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Abstract. In this paper, a unified model for dislocation nucleation, emission and dislocation free zone is proposed 
based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations, 
located away from the crack tip in the form of an inverse pileup, define the plastic zone. Between that zone 
and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field 
and the dislocation density field in the cohesive zone and plastic zone being, respectively, expressed in the first 
and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set 
of nonlinear algebraic equations can be obtained and solved with the Newton-Raphson Method. The results of 
calculations for pure shearing and combined tension and shear loading after dislocation emission are given in 
detail. An approximate treatment of the dynamic effects of the dislocation emission is also developed in this paper, 
and the calculation results are in good agreement with those of molecular dynamics simulations. 

1. Introduction 

This paper is concerned with the dislocation behavior near a crack tip. The process of disloca- 
tion emission form a stressed crack has been observed in numerous experiments [1, 2, 3]. As 
pointed out by Ohr [1], a dislocation will be generated at the crack tip if the applied stress is 
sufficiently large. Once generated, the dislocation will move out of the crack tip area, leaving 
behind a dislocation free zone. In their pioneering work, Rice and Thomson [4] presented a 
dislocation emission model to characterize the plastic shear at a crack tip and developed a 
quantitative criterion for ductile versus brittle behavior. 

Recently Rice [5], Schoeck [6], Rice et al. [7] and Beltz and Rice [8] have reanalyzed 
the Rice-Thomson criterion on the basis of the Peierls model. For the mode II case, Rice 
[5] presented an exact solution for the loading at the nucleation instability and identified a 
solid-state parameter, the unstable stacking energy ")'us, which characterizes the resistance to 
dislocation nucleation. 

A new approach was developed by Wang [9] with a slightly modified Rice concept. Both 
the dislocation nucleation and emission from the crack tip were analyzed based on Peierls 
framework. The calculation clearly shows that there is a well-defined region of fairly 'perfect' 
crystal between the emitted dislocation and the crack tip area, which can be treated as the 
dislocation free zone. But that approach proposed by Wang [9] is only valid for the situation 
where the emitted dislocation is not far away from the crack tip. 

This paper is a continuation of the work of [9], where a unified model of dislocation 
nucleation, emission and dislocation free zone is developed. An approximate approach is 
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Figure 1. Shear stress versus shear displacement on a slip plane. 

also developed which takes into account the dynamic effect of the dislocation emission. The 
calculation results agree well with those of molecular dynamics simulations. 

2. The description of the model 

Suppose that the crack front is contained within one of the possible slip planes in a crystal. 
For a general loading, Beltz and Rice [7] proposed a generalized constitutive relation* 

Ax 
r~ = rmaxA(Au) sin (21r--~-) , 

O'y  = ~maxB(Ax) ~e l-(Av/L), 
(1) 

where 

A ( A y ) =  (I + - ~ ) e - ( % / L ) ,  (2) 

B(Az)  = l - qsinZ ( rc -~)  , ~us 
q -  2Vs' (3) 

where % is the surface energy, %s the unstable stacking energy, and L is the scaling length 
of the Thomas-Fermi screening length [10]. 

As shown in Figure 1, Az denotes the relative displacement of two atomic planes adjacent 
to the slip plane. With 5z defined as the slip displacement discontinuity on a mathematical cut 
coincident with the slip plane, we have 

T 
Az = ~ z + - h ,  (4) 

# 

where h is the interplanar spacing. 

* Only the case of r --- 0 is considered here. 
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Figure 2. Cohesive zone, decohesive zone ahead of a crack tip, dislocation free zone and emitted dislocations. 

5z can be taken as the plastic shearing along the slip plane. According to the crystal 
plasticity given by Hill [11], Asaro [12] among others, there will be no plastic shearing until 
the resolved shear stress r reaches the critical shear stress "r0. Hence (4) becomes 

Sz + rX h, "rz > "to, 

A ~ =  # 
r~ h, r~ <<. to. 
# 

(5) 

Let A v denote the relative atomic separation across the slip plane, which can similarly be 
expressed as 

Oy 
5y + - ~ h ,  ay > aO, 

A y  : (7y 
-~h,  ay <~ ao, 

(6) 

where 5 v is the opening displacement discontinuity on the slip plane, a0 the yield stress, and 
E the Young's modulus of the crystal. 

