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Ahstrct-An anisotropic elastic-plastic constitutive model for single and polycrystalline metals is 
proposed. The anisotropic hardening of single crystals, at first, is discussed with the viewpoint of 
yield surface and a new formulation of it is proposed. Then, a model for the anisotropic hardening 
of polycrystals is suggested by increasing the number of slip systems and incorporating the inter- 
action of all slip systems. The interaction of grains through grain boundaries is shown to be similar 
to, and incorporated into, the interaction of slip systems in grains. The numerical predictions and 
their comparisons with experiments will follow in Part II of this paper. 

I. INTRODUCTION 

One of the main features of the stress-strain characteristics of engineering materials is 
their directional dependency after some plastic deformation, i.e. plasticity-induced 
anisotropy. To approach this phenomenon, the concept of kinematic hardening has 
been introduced. Kinematic hardening specifies the center of a yield surface in stress 
space. As it changes with plastic deformations, the yield surface translates and thus the 
mater:ial has different behaviors in different directions. This approach has been found 
to be a good approximation of the anisotropic behavior if the plastic deformation is 
small. The reader is referred to the experimental results by Phillips [1985], Stout [1985], 
Khan and Wang [1988, 19901 and their applications in constitutive models by Prager 
[1949], Ziegler [1959], Armstrong and Frederick [1966], Chaboche [1986], Dafalias 
[1975], Valanis and Lee [1982], among extensive investigations on this topic. 

Under finite plastic deformation of about ten percent, experimental data on yield 
surfaces (see Khan & Wang [1988,1990]) show that a yield surface changes not only due 
to translation of its center but also due to distortion of its shape with plastic deforma- 
tion. In the direction of loading, the yield surface becomes sharp while in the opposite 
direction of loading, the yield surface tends to become flat. If the loading changes its 
direction several times, the final yield surface will be composed of several sections with 
different curvatures. Obviously, this strong anisotropic behavior makes the mathema- 
tical representation of such a yield surface very difficult and complicated. 
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For the last few decades, much progress has been made in the study of crystal plas- 
ticity (see, e.g. Asaro [1983], Havner [1992]), which gives some valuable insights into 
the complicated anisotropic behavior of metals. Now it is understood that every point 
of a yield surface may correspond to the state of one or several slip systems, and the 
shape of a yield surface may result from the interaction of various slip systems. The 
large number of slip systems and grain boundaries in polycrystalline metals are 
responsible for the differences in their yield surfaces compared to those of single crystals. 
More significantly, studies in crystal plasticity suggest that stress depends not only on 
strain but also on plastic spin when crystals undergo finite plastic deformation (see, e.g. 
Havner & Shalaby [1977], Aifantis [ 19871, Havner [ 19921 and Dafalias & Aifantis [ 19921). 

It is desirable to describe the elastic-plastic constitutive relations based on the evo- 
lution of the micro-structures. However, this methodology still remains a challenge to 
researchers with difficulties to be overcome. Various micro-structures and the defor- 
mation mechanisms of the engineering materials need to be described, the work hard- 
ening of single crystals requires detailed determination. The quantities at the micro- 
scale lever need to be more accurate in relation to those at the macro-scale level, and 
the theoretical models should be implemented in a practical, numerical manner. 

This paper concentrates on a phenomenological model of time-independent plasticity 
of polycrystalline metals, with emphasis on the description of plasticity-induced aniso- 
tropic behavior. It is expected that the developed model will incorporate the important 
features of crystal plasticity with the conventional formulations of phenomenological 
theory so that the model will have a sound physical background but will use simple 
mathematical formulations and numerical analyses. To this end, the experimental 
observations and theoretical descriptions of the work hardening of single crystals are 
reviewed in Section II, and then a new representation of the work hardening is dis- 
cussed and suggested using the concept of a yield surface. Following the consideration 
of the plastic behavior of single crystals, Section III focuses on the differences between 
polycrystals and single crystals in their deformation mechanisms, and especially on the 
role of the large number of slip systems in polycrystals. As a result, the model for single 
crystals is extended to polycrystals by increasing from a small number of slip systems, 
say 12 for FCC crystals, to a large number. Section IV analyses the effect of grain 
boundaries on the behavior of polycrystals and provides an alternative to the self-con- 
sistent method proposed by Kroner [1958] and Budiansky and Wu [1962]. The analysis 
shows that the effect of grain boundaries can be incorporated to the interaction of slip 
systems formulated in Section III. 

