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Abstract 

Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is 
developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes 
the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize 
the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may 
provide a better understanding of material failure. 

1. Introduct ion 

Failure o f  solids under external loads has been ex- 
tensively studied for a long time [ 1 ]. Generally speak- 
ing, material failure is a non-equilibrium and nonlin- 
ear process that involves nucleation, growth and coa- 
lescence o f  microdamages at different rates. The phe- 
nomenon depends on the coupling of  these effects in 
addition to their individual rates of  energy transfer. 
Their occurrence may be stochastic or deterministic 
depending on the ways with which damages are de- 
veloped. 

In recent years, several models have been advanced 
to explain the behavior of  material failure [2 -12] .  
While the results have provided some new insights into 
the interplay between disorder and failure, they have 
not delved into the details of  rate effects. Based on 
experimental observations and two-dimensional simu- 
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lation [ 14-17],  a one-dimensional chain model [ 15- 
18] has been developed to study the statistical behav- 
ior and rate effect of  failure. This model is similar to 
the 1-D chain of  bundles [ 13] ; it can be related to 
the work on fiber-reinforced composites [ 19] and has 
yielded effective results [20].  

This paper focuses on two rate processes, i.e. 
stochastic jump and deterministic dynamics. The 
model includes nonlinear and nonlocal interaction as 
well as rate effects and reveals important behavior 
of  failure that differs from the prediction made by 
models involving percolation, cellular automaton and 
self-organized criticality (SOC).  

2. Model  description 

A description of  failure could involve nucleation, 
growth, coalescence and healing of  microdamages. 
These processes are rate dependent and could be 
statistical in character. Assume that an individual 
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microdamage can be characterized by a length scale 
c. Evolution of the microdamage system can thus 
be described by the number density of microdamage 
n(c, t), where t is time. The damage rate follows as 

1 j [ n ( c ,  t R=  l im(  + A t )  n ( c , t ) l c d c  ( I )  
~ , ~ o  ~ ) - " 

If the damage evolution consists of only one ele- 
mentary process, then Eq. (1) represents the corre- 
sponding damage rate. A physical system may involve 
four different damage rates RN, R6, Rc and RH corre- 
sponding to nucleation, growth, coalescence and heal- 
ing, respectively. Without denoting their explicit de- 
pendence on stress and material parameters, a brief 
description will be given. 

2. I. Nucleation 

If nN denote the nucleation rate, the damage rate 
RN due to nucleation may be given by 

RN = NN CN , (2) 

in which NN stands for 

NN = .f "N(C) d c  ( 3 )  

and ~N for 

2.3. Coalescence 

Assume that the coalescence can take place between 
ajacent microdamages only. Denoting the distance be- 
tween two adjacent microdamages by s, a distribution 
function by m( s, u, t). m( s, u, t) ds du may be defined 
to represent the number of ligaments between adjacent 
microdamages in the range of s~,,s + ds and coales- 
cence parameter u in the range of u~u  + du. The def- 
inition of coalescence parameter u will be given sub- 
sequently. Then, the rate of coalescence can be repre- 
sented by 

Rc = MAc • ( 8 ) 

In Eq. (8) 

I 

M = m ( s , u , t )  ds (9) 

0 

and 

I ' / /  Ac = ~ du m ( s , u , t ) A c ( s , u ) d s ,  (10) 

0 

where m is the distribution of ligaments and Ac (s, u) 
is the effective coalescence rate of an individual coa- 
lescence process, and the condition of coalescence is 
assumed to be 0 < u <  1. 

, /  CN = ~N n N ( c ) c d c .  (4) 

2.2. Growth 

The rate RG denotes damage rate due to growth; it 
takes the form 

2.4. Healing 

Let h denote the healing probability in unit time. 
The healing rate is given by 

RH = [ h ( c ) n c d c .  (I 1) 
J 

RG = Nt-A (5) 2.5. Experimental observation 

such that 

/ -- 1 A ( c ) n ( c )  dc (6) A = N ~  " • 

with A being the growth rate and Nt the total number, 
i.e., 

Nt = [ t t ( c , t )  dc.  (7) 
1 

Evolution of microdamages [ 14-17] has been ob- 
served experimentally on specimens subjected to pla- 
nar impact. Two main conclusions are: 

- There appears no indication of healing. Also, the 
growth could be neglected in comparison with nucle- 
ation in sub-microsecond load durations. For example 
in the cases of stress o-~( 1 to 7) GPa and t ~  10 -7 s, 

there results Nv-~I0 8 m -2, A < 10 ms - j ,  NN~I0  j5 
m-2s -1 and ~N~4 x 10 -6 m. According to Eqs. (2) 
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and (5),  RN is greater than RG by about one order of  
magnitude. Up to now, there are still no measured data 
of  coalescence rate available. However, it is obvious 
that coalescence dominates the damaged state, when 
the system approaches failure. 

