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Abstract Transition waves and interactions between two kinds of instability-vortex shedding and transi- 
tion wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain 
decomposition hybrid numerical method. Based on high resolution power spectral analyses for velocity new results on 
the Reynolds-number dependence of the transition wave frequency, i .  e. f,/ f,- Re0 '' are obtained. The new predic- 

tions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and 
some early experimental results f,/ f,- given by Bloor et a1 . The multi-interactions between two kinds of vortex 
are clearly visualized numerically. The strong nonlinear interactions between the two independent frequencies ( f , ,  f,) 
leading to spectra broadening to form the coupling mf, + n f ,  are predicted and analyzed numerically, and the charac- 

teristics of the transition are described. Longitudinal variations of the transition wave and its coupling are reported. 
Detailed mechanism of the flow transition in the near wake before occurrence of the thedimensional evolution is provided. 

Keywords: transition wave, nonlinear interaction, near wake, circular cylinder. 

The transition phenomenon in the near wake of a circular cylinder is the mechanisms of the 

onset of turbulence, which have been studied by many experimentalists, such as ~rausse"],  

~ o s h k o ' ~ ] ,  ~ e r r a r d ' ~ ' ,  ~ l o o r ~ ~ l  and recently by Wei and smithts1, Kourta et a1 . ''I . Bloor point- 

ed out that as Reynolds number increases, especially for that higher than 2 000 this phenomenon 

becomes prominent, and first provided a relation between the ratio of the transition wave frequen- 

cy over the vortex shedding frequency and Reynolds number, i. e .  f,/ f,- ~ e ' . ' .  This influence 

of Reynolds number on the position of the transition was also discussed. This relation was also 

considered by Kourta et a l .  "I. The transition phenomena were also confirmed by a more recent 

study of Wei and Smith in the Reynolds number range 1 200-11 000. But the dimensionless 

transition wave frequency demonstrated a 0 .87  power-law relationship relative to Reynolds num- 

ber, contrary to the 0 . 5  power-law given by   lo or') . All the previous experimental results suggest 

that the transition process in the near wake was mainly governed by the interactions between the 

large-scale alternate vortices in the wake and small eddies in the mixing layer and characterized by 

spectral broadening. The two kinds of instability-the vortex shedding and the transition wave 
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initially are two-dimensional. However, the basic features concerning the Reynolds number de- 

pendence of the nondimensional transition wave frequency obtained by the previous studies do not 

coincide with each other. Different rationales and arguments were put forward in separate studies. 

They are still not adeguately understood. Moreover there is only little information on the spatial 

variation of the transition wave and nonlinear interaction between the two kinds of instability as 

Reynolds number varies. 

On the other hand, very few numerical studies have been devoted to the transition features. 

The first prediction of the transition phenomena behind the cylinder was given by Braza et a ~ ' ~ ' .  
by solving the two-dimensional time-dependent Navier-Stokes (N-S) equations in the Reynolds 

number range 2 000-10 000. Their results confirmed that before the occurrence of the three-di- 

mensional evolution of the near wake the two-dimensional instability in the shear layer develops 

and leads to generation of small eddies. The calculated ratio of the transition wave frequency was 

close to the experimental result of Bloor. The interactions of two kinds of vortex and the genera- 

tion of sideband m f, & n f, were also revealed. In their computations the mesh system used was 

probably not fine enough and the frequency resolution used was low, only 0 .019  5.  These will 

lead to some limitations in accurate evaluation of peak values corresponding to different structures. 

Besides, the spatial variation of the transition wave and the strong nonlinear interaction character- 

izing flow transition has not been reported. Therefore it is necessary to make further study on the 

basic features of the transition waves and the spatial variation of the transition properties. It may 

also be helpful for clearing up some discrepancies in the previous experimental results as mentioned 

above. In the present work the transition characteristics of near wake behind the cylinder in the 

Reynolds number range 3 000-10 000 will be investigated in detail by numerical visualization of 

flow evolution and spectral analyses for velocities. 

