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Almraet--The various patterns (shear banding, surface wrinkling and necking) of material bifurcation 
in plane sheet under tension are investigated in this paper by means of a numerical method. It is found 
that numerical analysis can provide better ground for searching for the lowest critical loads. The 
inhomogeneity caused by void damage and the nonuniformity in the stress distribution across sheet 
thickness are proved to have detrimental effects on the material bifurcation. Nevertheless, material 
stability can be promoted by any means of depressing void damage or alleviating stress, even locally across 
the thickness. Besides, the peculiar behaviour of material bifurcation under slight biaxiality state is 
demonstrated. Copyright © 1996 Elsevier Science Ltd 

INTRODUCTION 

IT IS commonly known that the incipient failure in ductile materials is the occurrence of material 
bifurcation. Surface wrinkling, shear banding and necking can all act as precursor to eventual 
fracture. To improve the understanding of their formation mechanism is conducive to developing 
the capacity for predicting material failure, which is extremely important for the efficient control 
of the metal forming process. 

Employing incompressible plasticity theory, Hill and Hutchinson [I] proposed a localized- 
mode solution method for analysing the shear-band bifurcation. Li and Zhu [2] developed a 
diffuse-mode analysis, taking into account the effect of plastic dilatancy caused by voiding in ductile 
materials. However, owing to the limitation in prescribing the bifurcation patterns as pre-requested 
in this analytical method, it is not always able to obtain the lowest critical value for the different 
patterns. 

Material bifurcations in continuous media are generally sensitive to heterogeneities. Using 
Gurson's [3] model proposed for voided materials, Yamamoto [4], Ohno and Hutchinson [5] and 
Becker [6] studied the role of nonuniform distributions of voiding in forming the shear band. 
Huang [7] investigated the role of nonuniform particle distribution in plastic flow localization. 

In this paper, numerical method is utilized to enhance the study of the various patterns (shear 
banding, surface wrinkling and necking) of material bifurcation in plane sheet under plane-stress 
tension. As the local distributions of velocity variated at bifurcation can be well discretized by this 
method, the lowest critical value is able to be searched within a wide scope of variation patterns. 

The numerical method is also an exclusive approach to the analysis of the effects caused by 
the inhomogeneity of void damage and by the nonuniformity of stress distribution across sheet 
thickness. The effect of having slight tension along the transverse direction is also studied, since 
pure uniaxial tension is not always available in practical testings. The results obtained in this paper 
can help understand their influence on material bifurcation and set up theoretical basis for 
providing means to improve material ductility. 

THEORETICAL FORMULATIONS 

Ensuring that the functional 

I ~V D~,~ - v~,vk /)Idv- f, Fy,.ds n -- ~ J,L D t  .DO - a,/(2D,,D/, . . (1) 

takes an extremum is equivalent to satisfying the equilibrium equations together with the boundary 
conditions for any incremental solution of the boundary-value problem in the practical up-dated 
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Lagrangian formulation [8]. In which, DT~j/Dt is the Jaumann rate of Kirchhoff stress, a,, is the 
Cauchy stress, F, denotes the rate of external load and the deformation rate D,, is related to the 
velocity components V, as 

1 
O,, = ~ (V,.j + V , ) .  (2) 

Under the condition of dead (conservative) loading, it has been demonstrated [2, 9] that bifurcation 
occurs at the point when the second variation 

Q = 62// 

= 2 D t  

becomes stationary. 
In eqs (1) and (3), we have 

and 

(3) 

DT,/ 
Dt = L,j,,D,I (4) 

Drr,j = L i ~ D ~ ,  (5) 
Dt 

In the case when the "linear comparison solid" model can be applied, then L ~  = Lij,I. In view of 
the voiding damage in ductile materials, a dilatational plastic constitutive model was lately 
developed and justified [1 I, 12] which gives the stiffness tensor as 