II. ANISOTROPIC HARDENING OF SINGLE CRYSTALS 

According to the theory of single crystal plasticity developed by Hill [1966], Hill and 
Rice [1972], Asaro and Rice [1977], Peirce, Asaro and Needleman [1982] and Hill and 
Havner [1982] (see the review papers given by Asaro [1983] and Havner [1992]), if the 
plastic behavior of a single crystal is described by 

where ii and y are the rates of the critical resolved stress and the slip of the ith slip sys- 
tem, N is the total number of all activated slip systems, and hq is called work hardening 
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modulus or hardening for short, and when an external stress acting the single crystal 
makes the resolved stress and its rate on a slip system, say ri and i’, on the ith slip 
system satisfy the Schmid criterion: 

and the loading condition 

then the slip system will be activated. All the activated slip systems will produce the 
following plastic velocity gradient: 

(4) 

where mi and d are the ith slip direction and its plane. 
The experimental investigation of the work hardening moduli has attracted many 

researc:hers. Among them are Wadsworth [1963], Ramaswami, Kocks and Chalmers 
[1965], Kocks and Brown [1966], Jackson and Basinski [1967], Basinski (S.J.) and 
Basins.ki (Z.S.) [1979], Franciosi, Berveiller and Zaoui [I9801 and Franciosi [1983]. 
Some of the recent reviews of this topic have been given by Kocks [1985] and Bassani 
[1990]. From these experimental observations, some conclusions about the work hard- 
ening moduli seem to be: 

(0 

(ii) 

(iii) 

(iv) 

The hardening depends on dislocation structures of materials; FCC crystals show 
obvious three stage behavior in their resolved stress-strain curves while HPC 
crystals exhibit low but constantly increasing work hardening (see Honeycombe 
WW; 
The hardening depends on loading history; plastic deformation changes the dis- 
location structures. At the initial stage of a plastic deformation, one or several 
symmetrical slip systems are activated. But after some plastic deformation, cross 
slips occur and groups of slip systems are activated. If the loading direction is 
c:hanged, some previously activated slip systems may stop while new slip systems 
are activated. Every change of the state of slip systems contributes to the inter- 
action of slip systems and causes work hardening moduli to change their values; 
Self hardening h” (no sum over z) is somewhat smaller than latent hardening hu 
(i # j). The ratio of latent to self hardening ranges from 1.0 to 1.4; 
The hardening is anisotropic. The anisotropy comes from two aspects. One is due 
to the inherent anisotropy of micro-structures. The other aspect is due to the 
different hardenings on different slip systems after some plastic deformation. 

The theoretical study of the hardening started with Taylor’s assumption that any 
activated slip system resulted in the same hardenings on all slip systems. This isotropic 
model is represented by (see Taylor [1938]) 

hij = h f (5) 

where h, is a function of stress or plastic deformation. Thus, the self hardening h” is 
equal to the latent hardening hq in this model. Later, Koiter [1963] made another 
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assumption that every activated slip system caused only self hardening but had no 
effect on other slip systems. This independent hardening model means 

hij = j&i (6) 

where hk is a function of stress or plastic deformation, and 6’j is the Kronecker delta. 
The two assumptions are, of course, not accurate enough to describe the above 
experimental phenomena. Hutchinson [1970] and Asaro [1983] proposed the following 
mixed model 

h’j = qh,, + (1 - q)h,J’j (7) 

where q ranges from 1.0 to 1.4 and represents the ratio of latent hardening to self 
hardening. But this mixed model still can not describe the observed anisotropic beha- 
vior. Budiansky and Wu [1962] and Weng [1979] extended Taylor’s isotropic model to 
anisotropic models by adding kinematic hardening. Budiansky and Wu [1962] pro- 
posed that 

