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A B S T R A C T :  Based on the embedded atom method (EAM) proposed by Daw 
and Baskes and Johnson's model, this paper constructs a new N-body potential for 
bcc crystal Mo. The procedure of constructing the new N-body potential can be 
applied to other metals. The dislocation emission from a crack tip has been simulated 
successfully using molecular dynamics method, the result is in good agreement with 
the elastic solution. 
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1 I N T R O D U C T I O N  

The material behavior is an important  subject of mechanics, materials science and solid 
state physics. The strength of materials depends on the atomic interaction, microdefects 

(such as dislocation, grain boundary, crack etc.). Continuum mechanics has achieved a 
great success in the materials design, manufacture and other engineering applications, but  
due to the restriction of its basic postulates, there is an obvious drawback in the research of 
dislocation and grain boundary. 

The advanced technology has made it possible to directly observe atomic configuration[l], 
which will provide many important  experimental data. The embedded atom method has 
brought potential  vigour to the research work. on the atomic interaction. The N-body 

potential is a powerful tool for the study of the atomic interaction. Compared with the pair- 
potential model [2,3], it has a bet ter  physical foundation. The Cauchy's relation, e l 2  = C44, 
which was deduced from the pair-potential is unrealistic. This drawback of the pair-potential 
can be naturally eliminated, if one introduces an embedded atom energy into the N-body 
potential. The N-body potential has a simple mathematical  description and avoids the 
difficulty of multi-particle system quantum calculation. 

2 A N E W  N - B O D Y  P O T E N T I A L  

In the recent years, in order to s tudy the physical property of materials, research 
workers proposed different N-body potentials and achieved many important  results such as 
the dislocation emission[ 4], the grain botmdary migration, the grain boundary segregation 
and breaking[ 5] , the interaction of grain boundary and dislocation [6]. 
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According to the EAM [7] method, the total  energy ET of an assembly of atoms at 
position r~ is 

1 F ( p i )  (1) E T  = + 
i,j,i# i i 

where r o is the distance between atoms i and j ,  ~(rO) is the pair-potential, F ( p J p c )  is the 
embedding energy function. 

Johnson Is'9] assumed that  the electron density at any site normally is taken as a linear 

superposition of its neighbor atom electron density 

Pi = Z ~ \ ro ] 
i,j#i 

p~ is assumed to have the form of a power term that  is an approximation of Hartress-Fork's 

exponential expression. For a monoatom metal, p~ is 

. ( r l c )  ~ 

By combining the triaxial universal function with tight-binding theory and the concepts 

of Gvoigt average shear modulus, Johnson[ s,gl proposed the embedding function as follows 

= F0 --- (4) 
Ln - -  m \ p c /  n -- m 

After a series of analyses, he concluded that  for Mo metal fl = 5.029 and F(p/pc) can 
be approximated by a straight line near p = p~, Pc is the electron density at equilibrium, 
r1r r2c are the first- and second neighbor atom distances respectively. The relations of the 
equilibrium equation, the elastic constants and the N-body potential  are Is'9] 

Akl + F'(1)V~t ---- 0 (5) 

i i i 1 E p i a k a l / a  (6) Akl = 
i 

Vkl = ~-~ i i i piakat/a (7) 
i 

t r  de( tO) (8) 
dr 0 

Cll = [ S n  + F ' (1 )Wl l  + F"(1)V~,]/O0 (9) 

C12 = [B12 + F'(1)W12 + F"(1)Y121]/120 (10) 

C44 = [B12 + F'(1)W12]/~2o (11) 

where Ct l ,  CI2, (744 are the elastic constants, B l l ,  B12, Wll ,  W12 can be expressed by the 
N-body potential, a~ is the k th component of the position vector to ith neighbor. /20 is 

the atom volume. Because Mo is a bcc crystal, in a cell, there is an atom in the center, 
eight atoms at the corner and 1/8 volume occupied by each atom. Altogether, there are two 

atoms (1 + 8 • 1/8 = 2) in a cell and a cell volume is aa0, so f20 = 0.5a 3. 

