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Abstract The steady bifurcation flows in a spherical gap (gap ratio ¢=0.18) with rotating inner and
stationary outer spheres are simulated numerically for ReCKSRe<1500 by solving steady axisymmetric
incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist
two steady stable flows with 1 or 2 vortices per hemisphere for 775<Re<1220 and three steady stable flows
with 0, 1, or 2 vortices for 1220<Re<13500. The formation of different flows at the same Reynolds number
is related with different initial conditions which can be generated by different accelerations of the inner
sphere. Generation of zero-or two-vortex flow depends mainly on the acceleratio n, but that of one-vortex flow
also depends on the perturbation breaking the equatorial symmetry. The mechanism of development of a sad-
dle point in the meridional plane at higher Re number and its role in the formation of two-vortex flow are

analyzed.

Keywords: numerical simulation, spherical Taylor-Couette flow, non-unique solutions of N-S equations,

symmetry-breaking bifurcation.

Numerous theoretical and experimental investigations have been undertaken on flows
between two concentric rotating spheres for over 30 years'™%. These flows exhibit typical
nonlinear behavior when they evolve from stable laminar flows to turbulent flows as Re
number increases. They are similar to Taylor-Couette flows in finite-length cylinders, yet
are purer because they are free from end-plate conditions which are difficult to treat in
cylindrical Couette flows.  The most frequently studied spherical Couette flow, in which the
inner sphere rotates and the outer one holds stationary, has only two contral parameters:
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Reynolds number Re <Re= ——;&> and gap ratio a<a= %—‘) where the density and

1

viscosity are constants. Different numbers of Taylor vortices will be produced if Re number
exceeds a critical value. Each Taylor-vortex flow mode exists only in a certain range of Re
number whereas multiple flow modes can exist at the same Re number within some ranges
of Re. For example, Sawatzki!! and Wimmer'" ? have observed three steady axisymmetric
modes with 0, 1 or 2 vortices and two unsteady nonaxisymmtric modes with 1 or 2 vortices
at supercritical Re numbers at a gap ratio of ¢=0.18, thus validating experimentally the
non-uniqueness of solutions of the N-S equations. However, there is a discrepancy between
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experimental and numerical studies with regard to the conditions needed to produce differ-
ent flow modes. For example, Wimmer’'s experiment? showed that l-vortex flow with
equatorial and axial symmetry could be generated by accelerating the inner sphere from
rest to its final angular velocity at an angular acceleration (£2,=0.00654?%), but Bartels’ fi-
nite difference calculation™ with equatorial symmetry conditions could not obtain I-vortex
flow by even smaller acceleration unless the position of the equator is shifted a little dis-
tance. Later, Shrauf®® found a symmetry-breaking bifurcation point at Re=Re, in transi-
tion from 0-vortex to 1-vortex flow by a continuation method. In computing the unsteady
axisymmetric N-S equations by a pseudospectral method Marcus and Turkerman' obtained
1-vortex flow using 1/2 domain (0<0<n). They also found that the generation of 1-vortex
flow experienced equatorial symmetry-breaking process. But there is much to be done as to
why different accelerations produce different flow modes.

Different artificial initial conditions may be used with a steady flow solver. For ex-
ample, Yang” obtained stable. l-vortex and 2-vortex flows using only 1/4 domain

(0<6<n/2). His method imposed one or two radial dividing lines in the initial stage of

computation and removed them later. The dividing line resembles the boundary of Taylor
vortices. However, the essential difference between the different artificial initial condi-

tions is not clear.

In this paper pseudocompressibility method is utilized to solve the steady axisymmetric
incompressible N-S equations, and several steady stable bifurcation flows are simu-
lated. After adding implicit viscous terms to the left-hand-side factor, not only is numerical
instability removed from low to middle Re number flows but also is computational efficiency
enhanced compared with original LU-SGS scheme!. The ability to resolve vortices is im-
proved by adopting a third-order upwind compact finite difference for convective terms.
Computational results for three steady flows at 0=0.18 show that supercritical O-vortex flow
can be obtained by fast acceleration of the inner sphere, 2-vortex flow can be obtained by
slower acceleration and l-vortex flow can be obtained by much slower acceleration in the
presence of perturbations that break the equatorial symmetry conditions. The routes lead-
ing to different flow modes and their mechanism are analyzed. The computed vortex size
and balance torque coefficients are in good agreement with the experimental results.