h” = hbO + hb,P’ : P’ (8) 

where hbo and hb1 are two functions of stress or plastic deformation, and Pi is the 
symmetric part of m’ @ n! Weng [1979] suggested: 

h” = qh, + (1 - q)h,cosOiicos#i (9) 

where 19’j is the angle between the slip directions of the ith and jth systems, #j is the 
angle between their slip planes and h, is a function of stress or plastic deformations. 
Budianski and Wu’s model is very similar to Prager’s rule for the kinematic hardening 
in the phenomenological theory of plasticity. By noting 

g=pi:g (10) 

where o is Cauchy stress, eqn (8) and the rate form of eqn (2) can be rewritten for 
infinitesimal deformation as 

Pi: (b-k,,v)=hbO~ji (11) 

where 

r&,, = hb,DJ’ (12) 

where Dp is the plastic strain rate defined by the symmetrical part of Lp. Weng’s model 
produces an obvious physical interpretation that the hardenings caused by cross slips 
depend on the angles of slip directions and planes. More recently, Bassani and Wu 
[1989] (see Bassani [1990]) proposed that 

h” = hb, (no sum over i) (13) 

h’j = mhb, (i #j) (14) 
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where hb is a function of the up-dated state of crystals and m is a constant. Moreover, 
Havner and Shalaby [I9771 (see Havner [1992]) took the rotation caused by slips into 
consideration and proposed that 

hii = h - 2tr(P’. c. Q’) (15) 

where Qj is the anti-symmetrical part of mj ~3 d. And similarly, Peirce, Asaro and 
Needleman [1982] proposed that 

hii = h _ tr(pi. d. @) _ tr(Q’. c. pj) (16) 

The two rotation-dependent models reduce to Taylor’s isotropic model if the rotation 
is negllected. 

It is helpful to understand these models in terms of a yield surface. Figure 1 depicts 
the movements and changes of a yield surface caused by the elements of these models. 
In Fig. 1, (a) shows the Taylor isotropic hardening, (b) shows the kinematic hardening 
in the models of Budiansky and Wu [1962] and Weng [1979], and (c) shows the Kroner 
independent hardening. In addition, by considering that the yield surface may not be 
the combination of the three kinds of hardenings, Fig. 1 (d) illustrates a more general 
case that the yield surface changes in its shape, becoming sharper in the loading direc- 
tion a:nd flatter in the opposite direction. 

According to these considerations, a new model of the hardening is outlined as follows: 
(i) IBecause the anisotropic behavior may be the main difficulty to model the hard- 

ening of single crystals, it is natural to consider the hardening of slip systems indivi- 
dually. For every slip system, after some plastic deformation the critical resolved shear 
stress in the forward direction is generally different from that in the backward direc- 
tion. That is, every slip system may have some Bauschinger effect after some slip of the 

Fig. 1. Evolution of Yield Surface (a) Isotropic Hardening, (b) Kinematic Hardening (c) Independent Hard- 
ening and (d) General Hardening. 
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slip system, or another slip system. Therefore, we introduce the concept of kinematic 
and isotropic hardenings to every slip system such as 

12 - Xi1 5 + + 70 (17) 

where xi and ri are the kinematic and isotropic hardenings of the ith slip system, 
respectively, and r. is the initial critical shear stress. 

The use of the two different hardenings, rather than forward and backward yield 
stresses, simplifies the representation of the interacting hardenings among slip systems. 
In terms of yield stress, it is necessary to represent the interaction, say of the ith slip 
system to the jth slip system, as a function of their relative location Pi : Pi. Due to a 
possible wide variety of loading histories, this function may be very complicated. But in 
terms of the kinematic and isotropic hardenings, it is understood by their definitions 
that the kinematic hardening should be an odd function of relative location Pi : Pj, and 
the isotropic hardening should be an even function of P’: Pi. 