Figure 2 shows a plane strain or plane stress semi-infinite crack, which lies on the negative 
x-axis with its tip at x = 0. Let R1 denote the length of the cohesive zone for the slip 
displacement and R2 the length of the decohesive zone for the opening displacement. Beyond 
Rl,  there is no discontinuity for the slip displacement, and beyond R2, discontinuity of the 
opening displacement vanishes. 

The emitted dislocations are located at positions xi (i = 1 , 2 , . . . ,  No) within the interval 
(R~, Rb) characterizing the plastic zone formed by the emitted dislocations. The interval 
(/{2, Ra) can be treated as the dislocation free zone. 

3. Bas i c  f o r m u l a s  

According to Wang [9] and Loo [13], the traction on the cohesive zone ahead of the crack tip 
is 

2# fo Rb v ~  b(r) , . .  = , (o ) .  (. j i ) . i  v (z- dr, (7) 
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where a (°) T (°) y , zy are the singular stress field, and b(r) = bz(r) + iby(r). 
Equation (7) can be represented as 

(~7-1)7r + o ------x-r d r =  v/x[rxy zv,, 

x 

tl = R I '  

T 

82 = R 2 '  

and let 

2# ]£R2 V/-(by(T) d r =  v~[ay-a(° )] .  
(~ + 1)Tr x - r 

Introduce the following nondimensional quantities 
X T 

t2 = R-7' 81 = Rll' 

X T t=K' 

# 
, F l ( t l ) =  V/-~lbz(z)" + 1' 

_ r(O)] g l ( t l ) - - - -  ~ l  [Txy xy 1, 

# , F2(t2) = V~by(x)  n-- @ 1 

g2(t2) = v ~  [Cry - a~0)], 

# 
F(t) = v/tb=(x) (n + l ). 

Then (8) becomes 

2 { fol Fl(Sl)dSl R,b 1F(s) ds 
- -~ s l - t l + V[-~l f o - - t } = g l ( t , ) ,  

2 ~1 F2(s2)ds2 
- - 7  a v  82 -- t2 -- gz(t2), 

where 
Ra 

I 9 :  Rb" 

(8a) 

(8b) 

(9) 

(lO) 

(11) 

(12) 

The singularity of the dislocation density b(z) is less than 1/v/-~ at the crack tip, while the 
dislocation density b(z) vanishes at the end of the cohesive zone. 

1(1 + cos0),t2 = ½(1 + cos~o) and t +½(1 With the variable translations: tl = g = p - 
p) (l + cos ¢) ,  functions F1 (tl), F2 (t2) and F( t )  can be expressed as the following sine series 

1 oo 
F l ( t l ) = ~  E a m s i n m O ,  t l = l ( l + c o s O )  O~<O~Tr, 

m = l  

oo 1 
F2( t2 )=~m~l f lmsmm % _  t 2 = ½ ( l + c o s q o )  0<~qo~<Tr, (13) 

1 oo 
F(t)= ~ ~ T m s i n m ¢ ,  0~<~b~<Tr. 

m = l  
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Equation (13) can be rewritten as 

O(3 

Fl(t l )  = 1¢1 _ . 2 .  E o~mgm(,,), 
m----1 

OO 

S2(t2)  = 1 ¢ 1 - - r / 2 "  E flmVm(?72), 
m=l 

OO 

s(t) = ½¢1 _,2 E "YmUm(,), 
m=l 

(14) 

where U.~(~7) is the second Chebyshev polynomial 

sin mO 
Um(rl) - sin 0 ' rl = cos O, m = 1,2, . . . .  

Substituting (14) into (13) and using the following formula [16] 

1 [ t  x/l - ~2 Um(~) d~ 
(15) 

costa0, ~/=cos0,  -1  ~<77~< 1, 

T i n ( , ) =  [~/- V/-@- I] m, 7/> 1, 

, < - 1 ,  

one obtains 

(X) O0 

, m = |  

OO 

g2(t2) = E flmTm(r/2), 
m= 1 

(16) 

where Tm (r/) is the generalized first Chebyshev polynomial. 
The opening displacement and sliding displacement take the form 

~x Rb dz + i6y = b(T) dT. (17) 

Using (l l) and (15), we obtain 

" ) ~ x = ( 1 - p ) R b  oo (~ + I ~ .  ~ ~mW~(¢), 
m=l 

Ra ~ x ~ Rb, (18) 