E [ 1  v - E / 3 E ,  m 3 S~S,, 1 
L,j,, - I + v -2 (fi,,rjt + 6ifij,) + 6,j6~, 1 - 2v + E/E,m 2a, 2 1 + 2(1 + v)E, , /3E ' (6) 

where E and v are Young's modulus and Poisson's ratio, respectively, a, is the equivalent stress, 
which is related to the deviatoric stress S,j as a~ = (3/2 S~Sj~) ~'2, 6~ represents the Kronecker delta. 
E,~ = (daJdE.) and E,m = (dam/dEm) are the plastic tangent moduli along the equivalent stress-strain 
curve (a, - E.) and the mean stress-strain curve (a~ - Era) respectively, with the mean stress and 
mean strain defined as trm = 1/3 (a**) and E,, = 1/3 (E**). 

When the finite-difference method is used for numerical solution, we need to normalize the 
second variation Q and the components of generalized velocity variation ~ by taking 

Q =  ~ and V, , -  L ' (7)  

where L stands for the characteristic length parameter in the bifurcation pattern, m ( =  1, 2) is the 
m 'h component at each nodal point and (n) (=  1, 2 . . . .  n) denotes the sequence number of the 
discretized nodes with a total number of n. The stationary condition at bifurcation can be 
implemented by vanishing the partial derivatives of Q with respect to re. Hence, at each nodal  
point we have two equations in the form of 

0Q/~I 7". = 0 m = 1, 2.  (8) 

MATERIAL BIFURCATION IN PLANE S H E E T  

Figure l(a) schematically demonstrates the surface wrinkling with wave length L formed in 
plane sheet of thickness h. It is commonly understood that for surface wrinkling the geometric 
parameter h / L  is much larger than I, as shown by Hutchinson and Tvergaard[13] and 
Tvergaard [14]. This is to distinguish from the necking pattern where the wave length L should be 
much larger than the plate thickness h and hence h / L  is much smaller than 1, as stated by Burke 
and Nix [9], owing to the fact that their numerical values for critical strains decrease with respect 
to the increase of the slenderness ratio of necking sheet under plane-strain tension. A shear band 
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Fig. I. Schematic demonstration of (a) surface wrinkling and (b) shear banding. 

which spans a width of  L is shown in Fig. l(b). Its normal direction is along the axis x~ and the 
tangential direction is parallel to the axis x#. The angle between x~ and x, is nominated as ~, which 
can be evaluated in correspondence by approaching the lowest critical loading• Hence, the velocity 
variations can be represented by taking 

• 2nx 
6 V~ = s,n --L-- V~(x~) 

2gxl  
6 V 3 = c o s  - - L - -  V~(x.,), (9) 

with 6 V., = 0, 6 V,.2 = 6 V~.2 = 0 for surface wrinkling and 

7~X~ 
6 V, = sin -~- V,(x3) 

V, = s in-~-  V2(x3), (10) 

with ~5V3 = 0, ~V~.u = 6V#.# = 0 for shear banding. In these equations, V,(x3) and V2(x3) are the 
functions used for characterizing the distributions of velocity variations across the sheet thickness 
h. These functions should be discretized by using the finite-difference method. 

In the case of surface wrinkling, the boundary conditions that should be satisfied are 

6 V , = 0 ,  5V3.1=0 a t x , = 0  

V3=O, 6V~.3=0 a t x 3 = O  
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~J',,dx3 = 0, ~T,3dx~ = 0 at xj = L/2 
h .2  h /2  

~iT3~=0, 6 T 3 , = 0  a t x a = h / 2 .  (11) 

Here, 6TN, 6T~ and 6T33 are components of the variation of  nominal stress rate. The boundary 
conditions for shear banding should change into 

f i v e = 0 ,  6 V ~ = 0  a t x ~ = 0  

6V~.3=0, 6V~.3=0 a t x 3 = 0  

ih,2 h;2 67"~,dx3 = O, ~ir,3dx3 = 0 at x~ = L/2 
h.2  -. h.'2 

6T33 = 0, 8T3~ = 0 at x3 = h/2, (12) 

with regard to the (x~, xa, x3) coordinates. For both cases, the pre-bifurcation stress state is taken 
to have the plane sheet stressed uniaxially, that is to say, only a .  is finite while the other stress 
components are nil. 