(ii) As for the relative location Pi: pi between the ith and the jth slip systems, there 
are two possibilities. One is that the two slip systems are in one slip plane, i.e. coplanar 
slip systems. The other possibility is that the two slip systems are not coplanar, i.e. 
forest slip systems. The experiments on the hardening of single crystals show that the 
two kinds of slip systems have different interactions. Bassani [1990] pointed out that 
forest slip systems have stronger hardening than coplanar slip systems. Therefore, the 
evolution of kinematic and isotropic hardening of every slip system is expected to be 

i i 

and 

ii = c TjG,(p’ : pj) + c +GxP' : Pj) 
i i 

(19) 

where subscripts p andfrepresent coplanar and forest slip systems and F and G are odd 
and even functions of their arguments. 

(iii) Functions Fp, I;f, Gp and GJ are generally very complicated. They depend not 
only on the relative locations but also on deformation history. In the above expression 
of these functions, deformation history is not explicitly listed as an argument, since the 
present priority is on formulating the interaction of slip systems. In general, the func- 
tions of the relative locations could be expected to be smooth enough and be approxi- 
mated by polynomials. Thus, it is assumed that 

Fp = a:< + a;E3 + a”;c’ + . . . 

(21) 

Gp = a: + a;t2 + a{e + . . . (22) 
and 

Gf = a{ + dJ2 + a-$p + . . . (23) 
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where [ is Pi: Pi and all the coefficients depend on deformation history. For FCC 
crystals, the initial values of [ are -0.25, -0.0833, 0.1666, 0.3333 and 0.5. Of course, to 
obtain a practical model, the terms of these functions should be limited; the fewer the 
terms., the simpler the model. Moreover, if every term has some physical interpretation, 
it ma:y be helpful to determine the coefficients from material experimental data. In 
order to find an optimum number of terms, let us discuss the specific cases of the 
functions. 

(i) lf Fp = 0, Ff = 0, Gp = ug and Gf = a{, where a: and a{ depend on stress or 
plastic deformation history, or in other words, if the kinematic hardening is assumed to 
be zero and the isotropic hardening is taken to be first order, then eqn (19) reduces to 

ii= ($+&C-j’ (24) 

This is just the Taylor isotropic model. 
(ii) If Fp = a{< = a: Pi: Pj, Ff = a{< = a( Pi: Pj, Gp = 0 and Gf = 0, where ~7: and 

a{ depend on stress or plastic deformation history, or the kinematic hardening is 
assumed to be first order but the isotropic hardening is assumed to be zero, then the 
yield condition eqn (17) can be rewritten as 

IP': (d-X)1 170 (25) 

where 

i= (uy+cz$Y (26) 

This i;s a pure kinematic hardening model, similar to Prager-Ziegler’s linear kinematic 
hardening model, the same as Budiansky and Wu’s linear kinematic hardening model 
when a; and 4 are constants, and is almost the same as Weng’s kinematic hardening 
model in the representation of the relative locations of slip systems. 

(iii) The combination of above two cases yields a mixed model with isotropic and 
kinematic hardenings. 

From this discussion, two-things seem clear. One, the first term of these functions is 
the first order approximation to the hardening of single crystals, since it is known from 
crystal plasticity and the phenomenological theory of plasticity that kinematic and 
isotropic hardenings (which in these cases are state variables rather than slip-related 
variables) are a good approximation to plasticity-induced anisotropic behavior. They 
describe the change in size and position of a yield surface. Second, the terms with 
higher order must be included in the polynomials if the anisotropic behavior, e.g. the 
change of a yield surface in shape, is to be described more accurately. 

(iv) Based on the above analyses, it seems appropriate to assume that the poly- 
nomials have two terms, i.e. 

(27) 

(2% 
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with the first terms describing the change of a yield surface in its size and center, and 
the second terms representing the change of a yield surface in its shape. 

(v) Moreover, it seems necessary to add the Koiter independent (self) hardening to 
the above consideration. It is known that Koiter’s and Hutchinson’s models provide 
for a unique relation between slips and resolved shear stresses. The uniqueness is 
important at least in the numerical implementation of a model. Further, the addition of 
this independent hardening provides a more accurate description of the kinematic 
hardening. Generally speaking, the kinematic hardening of a slip system is an odd 
function of its relative positions to all other activated slip systems. In the above equa- 
tions, for simplicity, only the first two terms of the polynomials are retained, but any 
small error due to neglect of high order terms is more than compensated by the inclu- 
sion of the independent hardening. 