1 Numerical method 

1.1 Numerical model 

For the above purpose accurate numerical solutions with high resolution for the near wake 

flow are required. Also a large amount of numerical signals of velocity or pressure over a suffi- 

ciently long period of vortex shedding at various positions along the separated shear layer should be 

used for obtaining d higher resolution in the spectral analysis. Thus the finite difference numerical 

solutions for the steady N-S eqnations will consume a large amount of CPU time and memories, 

especially for large Reynolds numbers. Consider the fact that the flow evolution and the transition 

phenomena to be studied in detail occur mainly in the formation region of the wake vortex. The 

conventional length scale of the region is roughly estimated to be only several radii long behind the 

cylinder by experimental visualization[61. Moreover, as Reynolds number increases the length of 

the dead-fluid zone decreases and the location of occurrence of the instability in mixing layer moves 

upstream. Therefore to overcome the difficulties of large memory and CPU time in solving the N- 

S equations, we will confine the domain of integration of the N-S equations in the small region 

near the cylinder surface, and use very dense mesh system and proper boundary conditions to solve 

the N-S equations. In the meantime we calculate the vorticity convection in the other region by a 

proper vortex method with considerable accuracy, and evaluate the global features of the vortex 

shedding flow. The flows in the two regions are solved simultaneously. 
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Based on the above idea, by means of a domain decomposition hybrid method suggested by 

Ling et a l .  L8391, the entire flow field is divided into an inner domain, of the order of the cylinder's 

radius, near the cylinder surface, in which the flow is viscous, and an outer one at rest, where 

the flow is assumed approximately to be inviscid. There is a transition region, in brief, an inter- 

face between the two domains. The size of the inner domain can be adjusted depending on how 

detailed information is required for various flow parameters and CPU time limit. The flow in the 

inner domain will be determined by an unsteady vorticity transport ,equation and a Poisson 

equation of stream function. These two equations are solved by the finite difference method using 

a very fine mesh system. The vorticity in the outer region flow is obtained from vorticity flux 

across the interface and is converted into nascent discrete vortex. At higher Reynolds numbers the 

convection of the vortices is predicted by the Lagrange-Euler vortex-in-cell method (VIC)  pro- 

posed by Stansby & ~ixon'"]  and calculated in a coarse mesh system available in the entire flow 

field. The convection velocity of the vortex particles is determined through solving the Poisson 

equation of stream function by vorticity distributed in the entire flow field and boundary condi- 

tions at the cylinder surface as well as at infinity. 

The boundary condition, i. e.  the vorticity values at the interface, wl, for solving the vortic- 

ity transport equation in the inner domain may be given by careful interpolation of vorticity on 

both sides of the interface. That is, 
. . 

w I ( i , j )  = 2 Awk(i ,  j ) ,  
b =  I - N  

where wl( i , j ) is the vorticity value at mesh point ( i , j ) on the interface I .  Awk ( i , j ) is the in- 

terpolation components onto the interface of vorticity of discrete vortices. These vortices are ini- 

tially, say, at the previous time step, located at the kth mesh layer near the interface and move 

for a time step. N is a positive integer greater than 1 .  The stream function values at the interface 

+I are also given by interpolation of nearby stream functions. Across the interface conservation of 

flow flux holds. Thus in a time interval we first find out a fine solution for the inner flow, then 

calculate the vortex movement in the outer region in a coarse mesh-point system. Again we can 

obtain the boundary conditions for the inner solution at the next time step, and then go on with 

the calculation. 

1 . 2  Numerical schemes for the inner and outer domain flows 

By a transformation of r = exp ( 2 x c ) ,  0 = 2x7 the flow in physical plane ( r ,  8) is trans- 

formed into a calculation plane (E, 7 ) .  The governing equations for the inner region flow are vor- 

ticity equation and Poisson equation for the stream function. The non-dimensional divergence 

forms may be represented as 

1 1 
where E = 4sc2exp(4scE), U = ET v,, V = ET vd, v, and are dimensionless velocity compo- 

t 'U,  
nents in physical plane ( r ,  8 ) normalized by Urn . t = - 

R 
and t' is physical time. Here 

Reynolds number is defined by 2 Urn R /  v ,  and v is the dynamic viscosity coefficient. At the 

cylinder surface the no-slip condition is satisfied. The boundary conditions at the interface are giv- 
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en by formula (1) .  The initial conditions are t = 0, w = 0 and # = 0, i. e. it is a potential solution. 

