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Abstract
The systems with some system parameters perturbed are investigated. These systems might
exist in nature or be obtained by perturbation or truncation theory. Chaos might be sup-
pressed or induced. Some of these dynamical systems exhibit extraordinary long transients,
which makes the temporal structure seem sensitively dependent on initial conditions in finite
observation time interval.

PACS numbers: 05.45.4-b

With the development of the nonlinear science, the applications of the chaotic dynam-
ics have received great attention. Two of these applications are the “Controlling Chaos”1
and the “Synchronization” 2 A popular technique to achieve these applications is to perturb
the system parameters tinily. In fact, for many natural dynamical systems, this perturba-
tion on some system or environment parameters exists naturally rather than being added
artificially.[®4] This perturbation might also be caused by the process of modeling the under-
lying ‘systems, e.g., some orders of perturbations or truncation.[®! On the other hand, it has
been learned that the transients also play important role. The transient chaos introduced by
Tél displays some chaotic behaviorl®! and the characterizing quantities can also be extracted
from transients.[”] The transients are rather short in all these considered systems. In Ref. [4],
we had shown that only the transient might be observed in the dynamical systems with some
parameters perturbed constantly. In this note, we will further discuss these dynamical systems
with one or more system parameters perturbed as follows:

z=o0(y—=z), y=(r—z- f(r,21))z -y, z=zy-bz, (1)

1 = eo(yy — o), h=e((r—z)z1—m), s =¢e(zy —ba1),  (2)
where the parameter ¢ is very small. The other parameters are o = 10,b = 8/3, 7 = 125 in this
note. This system might be the zeroth- and first-order perturbations of a dynamical system.
For this system, the characteristic time for the last three equations (called subsystem (2)
hereafter) is 1/c longer than the first three (subsystem (1)). The part f(r, z;) can be regarded
as the perturbation on the parameter r in Eq. (1). Chaos in Eq. (1) might be suppressed or
induced due to this perturbation (no matter how slowly it varies). Consequently, it should
take special caution to throw away the very slowly varied part in a considered system, i.e.,
the high order of perturbation or truncation expansions. Moreover, the full system exhibits
very long transient. If we further consider more perturbations with much longer characteristic
time as follows: :

t=0(y-z), y=(r—z—f(r,za))z-vy, z=zy—bz,
&, = eo(y; — 1), i =e((r—z— f(r,z2))z1 — ), Z = €(z1yy — bz1),
tr=eo(y2—22), a=e((r—z-f(nn))ta-y), L =c(zayr—bzn), ()
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the system displays extraordinary long transient which also exhibits some chaotic behavior.
The temporal structure 1s sensitively dependent(® on mmal conditions in a finite observation
time interval.
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Fig. 1. =z vs. n on the Poincare section z = r — 1 for the pure Lorenz equations at r = 125.

When f(r,z1) = 0, the subsystems (1) and (2) are decomposed. Both equations (1) and
(2) correspond to pure Lorenz equations. They exhibit chaotic attractor as shown in Fig. 1.
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Fig. 2. =z vs. n for the perturbed system (1) and (2) at r = 125.

When f(r,z1) # 0, although f(r,z) might be much smaller than r and € is very small,
the behavior of the perturbed dynamical systems (1) and (2) might be qualitatively different
from that of the pure Lorenz equations. Figure 2 shows the behavior for f(r,z1) = (z; —
r +1)/2 and € = 0.0001. It is rather remarkable to find that in some time intervals the
z value changes “regularly”, i.e., chaos is suppressed in these time intervals. However, in
other time intervals, the z value changes “chaotically”. This phenomenon is different from the
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conventional intermittencies (types I, II and III[IO]) and the intermittency observed recently.l]
Similar Behavior has also observed for the cases when the pure Lorenz equations exhibit
periodic motion (say, r = 100, the period 3 windows). In these cases, chacs is induced by
perturbation on parameter.
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Fig. 3. The same as Fig. 2 but for ¢ = 0.00005.

The quantity ¢ determines the relative characteristic time for each subsystem in the per-
turbed system (1) and (2). It plays very important role in the observation of the aforemen-
tioned phenomenon although it cannot affect the value range of the z1,y;1,21. In Fig. 3, we
also show 50000 points for this perturbed system with ¢ = 0.00005. This figure is very similar
to an.enlarged part of Fig. 2. This makes it difficult to observe the full attractor for the
full system (1) and (2) in a very large but limited time interval. Consequently, the temporal
structure seems sensitively dependent on initial conditions (of z1,y; and z;) in a very large
time interval. When ¢ is small enough, this intermittency phenomenon might not be observed
in a limited time interval.
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Fig. 4. The transient for the perturbed system (1) and (2) with ¢ = 0.00005.
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The above discussion is not particular to the systems taken in the form of (1) and (2).
Subsystem (2) might be much complex, i.e., the nth-order perturbation or truncation. Sub-
system (1), correspondingly, might consist of a large number of equations, such as all the first
0 ~ (n — 1)th orders. Since subsystem (2), though small and very slowly varied, can induce
or suppress chaos of subsystem (1), the subsystem (1) might never be a good approach to the
full system. '

Now we further consider the behavior of the parameter perturbed system (1) and (2):
Subsystemn (2) has a much longer characteristic time than subsystem (1) so that the full
system (1) and (2) has a very long transient (1/e time longer than the pure Lorenz equations)
and the transient (see, Fig. 4) exhibits behavior rather similar to that of a chaotic attractor.
Furthermore, the perturbed system-might take in the form of Eq. (3), which includes all orders
of the perturbation or truncation expansions. This system will exhibit extraordinary long
transient. Since the transient depends sensitively on the initial conditions, e.g., the temporal
structure is sensitively dependent on initial conditions in a great but finite observation time
interval. A detailed study on this idea and its application to understanding the behavior
(i.e., sensitive dependence on initial conditions) of the spatio-temporal chaos observed on the
coupled lattice maps and partial differential equations will be presented in an extended paper.

In conclusion, we have investigated the dynamical systems with one or more parameters
perturbed chaotically. These parameter perturbed systems might exist in nature or be ob-
tained by perturbation or truncation theory in which the parameters are perturbed by higher-
order perturbations or truncations. Due to the perturbation (which might be very small and
slowly varied), chaos might be suppressed or induced. This result indicates that it should
take special caution to use the perturbation or truncation theory to dynamical systems. Some
of these dynamical systems exhibit extraordinary long transients, which makes the temporal
structure seem sensitively dependent on initial conditions in finite observation time interval.
This observation might be helpful to understand the spatio-temporal chaos observed in the
coupled lattice maps and the partial differential equations.
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