By adding the independent hardening to eqns (27) and (28), the isotropic and kine- 
matic hardenings will take the forms: 

and 

i’ N ~+ll + ar(P’ : P’)2) 
i 

(31) 

(32) 

in which j is summed over all activated slip systems, ak (k = 0,1,2,3) represents 4 for 
coplanar slip systems and 4 for forest slip systems. 

(vi) In the considerations above, the emphasis is put on the description of the inter- 
action of slip systems. Quantities a and ak (k = 0,1,2,3) are not specified. If these 
quantities are assumed to be material parameters, i.e. independent of stress and defor- 
mation, the kinematic and isotropic hardenings will be linear functions of activated 
slips. Experiments on single crystals (see, e.g. Wadsworth [1963] and Honeycombe 
[1984]) show that single crystals normally have three stages in their resolved stress- 
strain curves. During the first stage, the magnitude of the hardening is small and almost 
linear. During the second and third stages, the hardening is significant and nonlinear. 
Especially, when the deformation is finite, the resolved shear stress reaches a saturated 
value. If the loading is reversed, the yield stress and hardening will be much different 
from those during the initial loading. It is obvious that for the stage one stress-strain 
relation, quantities ak may be assumed to be constants. It means that for ri < rl, where 
r1 is the resolved shear stress at the end of the stage one loading, the hardenings are 
assumed to be 

ii = a+’ + Cjl(a,pi : pj + a3(Pi : Pj)‘> 
j 

(33) 

and 

ii = ~+zlJ + az(P’ : P’)2) (34) 
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where a and ak (k = 0,1,2,3) are constants. In terms of the work hardening moduli, the 
combination of eqns (33), (34) and the rate of eqn (17) yields 

where 

hii = a6ij + alPi : Pg + u~(P’ : P’)3 + sign(? - xi) (Q + UZ(P’ : Pi,‘> (36) 

with sign(z) = 1 if z > 0 and sign(z) = -1 if z < 0. 
For the last two stages, quantities uk may be taken to be functions of stress or strain 

to describe the observed nonlinearity. These functions can not represent the change of 
the hardening when loading is reversed. An alternative approach is to use the method 
proposed by Armstrong and Frederick [1966]. The quantities are assumed to be con- 
stants., but feedback terms are added to the above formulation describing the hard- 
enings,. That is, for the last two stages and loading reversals, the hardenings are 
assumed to be 

ii-’ = ~&..+)6’/ + XIP’ : Pj + X3(Pi : Pq3 -xi) 
i 

(37) 

and 

+ = c b,jj (R,, + R2 (P’ : P’)2 - +) 

j 

where constants a and ak have been replaced by constants X0, X1, X3, Ro, Rp, b, and b,. 
Const,ants X0, X1, X3, R. and R2 are the saturated values of the corresponding hard- 
enings, and b, and b, are the shape-controlled parameters. In terms of the work hard- 
ening moduli, this evolution of the isotropic and kinematic hardenings will give the 
following work hardening moduli: 

hii = b, (X06, + X1 P’ : Pj + X3(P’ : Pq3 - xi) 

+ sign(? - x’)b, (Ro + R2(Pi : Pj)2 - ri) 
(39) 

If coplanar slip systems are distinguished from forest slip systems, all the constants in 
the above equations may have different values for different types of slip systems. 

IIL A PHENOMENOLOGICAL MODEL FOR POLYCRYSTALS 

Polycrystals are aggregates of single crystal grains. Every grain is located in an 
aggregate with its own shape, size and orientation so that polycrystals are inhomoge- 
neous in their micro-structures. The aggregation and the inhomogeneity make the 
stress--strain relations of polycrystals different from those of single crystals in many 
respects. 