# R1 ~ o~mVm(O) + # Nob, 
(,~ + 1~ '~ = -Z- (~ + I---Z rrt=l 

(19) 
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where 

f0 sin re0 sin 0 dO 
W ~ ( ¢ )  = 

~/p+ ½ ( 1 - p i l l  + cosO/ 

R2 
3mVm(~), 0 <~ z <~ R2, (20) 

# 

( ~ + l ) ~ U -  4 m=l 

Vm(O) - s in ( re -  ½)0 sin(re + ½)0 
1 1 , (21)  

r e  2 r e  -~- ~ 

where b is the magnitude of Burgers vector, No the number of emitted dislocations. 
The singular stress field can be expressed as 

4 0 )  + - ~ .  (22) 

Here K = Kl  + iKli  is the complex stress intensity factor. 
Substituting (22) into (11) and (12), we obtain 

1 [91(h) + 

1 [g2(t2) + K 1  ] ~ - ,/~ ~ "  

The Barenblatt's formula can be expressed as 

K n  _ 

K l  _ 

Formulas (13), (16)-(20) and (23), (24) are the basic formulas of this paper. 

l forr R~l ~-~"/mTm(r])] 

/0 /? 71" 

(23) 

(24) 

4. C a l c u l a t i o n  m e t h o d s  a n d  resu l t s  

The unknown coefficients {am}, {tim} and {Tin} are chosen as the basic unknown quantities. 
The infinite series in (13) and (16) can be approximated with a sufficient degree of accuracy 
by the corresponding truncated series. 

The cohesive zone 0 ~< x ~< RI is discretized into M elements, which vary in size along 
the region. The nodal points are given by the following expression 

xi = 1 R I  1 + COS M " 

Similarly the decohesive zone 0 ~< z ~< R2 is divided into N elements. The nodal points 
are given by the formula 
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The influence zone of  the emitted dislocations Ra ~< x ~ /~b is discretized into M ,  
elements and the nodal points are 

The governing equations are then transformed into a set of  nonlinear algebraic equations. 

M M, . ( A ~ i )  
Z aikak + ~ bik'Tk -- TmaxA(Ayi) sin 2~r---~- = 0, i = 1 , 2 , . . . , M ,  
k = l  

N t 
' .~ I~tA' ]AyjoI-(A'.i/L)- --C~ ~ -  bj#3k - ~.max~.~zjj--L-- . . . . .  , j - 1 , 2 , . . . , N ,  

k = l  

M M ,  / A * .  \ 

~-~ai*ka k + k~=lbi*kTk_TmaxA(A;i)sint2~ r :___!~) : 0 ,  i =  1,2, , M . ,  
k = l  

(28) 

where 

a [ c o s ( k 0 d -  cos (k~) ]  
ik = ~ - - ~  

Tk (Th) - Tk (~?,)__ 
b{k 

( i  - -  1)71- 1 " 
] Oi = ------~-~, tli = ~(1 + cos0i) ,  

[ t R l t  2(ti - p) 1 
"i : ~ li ,  ?]i - -  7 - - - -  -- , 

JZ b I - -  p 

~,- ~ 1, 

(29) 

b'~ = [ cos (k~) -  cos(k~)] ( i - 1 ) ~  
v ~  , ~ i -  N ' 

(30) 

a ik  = 

b* k = 

T k ( r m  ) - cos k~r 

v ~  

- T k ( n , )  + cos k¢~ 

ti = p + ½(1 - p ) ( l  + c o s C d ,  ¢ i  - (i - ,)~- 
M,  ' 

I~b t i ,  
I'll = -~1 ~lli = 2tli - 1. 

(31) 

Azi,  Ayi are the shearing and opening displacements at xi = Rl  [1 + cos  0i]/2; A~j,  A~j 
are the shearing and opening displacements at xj = R2[1 + cos~j]/2;A*xj, Ayj are the 
shearing and opening displacements at ti = p + (1 - p)(1 + cos ~bi)/2. 



234 T.C. Wang et al. 

! .25  

0.75 

0.25  

-0.25 

) O G  . . . . . . . . .  

i I i I J I ' 
0.0  IO0.O 200 .0  300 .0  400.0  

x/b 

Figure 3. Shear displacement profiles for a pure mode II crack after one dislocation emission for the case of 
Rl/b = 90, Ra/b = 100 and Rb/b = 420. 

Equation (28) is solved by the Newton-Raphson method. The iterating convergence is 
guaranteed after five or ten iterations. Most calculations in this paper were carried out with 
five digits of  accuracy for the stress fields in the cohesive zone. 

