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Abstract The coherent structure in two-dimensional mixing layers is simulated numerically with the
compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate
upwind compact schemes. The process of dewelopment of flow structure is presented: loss of stabili-
ty, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of
the plane mixing layer and influence of the compressibility are investigated.
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Great achievement in study of incompressible turbulence with direct numerical
simulation (DNS) has been reached. For typical flow models the computed results agree
well with experiments, and some new mechanism has been observed with DNS. For many
practical applications it is required to understand the compressible turbulent flow. Although
the DNS for the compressible turbulence starts just in recent years, it develops very
fast!' 3.

Recently people have paid more attention to the compressible mixing layers. One of the
reasons is to understand the mechanism of reduction of the growth rate with increasing
convective Mach number in order to increase the combustion rate of scramjet. On the
other hand, the compressible mixing layer is a good model for study of compressible
turbulence.

The unstationary flow field of compressible mixing layers with a range of scales and
vortex-shock interaction is very complicated. To correctly simulate this kind of com-
plex flow field the method must be highly accurate and can capture small structures of flow
-field. For the flow field with higher convective Mach number it is required that the meth-
od should have high resolution of the shock. The finite difference method is simple and
easy manipulate. Besides, the method can be easily reconstructed to give high resolution of
the shock.

In the present paper a high-order accurate scheme is used to simulate the compressible
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mixing layer. The fifth-order accurate upwind compact difference operator developed by
the authors is used to approximate the convection terms of the N-S equations, a sixth-or-
der symmetrical compact difference operator is used to approximate the viscous terms, and
a three-stage R-K method is used to advance in time. The present method has high accu-
racy and can capture flow structures with higher wave numbers. The upwind property of
the scheme is useful for suppressing the oscillations with high frequency in the numerical
solutions'”. To better capture the shocks the scheme is modified with the method of dif-
fusion analogy developed by the authors in ref. [5]. The process of losing stability, forma-
tion and development of the coherent structure are discussed. The obtained results
for M_=0.2 with three pairings agree well with the results in ref. [6] obtained with the
spectral method. The influence of compressibility on the coherent structure and flow struc-
ture with vortex-shocklets are discussed.

1 Numerical method

1.1 Model equation and difference approximation

For simplicity consider the following model equation:
ou , of _  0u

= + = .
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The corresponding semi-discrete approximation can be written as follows:
Ou, F. S,
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where F;/Ax is an approximation of df /ox, and S;/Ax* is an approximation of &%u/ox’.
For different approximations F, and S, have different expressions. The fifth-order accurate
upwind compact approximation for the first derivative is as follows:

3 + 2 + _s-F+
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f_si =[_fji2+llfjil +4?fj_3.fj$I]/60!
where 8 f;=f,—f,-1, 85 f;=f,.—f;. For the second derivative ¢°u/0x* the following sixth-
order accurate symmetrical compact difference operator is used:

. 3
28, +118;+28,,,=12(u_, —2u;+uy,, ) + vy (u_,—2u+uy,,). ©)

In solving eq. (2) in advance a three-stage R-K method is used. Rewrite (2) in the
form

o _
W = L(uj).
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The three-stage R-K method is expressed as follows:

= Supre Lup s Larrqup), )
2 u®+ 2

u;+| ;uju)_i_ 3 3

The method is explicit and has the third-order accuracy in time, and it requires less memory.

Z AtL(up). ()

1.2 Governing equations and discretization

The two-dimensional compressible N-S equations for the perfect gas in the vector form
can be written as

U , of _0g _ 0 )
— + L + L = f o+
at ax ay ax fv ay gv‘! (7)

U=[p, pu, pv, E]",

f=lpu, pu’+p, puv, u(E+p)",
g=[pv, puv, pv’+p, v(E+p)]",
2 2
E=(c,,:r+ uto )
2
The terms on the right-hand side of (7) are the viscous part of the N-S equations. p, p,
u, v, and T stand for density, pressure, the velocity component in x and y directions, and
the temperature, respectively. They are normalized by p,, pui, u,, u,, and T,, respectively.
The lower index 1 corresponds to the free flow conditions, and C, is the specific heat. Rewrite
eq. (7) in the form

a: ox oy ox y  ox oy @)
where
fH7=f fr=AR,
9°+9"=9, ¢ =B°U
A and B are the Jacobian matrices:
_ _of - 09
A= U ’ T

=S, 'A;S,, B*=S,'A; S,.
A; and A; are the diagonal matrices with elements A;(4) and i;(B), and

A*=% @A),
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where 4,(A4) and A(B) are the eigenvalues of the matrices A and B, respectively.

