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A B S T R A C T :  A new compact finite difference-Fourier spectral hybrid method for 
solving the three dimensional incompressible Navier-Stokes equations is developed in 
the present paper. The fifth-order upwind compact finite difference schemes for the 
nonlinear convection terms in the physicaJ space, and the sixth-order center com- 
pact schemes for the derivatives in spectral space are described, respectively. The 
fourth-order compact schemes in a single nine-point cell for solving the Helmholtz 
equations satisfied by the velocities and pressure in spectral space is derived and its 
preconditioned conjugate gradient iteration method is studied. The treatment of pres- 
sure boundary conditions and the three dimensional non-reflecting outflow boundary 
conditions are presented. Application to the vortex dislocation evolution in a three 
dimensional wake is also reported. 
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1 I N T R O D U C T I O N  

Direct numerical simulation of the Navier-Stokes equations has become one of the most 

valuable approaches for the detailed investigation of the flow transit ion and turbulence phe- 
nomena in the past  decade. The spectral  method [1'2], with relatively fewer independent 

degrees of freedom and high numerical accuracy, has played an important  role in the numer- 

ical simulation of turbulence[3~5], especially for those temporal ly developing flows. However, 

the requirement of the method on the periodicity of boundary  conditions has considerably 
limited its use in the open space flows such as boundary  layers, wakes and jets etc., because 

this type of flows usually has inflow and outflow boundary  conditions and no periodicity can 
be prescribed in the strea.mwise direction. The traditional low-order finite difference approxi- 

mat ion is usually well suited to this type of boundary  conditions, but  its numerical accuracy 

and wave number  resolution are too poor  to be applicable to the turbulence simulation. 

Recently, much effort has been devoted to improve the performance of such conventional 

difference schemes. S.K. Lele [6] proposed the compact  finite difference schemes with spectral- 

like resolution. Fu et al.[ 7] developed the fifth-order upwind compact  schemes. Compared 
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with the standard difference schemes, compact schemes can not only achieve higher accu- 
racy on a small computational stencil but  also provide much bet ter  resolution characteristic, 

which means it can represent the exact results over a much wider range of wavenumbers on 
a given mesh. Due to these advantages, compact schemes have begun to  be implemented 
successfully in the compressible flow simulations [71 . However, when they are applied directly 

to the incompressible flows, some difficulties still exist. Firstly, the direct implementation 
of finite difference for the incompressible Navier-Stokes equations, though quite flexible in 
treating the complex boundary conditions, often suffers from the low efficiency, especially 

when three dimensional iterations are carried out in each step of the time-dependent com- 
putations. Secondly, even in the two dimensional case, these kinds of high-order schemes 
are difficult to be used in their implicit forms, because they can accurately approximate 

the derivations only in explicit formulations. However, implicit discretizations for veloci- 
ties and pressure are often necessary in solving the equations to assure the divergence-free 
constraint and avoid the numerical instability. To overcome these shortcomings, different 
discretization method (such as spectral, finite difference, finite element) can be introduced in 

different spatial directions to reduce the total independent degrees of freedom and make the 
computation more efficient. Furthermore, some kinds of high-order compact schemes that  
can  be used in implicit form are needed to match the high accuracy of the explicit compact 
approximation. Considering all these points, we propose in this paper a new compact fi- 
nite difference--Fourier spectral hybrid method to solve the three dimensional incompressible 
Navier-Stokes equations in primitive variable formulation. The method employs the Fourier 

spectral discretization in one spatial direction and the high accurate explicit and implicit 
compact finite difference schemes in the other two directions. The purpose is to provide not 
only high numerical accuracy and wave number resolution but  also the flexible capability in 

treating the complex boundary conditions. Practical computation for the three dimensional 
vortex wake evolution proves this hybrid method an effective approach for the numerical 

simulation of transition in the open space flows. 

The paper is organized as follows. First, we discuss the time discretization with the 
mixed explicit ~ implicit three-order accuracy scheme and spatial discretization with explicit 
fifth order upwind compact scheme for convective terms in physical space and the center 
sixth-order compact schemes for derivatives in spectral space. Then, the implicit compact 
fourth-order scheme in a nine-point single cell for the Helmholtz equations satisfied by 
pressure and velocities in spectral space is derived. The efficient preconditioning method 
of the conjugate gradient iteration is studied. Finally, the proper t reatment  of pressure 
boundary conditions and the three dimensional non-reflecting outflow boundary conditions 
are discussed respectively. As an application, some results of the numerical simulation on 
the vortex dislocations in a three dimensional wake flow are reported. 