Calculation results 

The calculation was carried out with materials parameters h/b = 1,Lib = 0.2,~-0/# = 
0.01, ao/E = 0.008, v = 0.3, ~-max/# = 0.159, amax/E = 0.0766, and M = 120, N = 60 
and M .  = 180. 

Pure shear loading 

Figure 3 shows the slip displacement profiles for pure shear loading after one dislocation 
emission for the case of R l / b  = 90, Ra/b = 100, Rb/b = 420, and K I I / ~  TO = 11.6. The 
emitted dislocation is located at xl/b = 260. Figure 4 shows the shear stress 7zv distribution 
ahead of the crack tip. 

The slip displacements profiles for pure shear loading after two dislocation emissions for 
the case of  R1/b = ll3.5, Ra/b = 600, Rb/b = 1000, and Kll/v/2-~--b~-o = 12.6 are shown 
in Figure 5. The two dislocations are located at x l/b = 800 and x2/b = 748, respectively. 
The shear stress distributions ahead of the crack tip are shown in Figure 6. The shear stress 
changes drastically around the center of the emitted dislocation. 

Combined tensile and shear loading 

The results for a general combined shear and tension loading after emission a single crystal 
are given in Figures 7 and 8. Figure 7 shows the slip and opening displacement profiles for 
the case of Rl/b = 200, Rz/b -=- 100, Ra/b -- 600, Rb/b = 1000, K I / ~ r  o -- 9.69 and 
KIt / ~ 7-o = 10.2. The stress fields ahead of the crack tip are shown in Figure 8. The shear 
stress reaches the maximum value at x/b = 4.8 and the normal stress reaches the maximum 
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Figure 4. Shear stress distributions ahead of the crack tip after one dislocation emission for the case of RI/b = 
90, R~/b = I00 and Rb/b = 420. 
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Figure 5. Slip displacement profiles for a pure mode II crack after two dislocation emissions from the crack tip for 
the case of RI/b = 113.5, R,/b = 600 and Rb/b = 1000. 

value at z /b  = 4.3.  The  shear stress actually vanishes  at the crack tip due to the second  
dis locat ion being  fully nucleated near the crack tip. 

5. D y n a m i c a l  e f fects  

The process of the dislocation emission from the stressed crack tip is actually a dynamic one. 
The emitted dislocations will rapidly move away from the crack tip area with a high speed. 

In this section we give an approximate treatment of the dynamic process of the dislocation 
emission for the pure shear loading. After a dislocation fully nucleated at the crack tip, the 
dislocation accelerates very quickly. Through a short distance (about 30-40b), the acceleration 
tends to zero and the dislocation moves with a nearly constant speed v. We suppose the speed 
v is below the shear wave speed cs. 
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Figure 6. Shear  s t ress  distr ibutions a long the cohesive zone for a pure mode  II crack after two dis locat ion emiss ions  
for the case  o f  RI/b = 113.5, Ra/b = 600 and Rb/b = 1000. 
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Figure 7, Disp lacement  profiles for a combined  mode  crack after one dislocat ion emiss ion  f rom the crack tip for 
the case  o f  Rl/b = 200 and R2/b = 100, Ra/b = 600 and Rb/b = 1000. 
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Figure 8. Stress distr ibutions along the cohesive zone for a combined  mode  crack after dis locat ion emiss ion  for 
the case ofR1/b = 200 and R2/b = 100. Ra/b = 600 and Rb/b = 1000. 
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As pointed out by Weertman and Weertman [14], the shear stress produced by an edge 
dislocation parallel to z-axis and moving uniformly with speed v can be expressed as 

2# b 
- - e ,  (32) 

7:~v = (~  + l)~r x - x~ 

where xc is the current position of the moving dislocation, ~ the reduction factor 

c = (,~ + 1) 1ji--2-J-~211 (,~ 7 ~  - 1 -  ~ ,  (33) 

where w = V/Cs. 
When v -4 0, the reduction factor e --+ 1. Hence the influence of the dislocation movement 

can be characterized by the reduction factor c. 
If we take into account the interaction between the emitted dislocation and the crack faces, 

the shear stress can be evaluated by the following equation 

2> x/r~-7 _b 

~-~Y = (~ + 1)~ V 7  ( x -  *c) ~ 
(34) 

Equation (34) is valid only for the steady state which means that the crack tip advances 
with the same speed v. But in our situation the crack tip does not advance. Therefore (34) only 
provides an approximate evaluation. 