The convection part of the vorticity transport equation in ( 2 )  is solved by a second-order ac- 

curate scheme of central difference and the alternating direction ( E ,  7)  implicit algorithm (A .  D. 
I .  ) . Each time-step At is decomposed into two successive half-steps with second-order accuracy. 

The total order of accuracy of this scheme is 0( ( A ~ ) ~ ,  At ) . The Poisson equation in 

( 2 )  is solved by the fast Fourier transformation algorithm (FFT) . All the above computations are 

performed in a fine mesh-point system. 

Vortex movement in the outer domain is calculated by the Lagrange-Euler vortex method. 

The strength of each nascent discrete vortex is determined by the vorticity flux passing through a 

surface element d 7  at the interface in a time interval. Let Ar,  be the strength of the j t h  nascent 

vortex in a ( i ,  j) mesh-point system. Then it may be approximately expressed as 

where U ,  is the normal velocity at the interface, r, has been normalized by U ,  R . 

Assume that the nascent discrete vortex issues from the center of each small arc element at 

1 
the interface with an average velocity over two neighboring points j and j + 1, i. e.  U =  --( U. + 2 J  

1 
U, + 1 ), V = - ( V, + V, + ) . Then after a time step, the vortex will be located at 

2 
E( t + At = E( t ,  + 6E1 

and 

The movement of the vortex particles already in the outer domain can be calculated by a first-order 

Euler scheme by VIC method. Velocity components of a vortex particle can be obtained from ve- 

locities at neighboring mesh points by using area-weighted interpolation method. When the vortex 

with strength r reaches its new location, the corresponding vorticity distribution at mesh points 

is also determined by the area-weighted interpolation. Calculation of vortex convection is per- 

formed in a coarse mesh-point system"]. 

2 Results 

Based on the method described above, three typical unsteady viscous flows around a circular 

cylinder at Re = 3 000, 5 000, 9 500 were calculated respectively. Transition properties were 

studied by flow pattern evolution and numerical analyses. To  examine the accuracy and validity of 

the present method, the starting flows and the global features of the vortex shedding flow (such 

as Strouhal number, mean value of drag coefficients) for the three cases were calculated first, and 

compared with previous experimental data and other numerical results as well as the N-S equa- 

tions' solutions for the entire flow field provided by the present work. The stability of the solu- 

tions against the shift of inner domain size was examined. The parameters used in long-time com- 

putations are as follows: at Re = 3 000 and 5 000, the size of the inner domain ri/ R = 4 .81  ; the 
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fine mesh points in the domain are 128 x 512; the computed size of the outer domain r,/R 
= 23.14 ; the corresponding coarse mesh points are 128 x 256 ; at Re = 9 500, ri /  R = 8 .  10, 

r,/ R = 64.10 ; the fine mesh points are 256 x 512 and the coarse ones are 256 x 256 ; the time 

step for all cases is 0 .01 .  

The computed results exhibit three typical flow patterns, i. e.  type a ,  type P and a transition 

type from P to a ,  corresponding to Reynolds number 3 000, 9 500 and 5 000 respectively. Com- 

parison of the flow structures at different instants given by numerical and experimental visualiza- 

tion of Bouard and ~outanceau["] are found to be excellent, especially at higher Reynolds num- 

bers; usually it is difficult to obtain. Variations of the separation and the radial velocity with time 

on the symmetric axis behind the cylinder are in good agreement with previous measured data and 

numerical results[12"31. In ref. [12] a fourth-order compact scheme and a second-order alternating 

direction implicit scheme are used to solve the Poisson equation of the stream function and the vor- 

ticity transport equation. Now the present inner solutions with fine grids and the conventional 

second-order A. D. I .  scheme can also supply correct results. The calculated flow patterns for two 

different inner domain sizes and grids are found very close to each other. The solution is stable for 

variation of the computation parameters. 

