

(b)
n ]; (3.23)

KIII(Q0) =
E

8(1 + v)
lim

Q!Q0

~u� (Q) � (2=�)1=2 =
E

8(1 + v)

p
2[Sac

(a)
� + Sbc

(b)
� ]; (3.24)

where (3; n; � ) are the local coordinates, Sa and Sb are the area coordinates of point Q0 of
�abd.

4. Numerical results

In order to verify the above method and illustrate its application, numerical calculations are
performed for a crack embedded in a finite body.

4.1. ELLIPTICAL CRACK EMBEDDED IN A CYLINDER UNDER TENSION

Let us consider an elliptical crack embedded in a circular cylinder. The crack is inclined to
the center symmetric plane of the cylinder with angle � as shown in Figure 4, and the cylinder
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Table 1. Stress intensity factors KI=K
0
I

(h=R = 1; a=b = 1; � = 0)

a=R 0.25 0.5 0.75

Yamamoto 1.114 1.402
Nishioka 1.111 1.410
Sohn 1.39
present 1.020 1.109 1.389

is subjected to tension load. In the case of a circular crack and the crack being symmetrically
located at the center plane of the cylinder, i.e. a=b = 1 and � = 0, there is only mode I of
the stress intensity factors, and the dimensionless stress intensity factors are listed in Table 1,
where K0

I is the stress intensity factor for a penny-shaped crack in an infinite body under
constant pressure. It is observed that present results are close to other results obtained by
Yamamoto and Sumi (1973) by the axisymmetric finite element method, Nishioka and Atluri
(1983) by the Schwartz alternating technique in conjunction with the finite element method,
and Sohn and Hong (1985) by the finite alternating method combined with the finite-part
integral method.

In general, when the crack is inclined and the cylinder is subjected to tension load, there
are three different modes of stress intensity factors, i.e. mode I KI(�), mode II KII(�) and
mode III KIII(�), and their dimensionless values K�

I = KI(�)=p
p
b;K�

II = KII(�)=p
p
b,

and K�

III = KIII(�)=p
p
b are graphically shown in Figure 5(a), Figure 5(b), and Figure 5(c),

respectively. Obviously, when the crack is located at the center plane of the cylinder, � = 0
i.e., there is only mode I of stress intensity factor.

4.2. ELLIPTICAL CRACK EMBEDDED IN A CYLINDER UNDER TENSION AND BENDING

Assuming that there is an elliptical crack in the center of a cylinder as shown in Figure 6(a),
its major axis and minor axis are a and b respectively, and the radius of the cylinder is R.
As the cylinder is subjected to a coupled load of tension and bending, i.e., the upper base
surface is under linearly varying traction: t3 = p(1 + x1=R), the numerical results of the
dimensionless stress intensity factors K�

I = KI(�)=p
p
b are given in Figure 6(b). It is shown

that the maximum value of the stress intensity factors for an elliptical crack occurs at the
crack-front point near the major axis that is subjected to the largest load. In the case of a
circular crack and h=R = 3, Nishioka and Atluri [13] obtained the maximum value of the
stress intensity factors as (KI)max = 1:114p

p
a, which differs by 6 % from the present case

in which h=R = 1.

4.3. ELLIPTICAL CRACK EMBEDDED IN A CYLINDER UNDER TORSION

The configuration and geometrical parameters of a cylinder with an embedded elliptical
crack are the same as shown in Figure 6(a). When the cylinder is under torsion, i.e., the
upper base surface is subjected to radial-directional shear traction: t� = qr=R, there are two
different modes of stress intensity factors along the crack front, i.e., mode II KII(�) and mode
III KIII(�), and their dimensionless values K�

II = KII(�)=p
p
b and K�

III = KIII(�)=p
p
b are
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200 T.Y. Qin et al.

Figure 5a. Stress intensity factor KI. Figure 5b. Stress intensity factor KII.

Figure 5c. Stress intensity factor KIII for an elliptical crack in a cylinder under tension.

Figure 6. (a) An elliptical crack in a cylinder; (b) Dimensionless stress intensity factors.
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Figure 7. Stress intensity factors for an elliptical crack in a cylinder under torsion.

graphically shown in Figure 7(a) and Figure 7(b), respectively. It is shown that there is only a
mode III stress intensity factor along the crack front for a penny-shaped crack.

5. Conclusions

In the present paper, three-dimensional crack problems in a finite elastic solid subjected to
arbitrary loads are investigated by using the hypersingular integral equation method, and the
numerical technique proposed by the boundary element method combined with the finite-part
integral method improves the one described in paper (Qin and Tang, 1993). The advantage
of this numerical technique is that it applies the square root behavior of the displacement
discontinuities near the crack front and enables the stress intensity factors to be directly
calculated. Such square root models in the elements near the crack front are tested. The results
show that this technique is successful, and the solution precision is satisfied.

The present study is limited to embedded planar crack problems. However, the present
numerical technique can be extended to solve the 3-D surface crack problems and other
complex crack problems.
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