Now we briefly describe the discretization method for the N-S equations. The terms
df */0x and dg*/dy are approximated with the difference operator of type (3), and df /ox
and dg~/dy are approximated with difference operator type (4). The terms in the viscous
part of the equations have form d(Kdg/dx))/0x,(i=1, 2; j=1, 2; x,=x, x,=y; and g=u, v
and T). This kind of terms can be approximated with two times application of the dif-

ference operator approximating the first derivative. For example, consider ai( gi )

Denote by F,/Ax the approximation of dJu/dx, and by G;/Ax the approximation of
the sixth-order accurate symmetrical compact operator in ref. [3] is used to approximate
the first derivative as follows:

1 3 1 14

— + — Su+ —— 42 9a
5 Fot 5+ 5 o= 45 ol 30 O Ga)
LG.+26 1G— T OUuF)+ 55 62 (kP ~ WF (9b)
_5" j+|+ ? ;'+ ? =17 1&g ()‘.l )+ an [(:u )j-l-] (/-‘ )'—l]!
0 ou
G=F)/Ax, G/Ax = H(” E)’ (9¢)
where 8)u,= (u;,,—u;_,)/2. To solve the obtained semi-discrete equations approximating

the N-S equatlons thc R-K method (6) is used in advance. The obtained discretized
equations have the third-order accuracy in time.

2 Numerical simulation of the compressible mixing layers

Suppose at the very beginning we have a thin membrane separating two flows with
equal velocity but in opposite directions. Suddenly the membrane is broken, and free shear
flow is formed. This flow is unstable, and soon is rolling up and pairing. This process of
flow development is simulated with the above presented method.

2.1 Initial and boundary conditions

The initial conditions consist of a parallel mean flow with a hyperbolic tangent profile
plus perturbation of the velocity components. The mean profile of the velocity is specified
by the following relations:

u=A[B+tanh(By)], B>0,
v=0, (10)
A=w,~w)/2,  B=(u+u)/2,

where u, and u, correspond to the upper and lower undisturbed flow respectively
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Initial perturbations of the velocity are described by the following expressions:

w'= 2 &{@, ,(y)eos(@x)— 9,  (y)sin(x)},

15j=4

v'= ls%ﬁ-%{qrn),.(y)~°»irl(c:c,-x)+fpm,.,.-(y)cos (@x)}, (11)
where the wave number «,=0.444 6 corresponds to the most unstable mode obtained from
linear inviscid analysis given in ref. [7]. ¢, , and ¢, ; are the real and imaginary part of the
corresponding eigenfunction for the streamfunction, ¢, , and ¢', , are derivatives of ¢, ,
and ¢, ;, with respect to y; ¢, , and ¢, ; are the real and imaginary part of the
eigenfunction corresponding to the wave number o, and ¢, , ¢, and ¢, , ¢,
are corresponding eigenfunctions and their derivatives. The initial non-dimensional pressure
is equal to 1/(yM2) (in the present paper M,=M,). The initial temperature is obtained

from the Busemann-Crocco relation T,=T2=|:1 + y;—lM?,c(l —52):|. The initial density is

obtained from the state equation with given p and T. The convective Mach number is de-
fined as in ref. [8]: M = (u,—u)/(c,+cy), where ¢ is the sound speed, indices 1 and 2
correspond to the upper and lower flow parameter respectively. The initial thickness is
taken as the characteristic length. In the computation u,=-u,=1, B=1,
& =¢=¢6=¢=005, o,=0.4446, 0,=0,/2, 0,=0,/4, o,=a,/8, Re=400, are used. For the case
of three pairings the computational region is defined as

Osx<lénfa, —12n/a,<y<12n/a,.

The undisturbed upper and lower flow parameters are taken as the boundary conditions at
the corresponding boundaries. The periodic boundary conditions are used in the x direc-
tion.