- Nucleation appears to be a stochastic process 
while coalescence seems to behave in a deterministic 
dynamic manner. 

respectively. The pattern with p = 0 is a solid whilst 
p = 1 represents completely failure, denoted by XF = 
{xi = 1 , i =  1 , 2 , . - . , N } .  

The phase space of  the system consists of  ~ = 2 N 
states, which can be divided into (N  + 1 ) groups ac- 
cording to damage fraction p or n (n = 0, 1,2,-  -., N),  
i.e. the macroscopic measure of  damage. The total 
number of  the states in group n is 

I~n = N!/n!(  N -  n) ! (14) 

3. Stochastic and dynamic behavior 

Both stochastic and dynamic behaviors are thus in- 
voked in the model. Several prototypes could prevail 
depending on the dimensionless ratio RN/Rc: 

Case 1: Pattern dynamics ( RN / Rc<< 1). Nucleation 
can be neglected. The system is merely controlled by 
the dynamics of  coalescence. 

Case 2: Slow jump (RN/Rc < 1). The rate of  nu- 
cleation is lower than that of  coalescence such that 
nucleation can not be neglected. 

Case 3: Fast jump (RN/Rc > 1). The rate of  nu- 
cleation is higher than that of  coalescence, but coales- 
cence still plays an important role. 

Case 4: Percolation (RN/Rc>>I). Nucleation is 
dominant, and coalescence can be neglected. The sys- 
tem can thus be treated by the percolation theory. 

In general, the evolution related to the coupling of  
stochastic and dynamic processes could be quite com- 
plex. As a first step, consider the simplest system, i.e. 
a one-dimensional chain [ 18]. 

3.1. Pattern dynamics 

Obviously, ~0 = ON = 1. 
Now, assume that the evolution of  a pattern follows 

a deterministic and irreversible dynamics. This corre- 
sponds to the case of  RN/Rc<<I and no healing. In 
this case, all states in phase space can be divided into 
two classes: transient and fixed states. The latter states 
are the final of  the pattern dynamics. The pattern dy- 
namics can be described by its flow and the structure 
of  phase space. Each stream line is attracted to one of  
the fixed states, whereas all the fixed states and their 
basins of  attraction structure the phase space. 

In general, the final states of  evolutions starting from 
different states in a given group n may belong to dif- 
ferent damage groups. Let Ynn' be the number of  evo- 
lutions starting from group n and ending in group n ~. 
This leads to an (N  + 1 ) × (N  + 1 ) evolution ma- 
trix Y = {ynn, }. It provides the fundamental statistical 
information about the evolutions and the structure of  
phase space. Due to the irreversibility, Ynn' = 0 if n > 
n ~. Diagonal element Yn~ is the number of  fixed states 
in group n. The element YnN represents the number of  
states in group n belonging to the basin of  failure state 
XF. The total number of  states in the basin of  failure 
state XF is 

The one-dimensional chain model consists of  N 
sites. An intact site is denoted by x i - ~  0, and a bro- 
ken site by xi = 1. A state, or pattern, of  the system is 
expressed in X = {xi, i = 1 , 2 , . - - ,  N}. So the broken 
number and damage fraction of  a state are 

N 

MF = ~ ynN. 
n--'O 

(15) 

Hence, two functions to depict the failure probability 
can be defined: 

N 

n = Z x i  
i=1 

and 

(12) 

p = n /N  (13) 

d~(p) = ¢ ,  = ynN/l),, (16) 

and 

( ( p )  = so, = ynN/MF. (17) 

They describe the distribution of  the basin of  XF in 
phase space. 
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Table I 
Evolution matrix and ll,,, N = 10 and Lc = 1.0 

tl ?1 / 

0 1 2 3 4 5 6 7 8 9 I0 12,, 

O '_ Intact site 

X ~ Broken site 

Fig. I. Sketch of coalescence rule.Q) - intact site, x - broken site. 

Divide flows in phase space into two evolution 
modes according to their final states, i.e., globally sta- 
ble (GS) and evolution induced catastrophic (EIC).  
The EIC mode involves evolutions starting from states 
inside the basin of XF and ending at a complete fail- 
ure state, whereas the GS mode includes all the rest, 

which do not go to failure and keep globally stable. 
Classification of states in phase space as GS and EIC 
states can also be made according to their evolution 
modes. 