1 
r  ) ( 1 2 )  

i 
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Assuming 

Equation (5) becomes 

The anisotropic ratio 

The Voigt average shear modulus 

The vacancy formation energy 
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Akl : 0 
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C 

A m - - -  
C 

Gvogit = (3C + 2C')/5 

1996 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
1 

EIFV = ~r l equil ibrium 

Here C = C44, C"= ,(Cfl - C22)/2. The pair potential proposed by Johnson [8'9] is 

r  - 1 ) + B 2 ( r o  -1 )2+B3( ro  -1 )  a (21) 
\ 7"le ] \ 7"le \ ' r l e  \ r l e  

The coefficient Bi in (21) can be solved uniquely by Eqs. (17),-,(20). Substituting (4) and 
(21) into (1), one can obtain Johnson's N-body potential. 

The simulation results of the pair potential are in good agreement with the material 
mechanical behavior, if the material deformation is small. But as the material deformation 
is large , the calculation results given by the pair potential are remarkably deviated from 
the material mechanical behaviors. In order to eliminate the drawback of the pair potential 
(21), we think that the pair potential should not only satisfy Eqs. (17)~,,(21), but also satisfy 
the following continuous conditions. 

r  at r = r c  (22) 

r  at r = r c  (23) 

where rc is the cutoff distance. Following Johnson's suggestion, rc = 1.25a0, where a0 is the 
crystal constant, we propose the pair potential 

= 3 §  - r , e  , r , o  

1 'c 
e ( r  O - r2e  ) is a step function. B~ in (24) can be solved uniquely by above conditions. The 
results are 

B0 B1 B2 B3 B4 B5 
-1.65 11.58 -0.325 -0.45 -1.06 3.8 



Voi.12, No.4 Tang QH et al.: A New N-Body Potential and Its Application 361 

0.10 

0 . 0 5  - 

9. 

--0.05 

-0.10 
0.7 

/ (  
/ i  

~ . . , /  / 

0:8 0.'9 I:0 I:I 1:2 113 
l"/~'le 

Fig.1 Scaled pair potential ~o/Ec vs. 
scaled separation r/tie 

1.4  

Figure 1 is the pair potential, scaled energy 

r against scaled separation r / t i e .  The 
binding energy Ec = 6.81(ev), the unit of 
Bi(i = 0, . . . ,5)  is ev. The difference be- 
tween potentials (24) and (21) is the last 
term of the Eq.(24) with a step function 

H(rii -r2e). The embedding function (4) 
proposed by Johnson [9] is quite simple, but  

has no direct relevance to material mechan- 
ical behavior. We suggest that  the embed- 

ding function should be closely related to 
the material mechanical behavior. A good 
embedding function should guarantee that  
the calculation predictions to be consistent 

with the mechanical response of the materials even at large deformation. 
Based on the first principle, Rose and co-workers [1~ proposed a triaxial universal func- 

tion, Rice and co-workers[Ill extended it to the uniaxial extension. 

O'yy ~ O'maxeAy/L e~-~ (25) 

6ma x and L can be determined by experiment, L is an analogue to Thomas-Fermi charac- 
teristic scale of screen distance in a metal. Ay is the relative displacement of two neighbor 
atomic plane along the loading direction. It is natural  that  we should apply the uniaxial 
universal formula (25) proposed by Rice and co-workers [11] to determine the embedding 
energy function. Hiroaki and Kurishn's [121 experiment of single crystal Mo indicated that  

when r = 7.5%, the stress reaches the maximum. For the ideal single crystal Mo, amax 
should be equal to Girt, about 40 GPa  and L is also defined. The internal stress produced 
by the N-body potential  is given by the paper [13]. 

k l [ Pi ~ ' ] rijrij 1 , ( r i j )  +F'l-~Jpi,yJ rij ffkl = [ E 2~ \rle ] 
i,j,i#j 

(26) 

The coordinate system is selected to be 
x, y and z axes along [100], [010], [001], re- 
spectively. The calculation is carried out 
under the uniaxial extension in specifying 
displacement. Along z direction, there are 
six layers and 100 atoms per x-y plane, the 
number of total  atoms is 600. Under ex- 
tension in y direction, all atoms experience 
the same relative displacement Ag per step, 