2 D E S C R I P T I O N  O F  C O M P A C T  F I N I T E  D I F F E R E N C E - F O U R I E R  

S P E C T R A L  M E T H O D  

As a typical configuration for the numerical simulation of three dimensional external 
flows (e.g., boundary layers, wakes, mixing layers etc.) a hexahedral domain shown in Fig.1 
is considered, in which the flow direction and coordinate system are also sketched. 

Assuming the periodic boundary condition is adopted in spanwise direction, we expand 
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f low 

Y 

Fig.1 Flow configuration and the coordinate system 

all the flow variables as a t runcated Fourier series 

(N/2)--I N N 
r = E q~m(X,y,t)'e -i'm'fl'Z m = ---~-, - ' -  , -~- -- 1 (2.1) 

m=--N/2 

where N is the cutoff, j3 is the spanwise wavenumber. The three dimensional incompressible 
Navier-Stokes equations in primitive variable formulation are written as 

0--t" + ( u .  V)u  = - V p  + V2u (2.2) 

where u = {u, v, w} are the velocity components in x, y, z directions respectively, p is the 
pressure and R is the Reynolds number. 

Substituting (2.1) into (2.2), and making the inner products on both sides of (2.2) lead 
to a system of equations for the mth harmonic in a two-dimensional ( x, y) domain 

1 2 ~ - ~ +  Fm[(u. V)u] = - V m p m  + ~ V m u m  
N N 

m . . . . . . . .  1 ( 2 . 3 )  
2 '  ' 2 

/9 -imf~ V 2 ------ ,--m2• 2 Fm[(u" V)u] is the Fourier where ~ m  ~ iO-~X ' Oy ' ' OqX2' Oy 2 ' 

transformation of the nonlinear terms. Following the third order mixed explicit-implicit time 
discretization schemes[S], the solution procedure of Eq.(2.3) can be split into the following 
three substeps 

J i  - -1  
! 

U m - -  E OLqu~nn--q Je--1 
q=O 

At = -- E ~qFm[(u"-q" V)u'~-q] (2.4.1) 
q = O  

I I  l 

u,~ - u m _ x'7 _.+I (2.4.2) 
A t  -- --ml"]rn 

,~ _ . n + l  ,! 1 
0-t~m - -  U m 2 _ n+l (2.4.3) 

- -  ~ m ' t 6 m  At R 
! I! where urn, um are intermediate velocity fields defined in (2.4.1), (2.4.2). J{, J~ are parameters 

for the order of the scheme, aq, l~q, 70 are appropriately chosen weights. For the third order 
case, the values of these coefficients are summarized as follows[S]: 

J~ -- 3, Ji -- 3, OL 1 = 3, 
3 1 I I  

(22 ~ - - - ~ ,  0~3 = ~, ~1 = 3, ~2-----3, /33----1, 7o-----~ 
D 
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To evaluate the nonlinear term F,~[(u"-q: V )u  '~-q] in the right hand of (2.4.1), the 
pseudo-spectral method is adopted. When the Fourier coefficients of velocities are trans- 
formed into the velocities in the physical space, the nonlinear convection terms are approxi- 

Ou 
mated by the fifth-order upwind compact schemes. According to [7], the form of u ~ x  x (as an 

example) can be expressed as 

where 

and 

u + 2 lUtF+Cu) + ~ - ~ F - ( u )  

F/I- + 2-F/I~-13 _ = 3-~{~+ [ - +u,i+l -4- 1]-ILi +~- 47~i- i  -If- 3'IJ,+-2] 

2 F _  = 3~+-  [ -  ui_ 1 -~- l lu i  A- 47u/+1 + 3u/+2] F/- -4- 3 i+1 

~'4-Ui = -[-(?-ti-l-1 -- U l ) / h z  

F + (u), F ~ (u) are the upwind approximations of first derivations of u for u > 0 and u < 0 

respectively. 
Assuming the boundaries in x direction are labeled by i = 1 and i = IN,  then near 

the boundary (i = 2, I N  - 1), third-order compact schemes are used 

3+-F+ + L,-'+ = 5 ~<5-u+ + 
3 

1 F  _ 2 F _ 5 1 

and the second order single side schemes are adopted on the boundary (i = 1,IN) 