Taking the material parameters at bifurcation to have v = 0.3, E,e/E=O, G (yield 
strain)=0.002 with various values for E/E,m (=  60, 80 and 100) to simulate the various degree of  
voiding damage, we can use the numerical procedure stated previously to calculate the critical 
stresses. Usually 50 finite-difference sections along the half thickness are used for discretization. 
Its calculation precision has been checked by comparing with that of having 100 sections. The 
results of  both the surface wrinkling and shear banding are listed in Table 1. The critical uniaxial 
stress a ,  is being normalized by the yield stress a r Each stress reaches its lowest value (to three 
decimal places) at the value of h/L shown in the circular parentheses. The analytical results are 
based on some previous works [2, 15] using trigonometric series (two to three terms) for the 
functions Vj and V2 in eqs (9) and (10). 

For  shear banding, numerical results ~ire equal to analytical results (to three decimal places) 
due to the precise prescription of  bifurcation mode. Since the numerical method has better 
flexibility in simulating the varieties of  velocity forms variated at material bifurcation, it is able 
to provide lower critical stress as shown in Table 1 for surface wrinkling. Secondly, the results 
indicated that the different patterns of  bifurcation can have critical stresses close to each other. 
This fact implies that they might be sensitive to the inhomogeneity of  materials and the 
nonuniformity of  stress distribution. No necking pattern of  bifurcation is found with regard to 
sheet thickness in pure uniaxial (plane-stress) loading. However, later on it will be shown that slight 
biaxiality in tension can bring about necking bifurcation at critical stress near to those of  shear 
banding and surface wrinkling. 

Figure 2(a) and (b) shows the normalized functions of  V2 across the half thickness of  the sheet. 
For  surface wrinkling, the maximum I"2, i.e. (V2)m~,, occurs at the surface plane (2xdh = 1) while 
conversely the (V~)~ of  shear banding locates at the middle plane (2x3/h = 0). 

THE INHOMOGENEITY  OF VOIDING DAMAGE 

According to the experimental report given by Zhu et al. [16] void damage does not have 
homogeneous distribution across the sheet thickness. Hence, the distribution of  void volume 
fraction f ,  which can be measured, is not uniform across the thickness direction. It is known that 

Table I. The critical stresses a~/~y (v = 0.3, E,,/E = 0, ey -- 0.002) 

E/E~ Surface wrinkling Shear banding (h/L = I000) 
Numerical Analytical Numerical Analytical 

60 2.733 (h/L = 4 - 10) 2.750 (25 - 35) 2.750 2.750 
80 2.058 (4 - 12) 2.065 (25 - 35) 2.068 2.068 
100 1.651 (3 - 6) 1.657 (25 - 28) 1.657 1.657 



the mean strain Em caused by voiding is related to the void volume fraction f ,  owing to the fact 
that 

Em = (E, + E2 + E,)/3 =f/3. (13) 

2X-# 

The mean stress tr= (=a,,/3 under uniaxial stressing) can also be determined by recording the 
current loading and geometric dimensions. Then the varying values of the tangent modulus E,m, 
which characterizes plastic dilatancy in eq. (6), can be determined by the relation of 

E,.. = Aa=/A~,.. (14) 

One of the main findings given by Li and Zhu [2] shows that the rate of porosity development is 
a controlling factor which favours shear-band bifurcation. This conclusion indicates that E,m is 
playing a dominant role in triggering bifurcation. A larger value of E,m means a slower void growth, 
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Fig. 2. The distribution of V2across the halfthicknessofthesheet (a) surface wrinkling, (b) shear banding. 
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while a smaller value of E,m denotes a faster rate of voiding. In this section, we intend to study 
the effects caused by the inhomogeneity of voiding damage. 