1 Governing equations and numerical method

Let = be time; p be pressure, u, v, w be Ve10c1ty components in Cartesian coordinates,
Q be: primitive conservative variables, E, F and G be inviscid flux vectors, and E, F and
Gv be viscous terms. The modified incompressible N-S equations with pseudocompressibility

arel®

1) Yang J K., Numerical studies of axially symmetric motion of an incompressible viscous fluid between two concentric
rotating spheres. Ph. D. dissertation, Marquette University, 1987.
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Here f is pseudocompressibility factor, U, V, W are contravariant velocities, and J is the
Jacobian of coordinate transformation. The viscous terms for Jaminar flows are
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Backward Euler difference is applied to the time derivatives; fluxes at time level n+1
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are linearized with respect to time level n and spatial difference approximations are intro-
duced. We obtain equations of delta form

[[+At(D,A+D,B+D,0)" 6Q=RHS"
——At[DE~E)+D,(F-F)+D,(G—G,), @

where I is identity matrix, 5@=Q”“—Q", Dé,' D, and D, are finite difference operators
approximating 9,, 0,, and 0, A, B and C are inviscid Jacobian matrices.

We use lower-upper symmetric Gauss-Seidel scheme!® to solve (2), whose formula is
LD™'UsQ=RHS", 3)

where
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L=I+At(VA* +V B +V . —A—B —C),

{ D=I+At(A* +B* +C*—A—-B -C), @)
U=I+At(A, A +AB +AC +A*+B*+C*).

To attain scalar inversion, Jacobian matrix may be constructed using approximate

matrix:

A* = [t p(d,
®)

p(A)=x max[|A(A)],

where /l(fi) is eigenvalue of Jacobian matrix A and their formulae are given in ref. [6].
We take k=1 instead of ¥=>1 in ref. [6]. The original LU-SGS scheme is unstable to middle
Re number flows because it does not include implicit viscous terms. Our version retains
orthogonal implicit viscous terms and the Jacobian matrix in (4) is modified as

n N \ -
AL p(AL + % I, ©)
2

where oc=yl=%V<§i- V¢é, I, =diag(0, 1, 1, 1).

For the first-order derivatives of convective terms in the RHS of (3), the third-order
upwind compact finite difference” is applied. The upwinding is constructed according to
the sign of eigenvalues of inviscid Jacobian matrix. We take ¢ direction as an example:

DE=AD,Q=A*F*(Q)+AF(Q), %)

where A*=T,A;T;". The third-order compact finite difference is computed by

1 " . 1
?(2171 +FI)= W (_SQi—1+4Qi+Qi+])’

. | : @®
'?(2}?1‘—-"}?;1): EXE (SQi+1_4Qi_Qi—l)'
The derivatives next to the boundaries are

approximated by the third-order biased finite

difference.

For the concentric spherical annulus shown in
fig. 1, two computational domains, 1/4(0<0<n/2)
and 1/2(0<6<n) are used. In the former case,
equatorial symmetry conditions at §=mx/2 are im-
Fig. 1. Geometry definition of a sphetical gap.  posed while in the latter case asymmetric numeri-
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cal perturbations are allowable. All boundary conditions are treated explicitly. Non-slip
condition is applied to velocities, and the pressure is obtained by the momentum equation
in radial direction on both spheres. Axial symmetry conditions are applied to poles and a
reference pressure is taken at a specified point in the interior domain.