Ay = 0.1a0, a0 is the crystal constant and 
there is not any displacement along x, z di- 
rection. Because single crystal Mo is of a 
periodicity along x, y, z direction, all atoms 
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Fig.2 Derivative of embedded energy, F'(p/p~) 
vs. scaled electron density PIPe 
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have the same environment. When the displacements of 600 atoms are specified, we can 
calculate the stress from Eqs. (25) and (26), substitute (24) into (26), have the stress from 

(26) to be the same as from (25), adjust the embedding energy and obtain the derivative of 
the embedding energy. Figure 2 shows that  the derivative of the embedding energy plotted 

against the scaled electron density Pipe, Pe is the electron density at equilibrium. The 
derivative of the embedding function F~(p/pe) can be expressed by the following fitting 
formula 

-10~0.2272- ( ~ - 0 . 7 7 8 )  +19 0.68 <_ fl-~ 

F ' (  P-]  : - 0 . 7 2  - 0.775 - 0.3 0.775 <_ P-  <_ 0.83 (27) 
\ Pe / Pe 

- 1 0  0.632 - - 0.88 +0 .59  0.83 < p < 1.01 
Pe 

Substituting (24) and the integration of (27) into (1), we can get a new N-body potential, 
the unit of (27) is ev. 

3 E X A M I N A T I O N  O F  P O T E N T I A L  

In order to examine the new N-body potential, the several different orientations of 
single crystals are calculated under extension and pure shear using molecular dynamics 
method and specified displacements procedure respectively. 

3.1 Uniaxial Extension (Specified Displacement) 
The coordinate system is selected to be x, y and z axes along [100], I0101, [001], re- 

spectively. There are six layers of x-y atomic planes along z direction, 100 atoms per x-y 
plane, the number of total atoms is 600. Loading is the same as in the above section, there 
is a periodicity along x, y and z direction respectively. The displacements of 600 atoms are 
specified, the stress can be calculated from (26), the result is plotted in Fig. 3. 

3.2 Uniaxial Extension (Molecular Dynamics Simulation) 
The coordinate system is the same as the case of above specified displacement, x, y 

and z are along [100], [010], [001], respectively. There are two layers along z direction and 
the periodicity along x and z directions. Whole block is divided into the outer and inner 
regions, see Fig.4. The outer region is called boundary or loading region, the discrete atoms 
in the boundary region can be loaded by specified displacements. The atoms in the inner 
region follow the Newton's law. 

OET 
cOri 

The molecular dynamics simulation is carried out by the Leap-frog Algorithm as follows 

vi(t + At/2) = (1 -- y)v,(t  -- At) + F' At (29) 
mi 

,-i(t + = ,-,(t) + v,(t +  t/2)At (30) 
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Fig.3 Under simple extension, stress vs. strain 

mi, v~ is the mass and velocity of the i-th atom respectively. The loading strain rate is 
0.001 19/ps, the time step is 1.256 • 10-14s, ~/is the numerical damping parameter  which 
is taken as 0.1 or 0 in the relaxation and loading respectively. Compared to Figs.3a and 3b 
the result is quite well. 

3.3 Pure Shear (Specified Displacement) 
The coordinate system is selected to be x, 9 and z axes along [110], [110] and [001], 

respectively. The size and number of atoms is the same as that  of specified displacement 
under extension. The displacements of all atoms are specified in p u r e  shear strain, the 
stresses are calculated from (26) and the result is in Fig.5. 
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3.4 Pure  Shear (Molecular  D y n a m i c s  S imulat ion)  
The coordinate system is the same as that  of above case 3. Axes x, y and z are along 

[110], [110], [001], respectively. Along z direction, there are two layers. The calculating 
method and loading rate is the same as the case of simple extension. Only the atom dis- 
placements in the boundary region are specified. From Fig.5 we can see that  only the result 
in molecular dynamics is in good agreement with that  in specified displacement. The curve 
of stress plotted against strain is of a slight wave in molecular dynamics. It is reasonable 
that  atoms move continuously in the loading. When stress reaches 12 Gpa, along ( l l0) / [ l i0]  
shear, the crystal lattice becomes unstable and the stress declines suddenly. 