Due to the aggregation, a polycrystal behaves like the average of single crystals so 
that an average method, e.g. the volume average method, must be used to describe the 
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behavior of a polycrystal, as based on the behavior of single crystals. The behavior of a 
polycrystal will depend on the inhomogeneous shapes, sizes and orientations of the 
single crystal grains. And more significantly, these differences result in inhomogeneous 
deformations and stresses in single crystal grains. Thus, the behavior of a polycrystal is 
the result of the interaction of single crystal grains, usually called the grain boundary 
effect although grain boundary effect also refers to the different micro-structures of 
single crystal grains near their boundaries. 

In order to describe the behavior of polycrystals on the basis of the responses of 
single crystals, many researchers have advanced simplified formulations. To avoid the 
difficulty of relating the behavior of a polycrystal to the shapes and sizes of single 
crystal grains, the orientation average method (see, e.g. Hutchinson [1970]) is used for 
an alternative to the commonly used volume average method. To account for the 
inhomogeneous deformations of single crystal grains, the self consistent method pro- 
posed by Kroner [1958], Budiansky and Wu [1962] is adopted. In the self consistent 
method, the interaction of single crystal grains is simplified as an Eshelby inclusion 
problem. 

In our opinion, while it is worthwhile to consider the interaction of single crystal 
grains in detail and especially to consider the simpler formulation of the behavior of 
polycrystals for the cases of complex loading history, it is equally valuable to investi- 
gate a practical constitutive model of polycrystals by incorporating the deformation 
mechanisms of single crystals into the advances in the phenomenological theory of 
plasticity. 

It is known that the plastic deformations of polycrystals are caused by slips of single 
crystals within them. Compared with a single crystal, a polycrystal contains a much 
larger number of slip systems, which are randomly distributed in the polycrystal. If the 
orientation average method, rather than volume average method, is used, the orienta- 
tions of slip systems are included in the behavior of polycrystals; the shape and size 
effects are ignored. Moreover, due to the grain boundary effect, all slip systems interact 
with one another. Describing the behavior of polycrystals means formulating the 
interaction of all slip systems. 

From the phenomenological point of view, the plastic behavior of polycrystals is 
anisotropic after some plastic deformation. The anisotropy depends on the magnitude 
of deformation and deformation history. The larger the deformation and the more 
complex the loading history, the stronger the anisotropy will be. In terms of a yield 
surface, the yield locus is in general very complicated in shape. To describe the aniso- 
tropic behavior, isotropic and kinematic hardenings were introduced to represent the 
average change of a yield surface in size and center. It is known that these hardenings 
are a first order approximation to a yield surface in a sense of the average size and 
general shape of the yield surface. To more accurately describe the anisotropic beha- 
vior, a commonly used method is to add internal variables, see, e.g. Chaboche [ 19861. It 
is obvious that as more internal variables are used, the description will become more 
accurate. This method will not be practical in dealing with the strong anisotropic 
behavior of polycrystals, since there are many different behaviors in different directions 
and their representation requires many internal variables. To get a general description 
of the anisotropy, it seems appropriate to introduce direction-dependent variables, 
rather than state-dependent variables such as kinematic hardening. There should be as 
many direction-dependent variables as needed to represent the strong anisotropy under 
finite deformation and complex deformation history. 
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By combining the considerations above on the deformation mechanisms and the 
phenomenological description of the plastic behavior of polycrystals, and by noting 
that Islip systems are direction-dependent variables, it is suggested that the plastic 
deformation of polycrystals can be modeled as a large number of randomly distributed 
slip systems. 