Three patterns of inhomogeneity distribution are given in the following to study the difference 
of their effects on critical stress. The distributions are symmetric with respect to the middle plane 
at x3 = 0. We use the normalized parameter E/E,m instead of E,~,. We further define 

(E /E , , , )  Dm (E/Etm)m (15) 
D - (E /E , . , ) . "  -- (E/E,m)a ' 

where the subscript "m"  stands for the maximum (if Dm> 1) or the minimum (if Dm< 1), and the 
subscript "a"  denotes the average value of the parameter enclosed in the circular parentheses. 
Figure 3(a)-(c) demonstrates the three patterns of distribution across the half thickness of sheet. 
When Dm= 1, the distribution is uniform. If Dm> 1 or Dr, < I, it means that there is a local bulge 
or indent with regard to the uniform distribution of E/E,,, within the region marked across the half 
thickness of sheet. Since Young's modulus E is a constant, Dm> 1 implies the material within the 
local region suffers more voiding damage so that the value of E,,, is smaller than that in the major 
part of the distribution. Conversely, Dm< 1 indicates that voiding is locally alleviated and thus 
results in a larger value of E,m. 

In view of the variation of E,m at different nodal points across half thickness, the 
finite-difference method is again applied to the present analysis to calculate the critical stresses E 
for the cases of having inhomogeneity in voiding damage. The critical stress for the homogeneous 
case (D,, = 1) is given as F0. Figure 4(a) and (b) demonstrates the variation of the critical stresses 
with respect to varying the values of D,,. In the calculation, we take E,~ = 0 and (E/E,,,), = 100. 
The Poisson ratio and yield strain have the same values as given previously. It is obvious that 
bifurcations into either surface wrinkles or shear bands can be stabilized by the depression of 
voiding. Even a local alleviation (i.e. Om< 1 ) can stiffen the materials to have critical stresses equal 
or slightly larger than the theoretical prediction for ideally homogeneous material (i.e. Dr, = 1). 
When Dr, < 1, the site of inhomogeneity has little influence on the critical stresses E. 

On the other hand, catastrophic decrease in critical stress can happen if the situation is inverted 
when voiding is promoted locally (i.e. Dm> 1). Besides, if the promotion of voiding is at the site 
where the disturbance at bifurcation is largest, then the case becomes more devastating. 
Consequently, the pattern (a) of inhomogeneity distribution for surface wrinkling, but the pattern 
(c) for shear banding most impair the critical stresses. These are in accordance with the facts that 
the largest disturbance occurs at the top surface (2x3/h = 1) in surface wrinkling but moves to the 
middle plane (2x3/h = 0) in the case of shear banding, as shown in Fig. 2(a) and (b). The value 
of h/L can be fixed as 1000 for shear banding, but varies as occasion requires to yield the lowest 
critical loading of each computed case in surface wrinkling. 
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Fig. 3. Three patterns of distribution across the half thickness of sheet. 
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Finally, the inhomogeneity of voiding damage plays a crucial role in varying the velocity 
disturbance at bifurcation. A demonstration of this effect is illustrated in Fig. 5, in which the 
velocity patterns I"2/(V2),,,~ along the half thickness in Fig. 2(a) and (b) are now reproduced by 
using dotted lines for the homogeneous cases (Din = 1) of surface wrinkling and shear banding 
in Fig. 5(a) and (b), respectively. We use two extreme cases, the pattern (a) and pattern (c) in 
Fig. 3, to exemplify the inhomogeneity effects. In Fig. 5, the thick solid lines are based on the 
computations under the influence of pattern (a), while thin solid lines are depicted for those 
with pattern (c). Different degrees of inhomogeneity are taken in the examples as marked in 
Fig. 5. 