4 T H E  D I S L O C A T I O N  E M I S S I O N  

4.1 T h e  A t o m  Lattice G e o m e t r y  

The parallelepiped with a slit is used as 
the simulated cell in the present calculation. 
The coordinate system is selected to be x, y 
and z axes along [111], [11-0], [112-], respec- 
tively. The periodicity along [111] is 3 layers, 
along [110] is 2 layers and along [112-] is 6 
layers. The length of simulated cell along x- 
direction is 100 x ~3a0, along y-direction is 

�9 36 x 2~a0, along z-direction is 6 x ~-~a0, the 

left side of boundary to crack tip is 30 x -~-~a0. 
The separation of the upper and lower crack 
planes ia taken to be 2V~a0. The number 
of atoms in the present simulation is about 
10 830, see Fig.6. 

V[li0] �9 I ~ 

z [ l ~  

Fig.6 Schematic diagram for the simulated 

atom model 

4.2 The  Boundary  Condi t ions  
The boundary conditions applied to the discrete atom in the outer region is that  of a 

prescribed displacement distribution dictated by mode II wi th / (2  field in x-y  plane. 

v .  = + 3) sin 0 /2  + sm 0/3] 

K 2 /--r'- r., 2 U~ = "~-~V 2"~ [~' n + 3) cos9/2 + cos 0/3] (31) 

where ~ = 3 - 4u,u is the Poisson's ratio. 

4.3 Resul t  and Discuss ion  
In the present calculation, the stress intensity t a c t o r / l  2 is chosen as the loading" pa- 

rameter, loading rate is/~2 = 0.027 85(MPaml/2/ps). Along z direction, six layers of atom 
planes are selected and the atoms in the inner region could move in z direction. From Fig.7, 
we found that  when K~ = l(MPaml/2),  a dislocation begins emission from the crack tip. 
Before the dislocation is emitted, the result of molecular dynamics is in good agreement 
with that  of the elastic solution. From Fig.7 and Fig.9, we find that  in bcc crystal Mo, a 
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perfect dislocation can be dissociated into 3 part ial  dislocations. But  fcc crystal  Cu  is dis- 

sociated into 2 part ial  dislocations [14]. After  the  dislocation emission, see Fig.10, the  stress 

dis t r ibut ion near  crack t ip given by MD is deviated from the K field bu t  in good agreement  

with t h a t  of  the K-b field [15] which takes into account  of the  contr ibut ion of  the emi t ted  
dislocations: 

G . S  b 
z 

(32) 

Since Eq.(32) is not  suitable at the  dislocation center, a modif icat ion by Peierls formula is 

in t roduced  a round  the dislocation centers. 

Fig.7 
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where bo is the Burgers 

Gb x 

ax~ = 2r(1 - #) x 2 + r 

vector, C is the radius of dislocation core. 
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Fig.9 The atomic config~e, plotted the position of dislocation 
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(33) 

5 C O N C L U S I O N S  

(1) This paper proposed a new N-body potential for metal Mo, the method can be applied 

to other metals. 

(2) By examination of extension and pure shear loading, the calculation result of N-body 
potential is in good agreement with the mechanical behavior of the material. 

(3) The new N-body potential proposed by this paper can be used to simulate the dislocation 
emission from the crack tip and the result is in good agreement with that  of the elastic 

solution. 

(4) The MD simulation shows that ,  in bcc crystal Mo, a perfect dislocation can be dissoci- 
ated into 3 partial dislocations, but  in fcc crystal Cu, a perfect dislocation can only be 

dissociated into 2 partial dislocations. 
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(5) The critical stress intensity factor at  initiation of a dislocation emission from the crack 

tip for the bcc crystal Mo is about  3 times larger than  tha t  of fcc crystal Cu. 

(6) I t  is obvious tha t  the displm:ement boundary  condition has effect on the nucleation of 

dislocation. When  the leading dislocation is inhibited at  boundary, it affects dislocation 
emission continuously. 
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