= -  + 2)t2 

F N = (3+-uN - 5-UN-i) /2 

From Eqs.(2.4.2) and (2.4.3), the following kind of Helmholtz equation for the pressure 
(derived after taking the divergence of (2.4.2)), and velocities must be solved in each step 
to obtain p~+l and u ~  +1 

5x  2 + ~ - b~o = f (2.5) 

The right hand term f includes the derivations of the Fourier coefficients u,~ along the x 
and y directions.  They are approximated by the sixth-order center compact schemes which 

can be expressed as the following form (taking Ou,~ as an example) 

1F 1F = ~~6~ + um(~-l)) ~+1 + F+ + 5 ~-1 14~~ + 

where 
~o = 1 (~+ + ~_) 

Near the boundary (i = 2, I N  - 1), fourth-order compact schemes are used 

2 1 F  v++l + + = 
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and the second order schemes of single-side are adopted on the boundary (i = 1, I N )  

2 1 F 5 1 + 
~ F 2 + ~  1 = ~ 5 - U m 2 + ~  u,~2 

"~I F -~ F I N 5 1~ _ IN q'- = -~+Um(IN--1) -I- -~ Urn(IN-l) 

As discussed in the introduction, Eq.(2.5) should be discretized by high order implicit 
scheme in order to match the high accuracy of the explicit approximation of the Fm[(u n -q .  
V)u n-a] and f ,  and meet the numerical stability and convergence requirements�9 Therefore, 
the following nine-point compact scheme of fourth-order accuracy is derived 

10(~1 + ~3) - 2(~2 + ~,) + (~5 + ~s + ~7 + ~s) - 20r 
(Ax)2 

10( 2 + - 2( 1 + + + + + - 20r  

(8~00 "~- ~01 "~ ~2 "~ ~3 -~- ~o4)b = (8f0 + f l  + f2 + f3 + f4) 

The discretization stencil is shown in Fig.2. The accuracy of this scheme reaches the 
highest order which can be possibly achieved by a nine-point discretization of Eq.(2.5). Fur- 
thermore, the discretization itself results in a standard block tridiagonal coefficient matrix 

6 2 5 

Ay 

0 Az 

7 4 8 

Fig.2 nine-point single cell for the implicit compact scheme 

with each block also being tridiagonal. Because these equations must be solved several times 
at each step, the convergence rate of the corresponding iteration method is crucial to the 
efficiency of the whole algorithm. The preconditioned conjugate gradient method, due to 
its rapid convergency, proves to be superior than many other iteration methods�9 For the 
preconditioning procedure, though many techniques may be chosen, we find that the pseudo- 
elimination-k [9] (PE-k) method makes good use of the structure features of this kind matrix 
and thus greatly accelerates the convergence�9 Considering the following linear equations 

Qac = b (2�9 

where Q is the block tridiagonal coefficient matrix 

BI C1 

A2 B2 

= 

C2 

AN-I BN-I CN-I 
AN BN 
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For preconditioning, we can rewrite it as 

301 

(L-1QU-1)(Ux) = L-lb (2.7) 

Here, L, U are the uncompleted decomposition of Q, and can be expressed as 

L = 

U__I I1 

where, S, T are given by 

S1 

A2 

T1 

I2 

82 

AN-1 

T2 

SN-I 
AN 

IN-1 

SN 

TN-1 
IN 

$1 ~ B1 

T~ =S.~lCi 

Si = Bi(I~ + kB~lA~B~_11C~-l)-I 

i = l , 2 , . . - , N - 1  

Ii is the identity matrix, k is the optimization coefficient for speeding up the convergence�9 
Since the classical conjugate gradient method requires the coefficient matrix to be symmetry 
and positive definite, we apply it to the normal equation of (2.7) and the solution can be 
found quickly. For example, considering the following model equation 

0x--- ~ ~ - ~ = - 3 s i n x c o s y  (x,y) e [0,2~] • [0,2~] 

with all Dirichlet boundary conditions, Table 1 gives a comparison on the performance of 
the PE-k and SOR with Chebyshev acceleration under different grid sizes�9 

Table 1 Compar i son  of  i t e r a t i o n  n u m b e r s  a n d  t i m e  of SOR-C and PF_~k 

Grid NsoR-c NpE-k TpE-k/TsoR-c k 
41 x 41 108 3 20% 2.7 
61 • 61 167 4 14% 3.0 
81 x 81 227 4 12% 3~3 

101 • 101 286 3 8% 3.4 

Note: SOR-C: SOR with Chebyshev acceleration; N: Iteration numbers; T: Computer time. 