2 [Initial conditions and routes to supercritical non-unique flow modes

Two kinds of initial conditions are used in this study, one is that obtained by
accelerating the inner sphere at different angular accelerations from rest to an angular
velocity corresponding to a steady Re number; the other is the same as that of Yang’s linear
velocity profile across the gap in the azimuthal direction, with zero velocity components in
the meridional plane and zero static pressure in the whole domain with the imposition of
one or several radial dividing lines. The former is used for studying the influence of the
accelerations and for comparison with experiments while the latter is mainly for comparison
with Yang’s results. Numerous experiments and numerical simulations have confirmed that
for supercritical Re numbers, faster acceleration yields O-vortex flow, slower acceleration
gives rise to 2-vortex flow and much slower acceleration under no equatorial symmetry
restriction gives Il-vortex flow. However, experiments differ significantly from numerical
computations in the range of accelerations to obtain a flow mode. It may be expected
that symmetry imperfections are frequently caused in experiments by eccentricity of two
spheres and leakage between the rotating axis and spherical shells and they will result in
larger equatorial or axial nonsymmetric disturbances, hence easily promoiing symme-
try-breaking instability under the influence of nonlinearity. We know that each steady flow
at supercritical Re numbers is a branch of bifurcation solutions of N-S equations and it ex-
ists only within a limited range of control parameters. A bifurcation solution also de-
pends on the initial conditions. The role of angular acceleration is to produce different ini-
tial conditions. In the next paragraph we give an 0.117¢
explanation why different angular accelerations pro- o151
duce different initial flowfields of a particular
Taylor-vortex flow.

013}
v 0111}

We first cite the torque-Re curve of Marcus
and Tuckerman® to identify different ranges of Re .
number for several Taylor-vortex flows to exist 0.107
(fig. 2). There is only stable O-vortex flow for

0.109 +

0:105 |
0<Re<645 and both O-vortex and 2-vortex flows
i - <Re< i 0103 ! 1 , : .
are linearly unstable for 651<Re<775 without 60 650 0 750 800 850 900
equatorial symmetry restriction. Therefore, only Re

1-vortex flow can be stable in this Re-range. Fig 2. Torque-Re curve computed by Marcus®.

l-vortex and 2-vortex flows can exist at Re>775 Solid line, O-vortex; dotted line, l-vortex; dashed
. . " line, 2-vortex fk

and our simulation further shows that supercritical =<' =%
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0-vortex flow becomes stable only after Re=1220. Now let the final Re number be greater
than 1220. The inertia of fluid makes its evolution lag behind when the inner sphere is
accelerated from rest to this. Re number. No matter how great the acceleration is, the
flow will certainly pass by a low Re number stage. In fact, the centrifugal force makes the
fluid develop into a secondary flow in the meridional plane as soon as the inner sphere be-
gins to rotate, which looks like a O-vortex flow. If the angular acceleration is large, the
instant Re number quickly reaches its final value shortly after O-vortex flow is produced,
hence a 0-vortex initial flowfield is obtained from which steady O-vortex flow develops; if
the acceleration is small, the instant Re number still quickly passes through the range
651<Re<775 and nonsymmetric disturbance has no time to grow; yet the instant Re number
halts for enough time above 775 and the total circulation continues to increase making the
flow develop toward 2-vortex flow. When Re number reaches its final value, 2-vortex ini-
tial flowfield is formed from which stable 2-vortex flow develops. If the accleration is so
small that the instant Re number halts for a long time within 651 <Re<775, any small
asymmetric disturbance will be amplified to the extent that non]jnearjity will play a certain role
in destabilizing the flow, in this way l-vortex initial flowfield is formed from which stable
l-vortex flow develops. Such a transition to 1-vortex flow can by no means be realized
only by reducing acceleration if equatorial symmetry restriction is imposed. In this case
1-vortex flow may be obtained by artificially assuming a ‘crude’ 1-vortex flow according to
the dependence of bifurcation solutions on the initial conditions. The inflow at the equator
is an essential feature of 1-vortex flow. In the initial stage of computation, an artificial radial
dividing line is set near the equator, and symmetry condition is used on this line, then

the fluid moves outward along it. However, the fluid at the equator moves inward, as can

q

be expected from continuity equation. A rough 1-vortex flow is thus produced between the
equator and the artificial dividing line. After this line is removed, the flow settles down
toward 1-vortex flow if Re is above Re,. Although it is the case with computation, it is
not realizable in experiments where asymmetric perturbations play an essential role. Let us

see how the asymmetric disturbance affects the bifurcation.