2.2 Computed results

In order to test the developed meth-
od the cases as in ref. [9] with the
same conditions for M_=0.4 and 0.8 were
computed. The variation of the vorticity <
thickness with time is given in fig. 1.
The solid line is for the case M, =0.4,
and the dash line is for the case
M_,=0.8. In the present computation
IN XJN=76%76 mesh grid points are 0 ' : L L !
used. From the figures it can be seen
that the growth rate of the vorticity
thickness is decreased with increasing Fig. 1. Variation of vorticity thickness versus time.
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convective Mach number. In this figure are also given the results computed in ref.
[4] with TVD schemes for the case of M, =0.8. The circles are for the case of 75X 75, and the
triangles are for the case of 150X 150. It can be seen that the method in the present paper
gives better results with less grid points.

In the following computation the initial conditions consist of a parallel mean flow plus
perturbation of the velocity components. The perturbed velocity components consist of a
basic harmonic plus three subharmonics. This kind of initial conditions lead to three
pairings. For the case of M,=0.2 the system of mesh grid points is IN XJN =200 X200, and
for the case of M,=0.8, IN X JN=2502%156. The vorticity contours at different characteristic
time for the case of M,=0.2 are given in fig. 2. The characteristic times are defined as:
T, the nth pairing time of the rollers,
T,,, the time at which the vorticity from

A

the spiral arms back into the braid re-
gion. The computed results for the case
of M,=0.2 show that the free shear flow
loses its stability at first, and then the
Kelvin-Helmholtz unstable waves devel-
op. In some interval the perturbations
grow exponentially. Under action of
the perturbation with the basic mode
the vorticity distributed almost un-
iformly in the streamwise direction
at the beginning starts to be redistri-
buted in the streamwise direction, and
eight orderly K-H rollers are formed
soon. After a while the effect of
nonlinearity increases, and the growth
of the perturbation with the first subhar-
monic becomes obvious. This pheno-
menon leads to the first vortex pairing(see
fig. 2 at T=40.00). Pairs of well-devel-
oped rollers come together, corotate and

Fig. 2. Vorticity contours for M,=0.2, A: T=40.0(T,,=40.33), eventually amalgamate. The number of

B: T=65.33 (1,=65.33), C: T=93. 33 (T,=9%2. 33), D: T=213.33  rollers is reduced by half from eight to
(T3, =215.63). four. In the process of pairing the

contents of every other braided region are absorbed into the new paired roller. The surviving
braided region continues to be depleted of spanwise vorticity as all the vortical fluid is drawn
into the paired roller. As the cores of the original spanwise rollers merge into a new core,
spiral arm of weaker spanwise vorticity is ejected away from the paired eddy due to energy



No. 11 NUMERICAL SIMULATION OF COHERENT STRUCTURE 1189

conservation'® (see fig. 2 at T=65.33). This process repeats itself during each pairing. In
fig. 3 are given the variations of J, and —ew, with time ¢. J,is the momentum thickness,
and w, is the minimum of the spanwise vorticity at the point x=0 in the present computation.
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9 4 I
81 A 0.41
Tr 3 z'; \\ \ ,
- b N -
wf g_ / 2 f |3° 0.3
‘;‘ /\o= 021
2| A 0.1
0 1 1 1 1 1 I ] 0 1 ! I- "= "T=s |
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f

Fig. 3. Variation of é, and —w, versus time. 1, M.,=0.4, one pairing; 2, M_=0.4, three pairings; 3,
M_.=0.2, three pairings.

From the figure it can be seen that —w, is small just before each pairing. This is be-
cause the vorticity in the braid region is absorbed into the new paired roller. After
that we see suddenly the increase of —w, in fig. 3. This is because of vorticity ejection
away from the paired eddy. After multiple pairings we can also see increase of the
vorticity in the braid region. This vorticity in the braid region is convected during the
time of oversaturation. From fig. 3 it can be seen at the pairing time T,, that the mo-
mentum thickness reaches its maximum. After each pairing the streamwise scale and the
thickness of the mixing layer are two times enlarged but the velocity scale is not changed,
so the time scale is two times enlarged too. This can be seen from fig. 3 and table 1. In
table 1 are given the characteristic times computed in the present paper. In this table are
also given the results computed in ref. [6] with the spectral method for the incompressible
mixing layer for comparison. It can be seen that the agreement is good for the case
M_.=0.2. The flow structures computed in the present paper for the case of M, =0.2 agree
well with the incompressible results in ref. [6]. This means that the flow structures are al-
most incompressible, and the method developed in the present paper is efficient for
computing the compressible mixing layers.