It is clearly shown that the computational efficiency by PE-k method is usually an 
order of magnitude higher than that of SOR with Chebyshev acceleration�9 
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With regard to the numerical simulation of the open space flows, the correct t reatment  
of the boundary conditions is very important  because it not only affects directly the overall 
accuracy of the scheme, but  also determines the efficiency of the time-stepping algorithm. 
This is especially true for the pressure boundary conditions and the outflow boundary con- 

ditions. From Eq.(2.3) and (2.4), the semi-discretized pressure boundary conditions can be 
expressed as 

Op~ +1 Oum 1 2. n+1 J~-I 
- -  { § - Z 

q~--0 

J ~ - I  

{ • Z at R q-~O 

where V2u --- VD - V • ~2, ~2 - V • u, D - V �9 u is used. By forcing D n+l - 0, in each 
time step and replacing V • ~2 n+l by V • ~2 n, the divergence-free constraint can be well 

satisfied on the boundaries. In addition, for the pressure Fourier coefficient P0, Equation 
(2.5) becomes a Poisson equation with all Neumann boundary conditions, the coefficient 
matrix Q is  therefore singular. The solvable condition must be employed to remove the 
singularity of Q before preconditioned conjugate gradient method can be applied. 

The study of the outflow boundary conditions in the incompressible flow, generally 
speaking, is quite insufficient. It is hoped that  the outflow boundary conditions can closely 
approximate the free space situation which exists in the absence of these boundaries. Oth- 
erwise, the spurious perturbat ion waves may propagate upstream and severely affect the 
accuracy of computation in the inner flow domain. Recently, G. Jin et al.[10] developed a 

new kind of nonreflecting-type Outflow boundary conditions on the analogy of the classical 
wave equation. It deals with both the nonlinear and diffusive mechanisms of flow and well 

matches the Navier-Stoke equations adopted inside the domain. By preliminary computa- 
tions, we find the performance of this kind of boundary condition is quite suitable to the 
numerical simulation of external flows, especially those involving the interaction between 

waves and vortices. Generalized to the three dimensional case, the nonreflecting boundary 
condition in physical space can be formulated as 

0 .  (2.8) 
c9---t + U-~x = R \ Oy 2 + cOz 2 ] 

We noticed that  the similar result was also obtained in [11] recently. The corresponding 

spectral form used in the computation is 

OUm [uOUl 1 (c~2um m2j32Um) (2.9) 
O-""~ + F"~ L Ox J = -R \ Oy 2 

These Eqs.(2.9) must be solved simultaneously with the same third order mixed explicit- 

implicit schemes adopted for the inner Navier-Stokes equations. 

3 A P P L I C A T I O N  T O  3-D V O R T E X  W A K E  

As a typical kind of open space flow--three dimensional wake behind a cylinder has 
been the focus of many recent studies in order to understand its complex transition mecha- 
nism. It is found that  during the transition from the 2-D laminar Kaxman vortices to 3-D 
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turbulence, vortex dislocation [12] is one of the fundamental physical phenomena. Unlike 

the ordinary occurrence of three dimensional transition which takes the form of spanwise 
unstable waves and second instability mechanism, vortex dislocations are mainly induced by 
local disturbances or defects. Typically, they are initiated by the phase variations between 
the spanwise vortex cells with different shedding frequencies during the processes of vortex 

formation. While moving downstream, these dislocations grow into large-scale structures 
and bring about a series of complex distortions on the laminar Karman vortices and finally 

make them breakdown into turbulence. Moreover, there are a number of other different 

types of flows exhibiting similar features of the vortex dislocation during their transitions, 
such as spatially growing free shear layer [13J4], flows past a non-uniform body geometry[15 ] 

and even the Reyleigh-Benard convection patterns [ls]. It is believed that  there is a new kind 
of transition mechanism associated with the vortex dislocation and many recent studies have 
been undertaken to investigate its dynamics. However, the basic understanding of the vor- 
tex dislocations is, until now, mainly from experimental studies, and the numerical study, 

though important  to the understanding of the mechanism, has not been reported as to the 
knowledge of the authors. This is part ly because some difficulties must be overcome before 
this three dimensional time dependent computation can be performed, such as the large 