Because both geometry and the known steady stable flows are symmetric with respect to
the equator, any small disturbance with respect to each base flow, according to linear stabili-
ty theory, can be disintegrated as two eigenmodes: one symmetric and the other
ahtisymmetric about the equator. Both modes satisfy the linearized evolution equation, and
for any Re number and wave number, both modes have different growth or damping rates.
O-vortex and 2-vortex flows are linearly unstable and 1-vortex flow is linearly stable for
651<Re<775 (see fig. 2). Ref. [5] further showed that this instability is that of
antisymmetric eigenmode. It is evident that the range 651 <Re<775 is an attraction region
of l-vortex flow, for any small asymmetric disturbance to 0- or 2-vortex flow will grow to
the extent for nonlinearity to act. Previods studies and our numerical simulations show
that other flows first develop into a nonsymmetric intermediate state and then recover to
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symmetric 1-vortex flow. Such a transition is termed symmetry-breaking bifurcation. The
necessary nonsymmetric disturbance may be easily produced in experiments and numerical
simulations when 1/2 domain is used. Our simulation further indicates that symme-
try-breaking instability grows so slowly and in so narrow a range 651<Re<775 that it is
necessary to accelerate the inner sphere very slowly in order to keep the instant Re numbet
within the range.

To sum up, we have found two routes leading to stable bifurcation solutions at
supercritical Re numbers. In the former, the acceleration is changed from large to small,
yielding 0-vortex, 2-vortex to l-vortex flow. In the latter, artificial dividing lines are im-
posed for a Taylor-vortex flow to develop within a certain range of Re number. In the two
routes the dependence of bifurcations on the initial conditions is utilized.

3 Computed results and discussions

In the present computation, grid number is 21(r) X 129(9) for 1/2 domain and 21 X 65
for 1/4 domain" The case with ¢=0.18 and Re<1500 is considered. Increment of Re is
100 generally or 10 for. 1 150<Re<1230. Attention is focused on steady stable bifurcation
flows at ReZRe, =645. So only two typical cases of Re=800 and Re=1 500 are discussed.

3.1 Re=800

If the computation domain is 1/4 annulus, only stable 2.vortex flow can be generated
independently. Fig. 3 depicts the history from rest to 2-vortex flow. The flow
in fig. 3(a) is O-vortex flow while those in figs. 3(b) and 3(c) are pinched flows
with a saddle point S and the final state is stable 2-vortex flow (fig. 3(e)). There is
a boundary between two vortices on which the fluid flows toward the inner sphere, forming
a sink on the outer sphere. The fluid at the equétor flows outward, serving as a source
on the outer sphere. For a pinched flow (figs. 3(b)) and 3(c)), Marcus and Turkerman in-
dicated that the flow between the equator and the saddle point has strong coupling between
meridional and azimuthal velocity components and redistributes angular momentum just as
Taylor vortex does, but they did not explain why the saddle point is generated. We studied
the streamfunction, velocity vector and kinematic energy in the meridional plane and found
that the saddle point always develops near the center of the secondary flow, where 6-velocity
component is larger and there is a shear flow generated by the flow toward the equator
along the inner sphere and the flow toward the pole along the outer sphere. When Re
number is increased, the shear flow becomes stronger owing to larger 6-velocity gradient
and a saddle point is generated. This stagnation point is associated with higher pressure
and lower kinematic energy (fig. 3(c)), so the secondary flow separates on both spheres to
form two recirculation vortices. But the separation only results in kinematic change in the
meridional plane. When the gap is narrow, two recirculation vortices get connected to
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(d)

Fig. 3. Evolution from rest to 2-vortex flow. Re=800, ¢=0.18. () Contours of meridional streamfunction;
(IT) meridional velocity vector; (I1I) meridional kinematic energy q=’+1)/2; (V) sketch of a saddle point.
(2) 400 steps; (b) 600 steps; (c) 1000 steps; (d) 1230 steps; (¢) 8000 steps.

form a further one of 2-vortex flow (fig. 3(d)). Thus we see the saddle point plays an
intermediary role in the formation of 2-vortex flow.