Table 1 Characteristic time®

2D 3D
Characteristic Incom- M,=0.2, Re=400 Incom- M,=0.2, Re=400
time pressible three pairings pressible one pairing
T, 21.5 20.17 21.5 21.6
T 47.0 46.17
Ta 103.7 107.81
T, 32.0 32.66
T, 66.7 66.33

a) For comparison the time scale is changed according to reference [6].



1190 SCIENCE IN CHINA (Series A) Vol. 39

2.3 Effect of compressibility

Experiments show that the growth rate decreases with increasing convective Mach
number. The same trend is obtained from the present computation (see fig. 1). In ref.
[1] the flow mechanism for the compressible mixing layers was analyzed mainly for the
range of linear growth. In the present paper the flow mechanism is discussed on the basis
of numerical simulation of three pairings. The coherent structure in the compressible
mixing layers is controlled by wave-eddy interaction. It is known that there are
longitudinal and transverse (or eddy) waves in the compressible flow. The longitudinal waves
are induced by the compression and expansion. The examples are the Mach waves and
shock waves. The transverse or eddy waves are produced due to the shear stress. The ex-
ample is the Kelvin-Helmholtz waves (or K-H waves). Development of eddy waves leads to
the formation of the longitudinal waves. The interaction between the transverse and lon-
gitudinal waves defines the coherent structure in the compressible mixing layers.

For the incompressible mixing layers the vorticity production and its redistribution are
caused by the instability of the transverse waves. Increase of the instability leads to the for-
mation of the vortex roller. The vorticities are carried from the stagnation points between the
rollers into the vortex core, and the thickness of the mixing layers increases. For the compress-
ible mixing layers, except the mechanism of vorticity rolling up and pairing as for the
incompressible mixing layers the flow around the vortex is expanded and accelerated leaving
from the stagnation point, and then compressed and decelerated towards the other stag-
nation point. This process leads to the production of the longitudinal waves, the expansion and
the compression waves. Such expansion and compression make the vorticity reduce near
the vortex center and increase near the stagnation points. This is opposite to the
redistribution arising from the instability of the transverse waves!". Thus the compressibility
leads to the decrease of the growth rate of the compressible mixing layers. It can be seen from
fig. 3 that the growth rate in the range of linear theory for M =0.2 and 0.4 is almost the
same (agreeing with the results in ref. [1]), but the vortex pairing is delayed (see table 1) be-
cause of the influence of the longitudinal waves which makes the vorticity distribution more
uniform in the streamwise direction. As was shown in ref. [6] for the incompressible
mixing layer the only mechanism for spreading out the vorticity is viscous diffusion, and
since the Reynolds number doubles with each pairing, diffusion cannot keep pace with
the pairings. The resulting paired rollers have high vorticity concentrated in a relatively
small area (see fig. 2, the flow structure for M.=0.2 is much similar to the
incompressible). Comparing fig. 4 with fig. 2 we see that the flow expansion and compression
prevent the vorticity concentration, and make the rollers spread. The compressibility
effect increases with increasing convective Mach number. The effect of two kinds of
waves becomes comparable, and the growth rate of the mixing layer decreases obviously.
The vorticity and density contours at three pairing times for M,=0.8 are given in fig. 4.
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The process of expansion and compression is very clear. During the process of first
pairing the flow around the vortex is expanded and accerelated to locally supersonic speed
and, in order to reach the stagnation point between the vortices, it has to be compressed.
The shock is formed due to converging of the compression waves and is extended to the field
away from the central line. The flow becomes subsonic across the shock, and enters
the braid region. The flow is futher compressed to the stagnation point. Then we can
see eddy-shocklets (see figs. 4, 5 at T=64). '

During the process of pairing the shape and the strength of the shocks are changed.
The braided region between two weak shocks becomes smaller, and it becomes larger between
two stronger shocks. This event creates conditions for the next pairing. After that the
shocks change their shape and strength continuously with closing of the neighbour rollers.
From fig. 4 it can be seen that the vortex structure for the convective Mach number
M_=0.8 still is large. From the computed results we see that after each pairing the num-
ber of rollers is reduced by half, the vorticity thickness and the length between two rollers are
two times enlarged, and the number of the shocks is reduced by half too. All these events
show that the coherent structure of the compressible mixing layers is defined by interaction
between the waves and eddies.

Fig. 4. Vorticity contours for M.=0.8 at different times. Fig. 5. Density contours for M.=0.8 at different times.
A, T=64.00; B, T=96.00;, C, T=223.88. A, T=64.00; B, T=96.00; C, T=223.88.
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