To represent such a large number of randomly distributed slip systems, one way is to 
use the three Euler angles p, 13 and q5 to express a slip plane and a slip direction such that 

n = (sin8 co@, sin0 sir@, co&) (40) 

and 

m = (-c0se co@ sin4 - sinP cosf.$, -c0se sir@ sinfj + co@ cosf$, sine sir@) (41) 

where 0 5 0 5 $0 5 /3 5 21r and 0, 5 q5 5 27r. When ,0,0 and 4 are taken to be a 
number of discrete values (see, e.g. Liang & Cheng [1993]), say L, A4 and N values, 
respectively, there are L x M slip planes, and on each slip plane there are N slip 
directions. Further, let 

P=i(m@3n+n@m) (44 

denote a slip system, then the number of slip systems will be L x M x N. 
Analogous to the case of single crystals, the central issue in describing the plastic 

behavior of polycrystals is to formulate the interaction of slip systems. To this end, the 
same ideas and method will be used here as for single crystals. Let ri and xi denote the 
isotrolpic and kinematic hardenings of the ith slip system which satisfy the following 
condition: 

I? - xi] 5 ri + 7-o (43) 

where r. is the initial critical shear stress and 

Ti = pi : fl (44) 

is the resolved stress on the ith slip system. 
As in the analyses of the isotropic and kinematic hardenings for single crystals, the 

evolution of the hardenings xi and ri with plastic deformation can be assumed to be 
proportional to the slip rates, and even and odd functions of relative location Pi: Pj to 
the jth slip system, respectively. Especially when these functions are assumed to be 
polynomials, their first terms will correspond to the state-related isotropic and kinematic 
hardenings in the conventional models of phenomenological constitutive relations such 
as given by Chaboche [1986]. Their second terms will correspond to the shape change 
of a yield surface. Therefore, the polynomials are assumed to consist of two terms. 
Further, the coefficients of the two terms may be taken to be constants, if the isotropic 
and kinematic hardenings are assumed to be linear with respect to the slips. But most 
experimental data on polycrystals show that the hardenings are normally nonlinear 
with plastic deformations. In fact, the hardening is nonlinear and different from that in 
the initial loading direction when the loading direction is reversed. These experimental 
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results are quite similar to the second and third stage hardenings of single crystals. 
Thus, following the approach adopted for the second and third stage hardenings of 
single crystals, the coefficients are assumed to be constants but feedback terms are 
added to the polynomials. That is, the isotropic and kinematic hardenings are assumed 
to be 

ii-’ = 2 b.$ (x&j + X,P’ : pj + x3(pi : pjj3 - 2) 
i 

and 

ii = eb,?‘(Ro + R2(Pi : P')2 - Ri) j 

(45) 

where b,, X1, X3, bR, Ro, R2 and Xc are material constants. Again, constants X0, Xi, X3, 
R. and R2 are saturated values of corresponding hardenings, and b, and 6, are the 
shape-controlled parameters. 

IV. CONSIDERATION OF GRAIN BOUNDARY EFFECTS 

In the preceding section, the behavior of polycrystals was described based solely on 
slip systems. The grain boundary effect is another important aspect in the plastic 
behavior of polycrystals. As explained in the beginning of the last section, the orienta- 
tion average method neglects the effect which the size and shape of single crystals has 
on the behavior of their aggregate. Also, only direction-dependent quantities should be 
used to represent the anisotropic behavior of polycrystals. Therefore, the grain 
boundary effect enters the polycrystal model indirectly through the interaction of slip 
systems. For example, in a polycrystal containing 100 FCC single crystal grains, the 
maximum number of interacting slip systems is 1200; if the grain boundary effect is 
neglected, the number of interacting slip systems would be only 12. In order to illus- 
trate this concept quantitatively, we proceed with an alternative, but more traditional 
analysis. 

Let the subscripts g and I distinguish global quantities from local ones. For instance, 
ug and ul are the global and local stresses, respectively. According to the orientation 
average 

(47) 

for polycrystals, global stress and strain should satisfy the following relations. 

u,=<ar>, t+r = < & > (48) 

and 

q=<q> (49) 

Because of the grain boundary effect, deformation and stress will not be uniform in a 
polycrystal. Every grain has its own stresses and deformations which are different from 
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those of the aggregate. 
global stress such that 

Let x denote the difference of a local stress at a grain from the 

x = ur - a/ (50) 

then x specifies the residual or back stress at the grain caused by neighboring grains 
around it. From eqn (49, 

<x>=o (51) 

that is, the back stresses in grains have no effect on global stress. 
x is expected to be related to the difference of plastic deformation, q - Dpg. If no 

difference in plastic deformation appears in the polycrystal, the deformation will be 
uniform and no back stress exists. As the first order approximation for infinitesimal 
deformation without loss of its generality, the rate of the back stress at a grain may be 
assumed to be proportional in its magnitude and identical in its direction to the differ- 
ence of the plastic strain rate of the grain from the global one, such as 

where A is a function of stress or plastic deformation. It is obvious that eqn (52) satis- 
fies the condition of eqn (51), if the initial value of x is zero. 