With an artificial dividing line imposed at a distance ¢ from the equator in the first
300 computational steps, we obtain I-vortex flow using 1/4 domain. Fig. 4 depicts
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1-vortex flow obtained in this way. . However, \\
with two artificial lines, the flow converges ™~

to 2-vortex flow. This is consistent with the

result of Yang’s. We imposed 3 dividing

lines, but only 1-vortex flow is obtained.

Wesee a common feature in 1 or 3 lines is ® - ©
that the fluid at the equator is allowed to
flow toward the inner sphere, which is an Fig. 4. Steady 1-vortex flow. Re=800. (a) Contours of

essential characteristic of 1-vortex flow. The meridional streamfunction; (b) azimuthal angluar velocity

_ W . s
above example demonstrates the dependence Q2= 5+ (© azimuthal vorticity component.
of bifurcations on the initial conditions and an important discriminator between 1-vortex

and 0- or 2-vortex flows.

One-vortex flow may also be produced using 1/ 2 domain. If the inner sphere is acceler-
ated from rest to Re=800 at At=0.025 within 20 000 steps, the flow evolves into I-vortex
flow. Let Re number increase up to 1500. Then 1-vortex flow remains stable.

3.2 Re=1500

There exist 0-, 1- and 2-vortex flows at this Re number according to Wimmer?. Using
1/4 annulus domain and zero initial flowfield, we obtained 0O-vortex flow for an acceleration
£,=0.014 (fig. 5), and 2-vortex flow for £,=0.005 (fig. 6). Using 1/2 annulus domain, we ob-
tained 1-vortex flow for an acceleration £,=0.0005 (fig. 7)', This confirms the argument of
previous studies. The torque coefficients for the three flows are 0.144, 0.166 and 0.177,
respectively and the vortex size of 1-vortex flow in the circumferential direction is 1.35.

These values are within 5% uncertainty compared with the experimental™.

©

Fig. 5. Steady O-vortex flow. Re=1500. (a) Contouss Fig. 6. Steady 2-vortéx flow. Re=1500. (a) Contours
of meridional streamfunction; (b) azimuthal angluar velocity ~ of meridional streamfunction; (b) azimuthal anghuar velocity

. . w . -
Q= —"— (¢) azimuthal vorticity component. Q= ——; (c) azimuthal vorticity component.
rsinf rsinf

4 Conclusions

The non-unique Taylor-Couette flows are simulated by solving the steady axisymmetric
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Fig. 7. Steady 1-vortex flow computed using domain 0S6<n/2,
Re=1500. (a) Contours of meridional streamfunction; (b) azimuthal

angluar - velocity Q= ﬁ, (c) azimuthal . vorticity component.

incompressible N-S. equations using a fi-
nite- difference method. The computed
results are in good agreement with the
experimental. The mechanism of the for-
mation of a saddle point in the
meridional plane and its role in the for-
mation of 2-vortex flow are elucidated.
The importance of control parameters
and angular acceleration 'in the flow
bifurcation is analyzed. It is shown that
2-vortex flow is produced through flow
separation of the secondary flow with a
saddle point and the transition preserves
equatorial symmetry. The transition is
only a kinematic bifurcation. But
1-vortex flow is generated by centrifugal
instability through symmetry-breaking
bifurcation in which asymmetric distur-
bances are allowed to play an important

role. Different steady flow modes can be generated using different initial conditions,
indicating the dependence of bifurcations on the initial conditions after the flow loses

stability.
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