It is obvious that the velocity disturbance at bifurcation becomes larger at the site where more 
voiding damage is suffered. Therefore, pattern (a) [thick lines] stimulates larger disturbances near 
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Fig. 4. The variation of the critical stress F, (normalized by F0) with respect to varying the values of Dm 
[E,,/E = O, (E/E,m). = 100] (a) surface wrinkling, (b) shear banding. 
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Fig. 5. The effect of inhomogeneity [with pattern (a) in thick solid lines and pattern (c) in thin solid lines] 
on the velocity disturbance at bifurcation (a) surface wrinkling, (b) shear banding. 

to the surface (2x3/h = 1) while pattern (c) [thin lines] brings about more concentration near to the 
middle plane (2x3/h = 0). The violation degree of  velocity disturbance increases with regard to the 
increasing of  parameter Din. Shear banding is much more sensitive to the variation of  Din, when 
compared with the situation of  surface wrinkling. 

THE NONUNIFORMITY OF STRESS DISTRIBUTION 

When a sheet plate is subjected to uniaxial tension, the pre-bifurcation stress ~,. may not be 
distributed uniformly along the thickness direction. In analysis, we have checked that if Poisson's 
ratio is adjusted appropriately within a range not larger than 5%, the nonuniformity of stress ~,  
distribution across thickness would not bring about other stress components. Hence, the uniaxiality 
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of stress state can be kept in a practical sense. Besides, it has also been checked that the variation 
in Poisson's ratio has a trivial effect on the critical values. Therefore, the process of previous 
calculation can be repeated for this case, except that the variation of uniaxial stress across the sheet 
thickness should be taken into account. 

The patterns of nonuniformity distribution taken into consideration are analogous to those 
shown in Fig. 3. We let (E/E,m), and (E/E,m)m be replaced by (au). and (treE)m, respectively, and 
renew the definition for D and Dm by taking 

D = a ,  Dm = (atOm (16) 
( a , , ) .  ' ( a , , ) .  ' 

where the subscripts m and a have the same meaning as stated previously. Dm= 1 means uniform 
distribution of stress tr. along the sheet-thickness direction. Dm < 1 indicates that stress trtt is 
depressed locally, so the minimum value (tr.)m is smaller than the average value (a,),. Conversely, 
if Dm> 1, it means that there is a local stress concentration, and thus the maximum value (trH)m 
is larger than the average one. 

For this case, let the voiding damage be homogeneous, the values assigned for the material 
parameters and the principle for determining the ratio of h/L are the same as stated previously. 
The effects of nonuniformity in stress distribution on critical stresses are then calculated and 
delineated in Fig. 6. When Dm> 1, a similar trend as that illustrated in Fig. 4 can be seen. Local 
depression of stressing is stabilizing (Din < 1), but any flourish of stress amplitude (Din > 1) is not 
favourable for stabilization, especially if the stress peak is located at the place where the velocity 
disturbance should be large. Therefore, the most serious case for surface wrinkling is to have 
pattern (a) of nonuniform stress distribution across the thickness, since the maximum stress is at 
the surface plane (x3 = h/2) which is also the site of the largest velocity variation. Analogously, 
pattern (c) is most dangerous for shear banding, as the sensitive site moves to the middle plane 
at x3 = 0. The effects of nonuniformity on the bifurcation patterns have a similar trend as that 
shown in Fig. 5. Larger velocity variation (than that of the uniform case) can be stimulated at the 
location of having larger stress. 

SLIGHT BIAXIALITY OF STRESS STATE 

As the geometric constraint to contraction in the transverse direction of sheet plate is 
increased, a tensile stress cr22 is generated with increasing magnitude [17]. Slight biaxiality of stress 
state is inevitably existing in specimens loaded uniaxially. 

Let us define 

/3= a2_..~2 . (17) 
~11 

For convenience sake, the ratio value of fl is assumed to remain constant before material 
bifurcation. Taking into account this change of the pre-bifurcation stress state, we can determine 
the critical stresses by an analogous process as stated previously. In Table 2, the critical stresses 
are listed for shear banding under the condition of having h/L = 1000, v = 0.3, Etc/E = O, 
E/E,m = 100, ~y = 0.002. It is obvious that the critical stress increases with increasing/3, although 
the absolute value of/3 is still small. 