In the cohesive zone, the continuous distributed dislocation ahead of the stationary crack 
tip can still be treated as the stationary dislocation. 

Instead of (8), the basic equation becomes 

(~ T i >  - - -  d~ + (7---U~) = v~(~xy - xy ,. (35 )  

Using the method proposed in Section 4, (35) can easily be solved. 
The shear stress distributions along the cohesive zone are plotted in Figure 9 for different 

moving speeds, with the parameters R1/b = 63.5, and xc/b = 200. The three curves are 
corresponding to Vies = 0, 0.5 and 0.9 and KII/V/~--bTo = 10.3, 9.75 and 8.17, respectively. 

The shear stress distribution seems to not be sensitive to the moving speed v of the emitted 
dislocation. The shear stress distribution actually is controlled by R~, the length of the cohesive 
zone, and Xc the current position of the moving dislocation. The external stress intensity factor 
is equal to K H / ~ r o  = 7.95 for the case of Rl/b = 63.5 before the dislocation emission. 
Hence the stress intensity factors Kil/X/2x/2x/2x/2x/2x/2x~ To shielded by the emitted dislocations are 2.35, 
1.8 and 0.22, respectively, for the three curves in Figure 9. 

Figure 10 shows the stress distribution ahead of the crack tip in a copper crystal for the case 
of RI/b = 30 and K H / ~  7o = 16.0. In this copper crystal, the crack plane is taken to be 
the { ! 11 } plane, crack front is along the (112} direction. Under the mode II loading the partial 
dislocations will move along (110) direction. Two partial dislocations are combined to form 
a complete lattice dislocation. The molecular dynamics simulation is carried out on a cracked 
parallelepiped with a finite boundary by Zhang et al. [17]. Using the molecular dynamics 
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Figure 9. The dynamic effect of the moving speeds of the emitted dislocations on the stress distribution ahead of 
the crack tip. 
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Figure 10. The comparison of the present results (small white circles) and the results (small black circles) of the 
molecular dynamics simulation for the stress distribution ahead of the crack tip. 

simulation, the constitutive relation between the cohesive force and the shear displacement 
has been calculated, which can be approximately expressed as 

q-z = Tmax sin ( - ~ )  , (36) 

w h e r e  "/-max = 4.35 GPa, b = a0/(2v'~) and a0 is lattice parameter. 
The shear modulus # = 56.0GPa. The shear wave speed is cs -- 2215 m/s. According 

to the molecular dynamics calculation, two partial dislocations are located at zl  = 87b and 
z2 = 34b and the moving speeds are vl = 1460 m/s  and v2 = 1549 m/s, respectively. The 
molecular dynamics calculation results for the shear stress distribution ahead of the crack 
tip are also shown in Figure 10. The present results are in good agreement with those of 
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the molecular dynamics calculation. Very near the crack tip, the present results give higher 
stresses than those of MD results, because the continuum model is not suitable for this region. 
Meanwhile near the boundary the present results give lower stresses than those of the MD 
results since the present results correspond to an infinite plane. 

6. Discussion 

A unified model for dislocation nucleation, emission and dislocation free zone is proposed in 
this paper based on the Peierls framework and with a slight modification of the Rice concept. 
Three regions are identified ahead of the crack tip, that is, the cohesive zone immediately 
ahead of the crack tip, the plastic zone formed by the emitted dislocations which located 
out of the crack tip area and a dislocation free zone between those two zones. It is shown 
by the calculation results that the stress distribution immediately ahead of the crack tip is 
mainly determined by the parameters -R1, R2 and the position of the first emitted dislocation 
• v l. An approximate approach is developed in this paper to analyze the dynamic effects of 
the dislocation emission. The calculation results indicate that the stresses ahead of the crack 
tip are not sensitive to the positions and speeds of the emitted dislocations if the emitted 
dislocations are located far away from the crack tip region. On the other hand, the external 
stress intensity factors are sensitive to those factors. It should be pointed out that the present 
analysis concerns only a two-dimensional description, while it is evident that the dislocation 
emission actually takes place in a three-dimensional geometry by a dislocation loop [15]. The 
elastic anisotropy and the effect of the thermal activation on the dislocation are also neglected 
in the present analysis. Further investigation is needed. 
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