Strouhal numbers' St, at various Reynolds numbers are in good agreement with the experi- 

mental data given by ~ i e n h a r d " ~ ]  . The computed mean values of the drag coefficient are close to 

the experimental results but a little bit higher, which, as pointed by ~ r a h a m " ~ ] ,  is mainly due to 

the restriction of the two-dimensional numerical approach where the three-dimensionality of the 

real flows is not taken into account[16]. Hence not only the starting flow but also the global fea- 

tures of the flows are correctly predicted by the present numerical method under the two-dimen- 

sional assumption. 

2 . 1  Numerical visualization of nonlinear interactions of two kinds of vortex and the transition 

waves 

Our long time computations show clearly the features of the near wall flow such as flow sepa- 

ration, merging, pairing and tearing of vortices at different scales. These features are difficult to 

be visualized in detail in experiments at present. Also the computed flow patterns and velocity 

fields show apparently the development of small eddy and the transition wave as well as the multi- 

interactions between two kinds of vortex. Flow pattern in fig. 1 shows the near wake flow struc- 

tures at Re = 3 000 and t = 55.5.  At the instant the separated shear layer is oscillating upward; 

two small eddies emerge in the upper shear layer; the separated vortex TSl from the upper bound- 

ary layer merges with the vortex L1 from the separation of the lower boundary layer; again a new 

separated vortex and a secondary vortex LS2 occur near the lower side separation area. Actually 

all these vortex developments are accompanied by interactions, which are characterized by spectral 

broadening. It will be addressed in the next section of the paper. 

Similar features are obtained for flow at Re = 5 000. As time goes on successive small eddies 

appear in the separated shear layer; small eddy moves downstream and merges with adjacent main 

vortex and some unstable vortices occur due to local separation. 

Figure 2 shows the velocity fields of the near wake at two successive time instants ( t  ~ 5 8 . 5  
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Fig. I .  Near wake flow pattern at t = 55.5, Re = 3 000. 

and 59)  at Re = 9 500. It shows that a typical transition wave consists of four small eddies: 

TSE1, TSE2, TSE3 and TSE4. Besides, three kinds of vortex interaction are found: ( i ) inter- 

action between small eddies in shear layer and the main vortex. For instance, vortex TSEl ap- 

proaches vortex T M  (Fig. 2 (a )  ) and then merges with it (Fig. 2 (b )  ) ; ( ii ) pairing of small ed- 

dies in the same shear layer. As shown in fig. 2(a)  small eddy TSE3 follows TSE2, and at a later 

instant the two eddies are adjacent to each other and form a pairing vortex; ( iii ) interaction be- 

tween vortexes in one side and opposite-side shear layers. Actually, these three kinds of interac- 

tion occur simultaneously. These multi-interactions are reflected in the velocity spectra, charac- 

terized by the generation of subharmonic frequency 1/2 f ,  and successive frequency broadening 

mfs* rift. 

2 . 2  Numerical analyses of the transition waves and nonlinear interactions in the near wake 

For prediction of the transition features spectral analyses by fast Fourier transformation 

(FFT)  are performed on the numerically obtained signals of the velocity components for flows 

around the cylinder. Since the separated mixing layer is in an oscillatory motion due to alternate 

vortex shedding, for accurate prediction of the transition wave and the coupling phenomena as 

well as their spatial variation, the numerical analyses of power spectrum with high frequency reso- 

lution for velocity are made at 12 different field points along the mixing layer in the vortex forma- 

tion region. A few points on the symmetric axis of the cylinder are taken for comparison. The 

sampling numbers used are N = 4 096, dimensionless sampling time interval A T  = 0 .  05. For 

comparison, N = 2 048 and A T  = 0 . 1  are also used. The spectral resolution for these two cases is 

high and A f = 0.004 9. The dimensionless frequencies up to 10 and 5 are provided respectively. 

In the examination of the influence on the evaluation of the frequency peaks from spectral resolu- 

tion, the parameters are: R e = 3  000, N =  1 024, 2 048, AT=0.05 ,  Af ~ 0 . 0 1 9  5 and 0.009 8. 