space domain (corresponding to the streamwise characteristic scale of the vortex dislocation 
which is usually much lager than the wavelength of the basic Karman vortex street), the 
wavenumber resolution and accuracy of the numerical method, t reatment  of the inflow and 
outflow boundary conditions as well as the efficiency of the computation. As an applica- 
tion of the compact finite difference--Fourier spectral method described above, the numerical 

simulation for the evolution of vortex dislocations in the three dimensional wake was carried 
out. The fundamental characteristics such as the vortex tearing and reconnection, the axial 
velocity generation and the spanwise "climbing" [12], are successfully reproduced. It is felt 

that  these results will be of much help in understanding the transition physics of vortex 
dislocation in the open space flows. 

Normalized by the diameter of the cylinder and the oncoming potential velocity, the 
computational domain is 60, 30, 30 on streamwise, vertical and spanwise directions, respec- 

tively. The cutoff of the truncated Fourier series is N = 32, and the corresponding number 
of the grid points in x-y plane is 122 x 62. The inflow velocity profile is taken as 

U(y, z) = 1.0 - a(z).  (2.0 - cosh(by)2)e -(cu)2 (3.1) 

where a = 1.1 q-0.4e-Z2,b -- 1.1, c -- 1.2, which are determined according to the mean ve- 

locity profile in the near cylinder wake obtained from the direct numerical simulations [17] as 
well as the experimental measurements [lsl. The  distribution along y of U(y, z) is absolutely 

unstable, and the variation along z represents a local three dimensional disturbance on a 2-D 
cylinder. The Reynolds number is taken as 200. The iso-vorticity surface is shown in Fig.3, 
and the colours on the vortex rolls represent the different values of the spanwise velocity. 
As expected from the theoretical instability analysis based on the 2-D velocity profiles along 

y, the two dimensional vortex street is developed by the intrinsic global instability at the 
spanwise locations far from z = 0 in Fig.3. The wavelength of the 2-D rollers is around 

five times of the cylinder diameter, which is in agreement with the many experimental re- 
sults. In the middle regions near z -- 0, a symmetry dislocation occurs due to the different 
shedding frequencies associated with the spanwise variation of the velocity profiles. The 
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distortion and tearing [19] of the spanwise vortices, the formation of the streamwise vortices 

and their connection with spanwise vortices, are shown by the iso-vorticity surface. These 

calculated structures are compared well with the typical topological changes of the vortices 
during dislocations observed by flow visualization in experiments [12~14] . Another  important  

Fig.3 The iso-vorticity surface in a 3D wake with vortex dislocations and 

the spatial distribution of spanwise velocity 

Fig.4 A close-up of the vortex splitting during the formation of vortex dislocations 

feature of the vortex dislocation - -  spanwise "climbing" - -  has also been reproduced. Fig.4 

is a top view showing a close-up of the vortex splitting process during the formation of the 

dislocation. The flow is downwards and the spanwise velocity is represented by the colours 

whose legend is the same as Fig.3. It  can be clearly seen that  the spanwise velocities are 

generated form the complex vortex tearing and lead in turn to a rapid lateral spreading from 
the dislocation center. Fig.5 gives a concept model of the vortex splitting and reconnection 

in the dislocations. Owing to the l imitation of space, a full analysis and discussion on the 

simulation results of the vortex dislocations will be published elsewhere. 
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A concept model for the vortex splitting and reconnection in the dislocations Fig.5 

4 C O N C L U D I N G  R E M A R K S  

In the present paper, we present a new hybrid numerical method for solving three 
dimensional incompressible Navier-Stokes equations which takes the advantages of both 
the Fourier spectral expansion and compact finite difference approximation. The high order 
upwind and center compact finite difference schemes are described respectively. The precon- 

ditioned conjugate gradient iteration method for solving the Helmholtz equation discretized 
by nine-point implicit compact scheme in spectral space is studied in detail and proves to be 
quite efficient. The flexibility of the algorithm for the complex boundary conditions makes 
it especially useful in the numerical simulation of the open space flows. Application to the 
vortex dislocation evolution in a three dimensional wake is discussed. Combined with the 
domain decomposition approach, this method may be used in the more complex flow con- 

figurations. The three dimensional nonreflecting outflow boundary conditions presented in 
this paper will also be useful in the numerical simulation of other open space flows such as 
boundary layers, jets, mixing layers etc. 
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