With this consideration of grain boundary effect, the yield criterion eqn (17) for 
every grain becomes: 

IP’ : bg - xi/ = rf (53) 

xi = p’ : x + xf (54) 

By using eqns (37), (38) and (52), the evolution equations of xi and 4 are found to 
be 

2 = AP’ : (q - q> + -&+&!F + XiP’ : Pj + XJ(P’ : P-q3 - xi) 
jr 

(55) 

if = 2 b#(R,, + R2(Pi : Pi)’ - Ri> 
jr 

(56) 

where j, represents the local sum over the activated slip systems in the grain which 
contains the ith slip system. Furthermore, if Dpg is calculated in such a way that 

~=<~>=~~~wCPi~i=CwPj~j (57) 
0eg i i 

where w = v and j is the global sum over all activated slip systems, then eqns 
(55) and (56) can be rewritten as 
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fi=~C(w_l)pi:pjjj+~Cw~i:pj~j 

jl &-f 

+ 5 b,jj (xo6’J + X,P’ : pi + X# : Pj)3 - 2) 
jr 

and 

if = &,j’(Ro + R2(Pi : P')2 - Ri) _i 

(58) 

where jg-, represents the sum over all activated slip systems except j,. 
Equations (58) and (59) show that the grain boundary effect indeed enters the kine- 

matic hardening model through the interaction of slip systems in all grains but does not 
change the isotropic hardening. The expressions are very similar in format to eqns (45) 
and (46), if the first and second terms of eqn (58) are combined with the last term, even 
though the coefficients in eqn (58) are different from those in eqn (45). Further, for- 
mulations in the previous section are easier to use compared to eqns (58) and (59). 
Therefore, eqns (45) and (46) should be preferred in engineering applications. 

V. CONCLUDING REMARKS 

1. In order to describe the plasticity-induced anisotropic behavior of polycrystals, the 
plastic deformation of polycrystals can be attributed to the activation of a large num- 
ber of randomly distributed directors. The directors were assumed to be identical with 
slip systems in this paper, and thus the theories of plasticity for single crystals were 
applied to polycrystals except that the model for polycrystals includes a large number 
of slip systems. 

2. To represent the interaction of slip systems, or directors in a general sense, the 
evolution of the isotropic and kinematic hardenings, i.e. the forward and backward 
critical shear stresses, of a slip system were assumed to be proportional to the rates of 
slips, and the even and odd polynomial functions of the first two degrees, respectively, 
of the relative locations of the slip system to all activated slip systems. It was shown 
that the first terms of the two polynomials corresponded, respectively, to the Taylor 
[1938] isotropic hardening, and the Budiansky and Wu [1962] or the Weng [1979] 
kinematic hardening. The second terms of the two polynomials were the first order 
approach to the shape change of a yield surface due to the isotropic and kinematic 
hardenings of each slip system. 

3. To account for the dependence of the plastic behavior of slip systems on defor- 
mation history, a feedback term used by Armstrong and Frederick [1966] in their 
model of nonlinear kinematic hardening was added to each of the polynomial expres- 
sions for the isotropic and kinematic hardenings of a slip system. 

4. To show the credibility of the extension from single crystals to polycrystals by 
simply increasing the number of slip systems, an alternative analysis to the self-con- 
sistent method proposed by Kroner [ 19581 and Budiansky and Wu [ 19621 was proposed 
to consider the effect of grain boundaries on the behavior of polycrystals. The analysis 
concluded that the effect of grain boundaries could be incorporated to the interaction 
of slip systems. 
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