At Re = 3 000, as shown in fig. 3 ,  the spectra clearly indicate a predominant basic frequency 

f s  corresponding to Strouhal number St = 0.22 ,  the transition wave frequency f,, and their har- 
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Fig. 2.  The velocity fields at  ( a )  t = 58 .5 ,  ( b )  t = 59, Re = 9 500. 

monics m f,, n f,, as well as the coupling of these two independent frequencies, m f s  + n f, .  Ex- 

cept for some positions at the axis of the cylinder ( x /  R = 1 .5 ,  y /  R = 0 )  and the rear stagnation 

point (1.03,  O), where the transition wave peak is not so clearly recognized, the computed ratio 

f,/ f s  from the spectra for u and v components are found nearly the same, being 5 .03  (the error 

is within one A f )  . The same results are obtained as the parameters N = 4 096, A T  = 0.05 are 

used in the spectral analyses. The predicted value is in good agreement with the experimental re- 

sult (5 .02)  of Wei and Smith provided by a relationship of f ,/ f, = ( ~ , ~ / 4 7 0  )0'87. However, it 

does not coincide with Braza's prediction (5 .75 )  and experimental data (5 .88)  given by Bloor, 

who provided a 0 . 5  power law dependence relation. 

For lower resolutions, as A f = 0.019 5, only a few basic frequencies can be found. The cal- 
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Flg. 3.  The velocity v component spectra. (a) At point ( z / R = 0 . 5 ,  y / R =  1.1); ( b )  at point ( 4 . 0 ,  1. I ) ,  Re=3 000, 

N = 2  048, A T  = 0 .  1 ,  A f  = 0 .  004 9 .  The horizontal axis represents dimensionless frequency ( f l R / U a )  in linear 

scale, the vertical axis is the spectral power in the logarithmic scale. 

culated value of f,/ f, ranges between 4 .67  and 4.83.  After the resolution increases, when A f = 

0.009 8,  frequency peaks at couplings f, + f, appear, but higher-order couplings are still difficult 

to be identified. The computed value of f,/ f, is around 5 .07 .  Therefore the lower resolution can- 

not supply an accurate evaluation of the transition features. 

Figure 4 represents an example of velocity spectra at Re = 5 000. It is shown that apart from 

a predominant frequency f,, corresponding to St = 0.205,  a clear frequency peak is f,. Some 

peaks at harmonic frequencies mf, and combination f, f mf, are also found. The value of the ratio 

f,/ f, evaluated at different points is equal to 7. 24 ( the error is within one A f) , which is in 

agreement with Braza's result (7 .27) ,  being close to but a little lower than the experimental re- 

sults of Wei and Smith (7 .82)  and Bloor (7.60),  higher than the value 6.72 given by Kourta et a l .  

At Re = 9 500 in fig. 5 the spectrum shows clearly the predominant frequency f, (corre- 

sponding to S ,  = O.195), its harmonics, the coupling f, - .fs as well as the transition wave fre- 

U 4  Re = 5  000, t = 50-250 
. . Rr = 9 500. t = 50-250 

f.' 
I 

.f f  
Flg. 4.  'The ve l~ l ty  u C ~ I I I ~ , I I ~ . I I I  h~v t run l  at point ( x / R  = Fig. 5.  'l'he velocl~y u cunipolicrlr spwtrurn ar point ( x / K  = 

1.6,  y / R = 1 . 8 ) ,  R e = 5 0 0 0 ,  N = 4 0 9 6 ,  A T = 0 . 0 5 ,  2 .0 ,  y / R = l . l ) ,  R e = 9 5 0 0 ,  N = 4 0 9 6 ,  A T z 0 . 0 5 ,  

A f = 0 . 0 0 4  9 .  Af =0.004 9 .  
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quency f,  at a higher value. Besides, peaks at . 