The critical stresses computed for surface wrinkling are plotted in solid lines against the values 
ofh/L with/3 = 0, 0.02, 0.05 in Fig. 7. The general trends of the curves have some similarities with 
the results calculated on the basis of using Gurson's model [3] for constitutive relation and reported 
by Tvergaard [14]. Brief elucidation should be given for our distinctive points and findings. We use 
dotted lines to mark the critical stress listed in Table 2 for shear banding in the corresponding 
figures in Fig. 7. The gap between the dotted lines and solid curves increases with respect to the 
increase of/3.  This demonstrates that the shear banding in the plane is giving way to other 
bifurcation patterns as biaxiality increases. However, another type of shear banding crossing the 
transverse section of  sheet can be favoured by biaxiality stress state, especially when it reaches a 
plane-strain pre-bifurcation case, e.g. the one shown by Tvergaard [14]. At the first sight of Fig. 7, 
it seems that necking (h/L --, 0) is always leading in bifurcation, since its critical stress is always 
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Fig. 6. The variation of the critical stress F, (normalized by F0) with respect to varying the values of Dm 
[ E . / E  = 0, ( E / E ~ ) ,  = 1001 (a) surface wrinkling, (b) shear banding. 

lower than the others. But close examination on the corresponding patterns of  bifurcation would 
show the complexity in this situation. I f  we examine a factor nominated as 

~, = ( V2)m,~/( V,) . . . .  (18) 

which is a ratio of maximum V2 to maximum V, in which V~ and 1:2 have been defined in eq. (I0). 
This ratio parameter is used to quantify the degree of transversal waviness vs the planar disturbance 
at bifurcation. Table 3 shows the change of parameter 7 with respect to h/L and #. Although we 
have the lowest critical stress at h/L = 0, the degree of waviness characterized by ~, is negligible, 

T a b l e  2 .  C r i t i c a l  s t r e s ~ s  for shear banding under slight biaxiality of stress state (h/L = 1 0 0 0 ,  v = 0 . 3 ,  EN/E = O, 
E/E,~ = 100, ~y = 0.002) 

j8 0.0 0.02 0.03 0.05 
a.lay 1.657 1.738 1.851 2.164 
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Table 3. The parameter 7 varying with respect to h/L and fl (v = 0.3, E~/E = O, E /E ,  = 100, Ey = 0.002) 

h/L 0 0.5 1.0 1.5 2.5 3.0 3.6 

0 0.0003 0.0009 0.027 0.036 0.041 0.049 0.053 
0.02 0.003 0.008 0.07 0.09 0.12 0.13 0.14 
0.05 0.005 0.009 0.15 0.18 0.23 

the disturbance is mainly restricted within the plane. We can have either necking (h/L<<l) or 
surface wrinking (h/L>> I) when the value of "? becomes significant (e.g. if h/L > 3 for fl = 0.02, 
or h/L > ! for fl = 0.05). It is obvious that necking with a small value of h/L is more likely to 
occur when practical biaxiality is intensified. 

CONCLUSIONS 

Based on the numerical studies stated above, we can conclude: 

1. Concerning the different patterns of material bifurcation, the numerical method can provide 
better ground for searching for the lowest critical loads, since numerical discretization offers more 
flexible representation to the distributions of velocity variations. 

2. Generally speaking, the inhomogeneity of voiding damage and the nonuniformity of stress 
distribution bring about reduction in the critical loading. This explanation may unravel the 
puzzling question of having tested values of critical stress/strain lower than those predicted 
theoretically. 

3. Depressing porosity development or alleviating stressing, even locally across the transversal 
section of sheet, can be beneficial for material stability. Therefore, developing surface treatment 
techniques to condition the internal state of sheet can be a practical implementation for the purpose 
of improving material ductility. 

4. The critical stresses for surface wrinkling and shear banding have closely related values in 
plane sheet under uniaxial tension. This fact implies that materials at bifurcation can have multiple 
patterns. Furthermore, the influence of slight biaxiality state caused by geometric constraint on 
both the bifurcation pattern and critical stress enhances the perplexity of the problem. 
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