v component spectra it is 12 .99 .  Taking the average I I 

1 
subharmonic frequency - f ,  and the coupling between 

2 10' 
the subharmonic and the basic frequency are clearly 

8 
1 

shown. The appearance of the subharmonic 7 f ,  

shows the existence of small eddy pairing in the sepa- 5 

rated mixing layer as visualized numerically in fig. 2 3 4 -  
< 

( b )  . The values of the ratio f,/ f, obtained from u 3 

component spectra at six points are nearly the same but 

with a little difference. The mean value of the ratio 2 

f,/ f, over the six predicted results is 13.06,  and from 

over all of these results, the mean value of ft/  f, is 1001 1 I , ,  , , I  
13 .03.  The predicted value is quite close to the exper- 

1 o3 2 3 4 5 G  8 1 0 '  

imental result 13.  67 of Wei and Smith, and is much Red 

than the numerical Drediction of B~~~~ et a~ . Fig. 6 .  C'onlparison of the ratio of the non-dimenion- 

Lumped bubble-wire data 

- 
- 

- 
- 

- Lumped anemometry data 

- 

- 
a1 transition wave frequency over Strouhal vortex fre- 

and 9 '  26 suggested Kourta quency versus Reynolds number (see fig, 13 of Wei gr 
et a1 . by 0 .  5 power law dependence. Comparison smith[511. 0,  ~ f =  0.004 9, af = 0.019 5 present 

with the measured results is shown in figure 6 .  results; -, f , / f , = ( ~ ~ ~ / 4 7 0 ) ~ ~ ~ ;  - - - 9 ftlf, 

All comparisons in figs. 6 and 7 clearly show that = ( ~ , ~ / 4 0 9 ) ~ . ~ ~ ~ ~ ~ ~  

the present prediction of the Reynolds number dependence of the transition wave frequency agrees 

well with the experimental results of Wei and Smith, rather than the numerical prediction of 

Braza and the 0 . 5  power law relation suggested by Bloor and Kourta et aL.,  i. e. 

f,/f,= (R,d/470)O.~'. 

1 . 5  - 
I Now we will carefully re-examine the ve- 

locity spectra at different points down-stream 

of the cyinder to study the spatial evolution of 
GI < the transition behavior. First let us discuss the 
0 
? O . 5 - a ~  - case of Re = 3 000. Moving downstream, a 

/ 

pronounced increase of the strength of transi- 
I I 1 tion wave and its coupling occur. Successive 

3 3.5 4 4 . 5  
sums and differences of the two independent 

1og10R frequencies such as f ,+  f t , 2 f , +  fs ,2f ,  L2fs  
Fig. 7 .  The frequency ratio as a function of Reynolds number. A, are apparent with high strength. These spec- 
0, Blmr ( 1964); 0, ~errard"";  6, 9 W ' ' Smith[s1; tral features correspond to different interac- 
0,  Kourta et a1. 16] ; A, present study. ----, f,/ f, - Re0.'; 

tions between two kinds of vortex as shown in 
- - - , f,/fs- ~ ~ 0 . 8 7 [ ~ ] ,  

flow pattern visualization in the preceding sec- 

tion. Moving downstream further, except the basic frequency, the strength of the transition wave 

and its coupling m f, f n f ,  return to the low level. Fig. 8 provides a preliminary description of the 

longitudinal evolution of the transition wave. From the separation to a position near x / R  = 1 . 5  

the power of the transition wave frequency f,  and the difference frequency f ,  - f, increase expo- 
nentially. After continuous increase the power of f ,  reaches the maximum near x /  R = 2.6,  and 



858 SCIENCE IN CHINA (Series A) Vol. 40 

then decreases rapidly. In view of the variation of the power intensity, the transition wave in the 

mixing layer and the strong interaction between the two instabilities occur pronouncedly within a 

downstream region of four times the radius behind the cylinder. This prediction agrees in general 

with the concept that the transition occurs mainly in the vortex formation region. The calculations 

also show that the increase of the power of the difference frequency f, - f, is faster than that of 

the transition wave frequency f,, and the power value at f, - f, can be higher than that of f, it- 
self in the downstream. This also characterizes the nonlinear 

Fig. 8 .  120ngitudinal evolution of power of the 
At Re = 5 000, longitudinal evolution of the calculated transition wave frequency (from the cornPo- 

power spectra for velocity component v along y /  R = I .  1 is Re = 300, 5 000 and 9 500, along 

also shown in fig. 8 .  Similar to the case of Re = 3 000, the y / R  = 1.1. ( x : ( I /R  , y/R ) = ( 1 . 2 , l .  

interaction in the near wake. The initial increase rate of the 0 

harmonic difference 2 f, - 2 f, is also higher than that of 2 f,. - I 

The same behavior was obtained from the longitudinal varia- - 2  

tion of power spectra for velocity component u . The succes- 

sive multi-sideband consisting of f, and f, in the near wake is - 3  

very similar to that in the airfoil wake generated by nonlinear - 4 

interaction of two excited frequencies observed by Miksad et 
- 5  

a1. [''I, showing important characteristics of the flow transi- 

tion. The above numerical predictions are comparable with - 6  

the experimental measurements of Kourta et aL . for Re = - 

2 660, which demonstrated the longitudinal evolution of f,, 
- 5  

f and f,, ( = f, - f, ) , showed that after monotonical in- 

crease the components at f,, f,, reach the maximum at z / R  
- 

intensity of the transition wave frequency increases monoton- 2 ) ,  ( l .  6 y  
Re = OoO; + , ( 1 1 ~ 9  y/ 

R ) = ( 1 . 2 , 1 . 2 ) ,  ( 1 . 6 , l . a ) .  R e = 5  000; 
ically to a maximum value and then decreases rapidly. The 

A , ( ~ / R , ~ / R ) = ( l . 0 , 1 . 0 ) ,  R e = 9 5 0 0 ) .  
maximum values evaluated from both u and v spectra are 

- Re = 3 000 
- -- Re = s 000 

.. .. Re = 9 500 
- 

- .- ..... P. ,,.. 
- /- 

d 
- bv. 

\ 
\ 

- \ 

- 
\ 
\ 
\ 

- "\ 

b 12 1 6 

nearly the same and occur at x / R  ~ 2 . 2  approximately, which move little upstream as compared 

with that at Re = 3 000. The size of the region where the intensity of the transition wave is found 

stronger is also nearly four times the radius behind the cylinder. At Re = 9 500, calculation of the 

transition wave at various field points displays similar behavior of spatial variation as shown in fig. 

8.  Spectra at different positions also indicate that the peak at the subharmonic frequency f ,/2 is 

not amplified considerably. It means that the vortex pairing in the separated mixing layer does not 

necessarily cause amplification of the subharmonic frequency, which is not the same as that in free 

mixing layer as pointed out by Braza et aL . Influence of Reynolds number on the longitudinal vari- 

= 2 . 4  and then decrease rapidly. x / R  

ations of power spectra can be found in fig. 8 too. The maximum value for the intensity of the 

transition wave decreases as Reynolds number increases, and the location corresponding to the 

maximum tends upstream. This tendency qualitatively agrees with previous experimental results. 

3 Conclusion 

Transition features and temporal and spatial variations of the interactions between two kinds 

of instability-vortex shedding and the transition wave in the wake of a circular cylinder are 
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studied by the domain decomposition hybrid method at Re = 3 000-10 000. These complex phe- 

nomena are clearly visualized in the calculated flow patterns. The computed ratios of the.dimen- 

sionless transition wave frequency f,/ f, are approximately proportional to the 0 .87  power law of 

the Reynolds number. The new results agree well with the experimental results of Wei and 

Smith, and do not agree with numerical prediction of Braza et a l .  and the 0 . 5  power law depen- 

dence. Our calculations show that lower resolution in spectra analysis cannot supply a correct eval- 

uation of the transition features. Nonlinear interactions between the two independent frequencies 

f,, f, leading to spectra broadening in the near wake are described. The longitudinal evolution of 

the transition wave and the nonlinear interactions are reported. These new results offer detailed 

mechanisms for better understanding the transition behavior before occurrence of the three-dimen- 

sional evolution. 
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