Based on mechanical analysis and experimental 

observation, a simple dynamical rule, i.e. the load- 
sharing rule, has been introduced in composite me- 
chanics [ 19] and in a I-D chain of bundles model 
[13]. Following the rule in [18] such that a s-intact 
cluster would evolve to break if it separates an r- and 
an 1- broken cluster (see Fig. 1 ) and satisfies 

2s/(r  + I)<_Lc, (18) 

where Lc is a parameter. If the s-intact cluster is at one 
end of the chain, take r or l to be zero, respectively. 

From Eq. (18) ,  the coalescence parameter u in Eqs. 
(9) and (10) can be written as 

u = 2s/(r  + l)Lc. (19) 

The rule represents a deterministic, irreversible, non- 
linear and nonlocal dynamics, especially an automat- 
ically enlarging interaction of microdamage without 
any characteristic length scale. Accordingly, coales- 

cence of broken clusters can occur in all scales and 
a limitless cascade of coalescence from a small to a 
large scale may appear. This is the key underlying 
mechanism of catastrophe induced by the evolution. 

From Eq. (18) ,  there prevails a region in phase 
space known as the transitional region, PL < P < PU, 
where GS and EIC states coexist, i.e. 0 < O ( p )  < 1. 
In the limit as N--~oc, it follows that 

lim PL = 0 (20) 
N ~ . ~  

0 I 0 0 0 0 0 0 0 0 0 0 1 
1 0 10 0 0 0 0 0 0 0 0 0 10 
2 0 0 35 8 2 0 0 0 0 0 0 45 
3 0 0 0 58 30 12 12 0 0 0 8 120 
4 0 0 0 0 47 40 32 0 0 0 91 210 
5 0 0 0 0 0 20 28 0 0 0 204 252 
6 0 0 0 0 0 0 7 0 0 0 203 210 
7 0 0 0 0 0 0 0 0 0 0 120 120 
8 0 0 0 0 0 0 0 0 0 0 45 45 
9 0 0 0 0 0 0 0 0 0 0 10 10 
10 0 0 0 0 0 0 0 0 0 0 I I 

and 

I 
lim Pu = 1/(1 + ~ Lc ) .  (21) 

p ' =  (1 + Lc)p. (22) 

As an example, consider the case of N = 10 and 
Lc = 1.0. The total number of states in phase space,  
which belong to 11 damage groups, is 1) = 1024. The 
evolution matrix is shown in Table 1. The number of 
states in the basin of XF is MF = 682. The lower and 
upper limit of the transitional region are PL = 0.2 and 
Pu = 0.7, respectively. In the transitional region, the 
number of states belonging to the failure basin of XF 
is M~ = 506. Hence, M~/MF = 0.7419. This means 
that the transitional region plays an impotant role in 
EIC. The values of On and ~n are shown in Table 2, 
and qb = qb(p) is also shown in Fig. 2. Table 3 gives 
the parameters of transitional regions in several other 
cases. One can see that the existence and importance 
of transitional reigon is a common property of the 
evolution model. 

The pattern dynamics can be illustrated with another 
language. For an r-broken cluster, assume that there 
are two influence regions with size ½rLc attached to 

its two ends. Then, coalescence may occur provided 
influence regions of two adjacent broken clusters con- 
tact or overlap each other. If so, the ( 1 + Lc) r-cluster is 
an equivalent broken cluster. In this sence, the occur- 
rence of EIC can be related to a percolation of equiv- 
alent broken clusters. The equivalent damage fraction 
is defined as 
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Table 2 
Probability distribution functions qbn and ~:n, N = 10 and Lc = 1.0 

193 

n 0 1 2 3 4 5 6 7 8 9 10 

~n 0 0 0 0.0667 0.4333 0.8095 0.9667 1 1 1 1 
~; 0 0 0 0.0117 0.1334 0.2991 0.2977 0.1760 0.0660 0.0147 0.0015 

Table 3 
P a ~ m e ~  oftransitional region 

N 5 6 7 8 9 10 10 I0 
Lc 1 1 1 1 1 1 0.5 2 
PL 0.2 0.1667 0.2857 0.25 0.2222 0.2 0.4 0.1 
PU 0.8 • 0.6667 0.7143 0.75 0.6667 0.7 0.8 0.5 
M~/MF 0.5385 0.4211 0.5972 0.7376 0.6210 0.7419 0.7637 0.3291 

The threshold of percolation is p' = 1. Then, the cor- 
responding threshold of the real critical damage frac- 
tion is 

pc = 1/(1 + Lc).  (23) 

For Lc = 1.0, Eq. (23) gives Pc = 0.5. Its comparison 
to the transitional region in the concerned pattern dy- 
namics is shown in Fig. 2. The representation of crit- 
ical failure due to percolation theory (Case 4) Pc = 1 
is also shown in Fig. 2. The simulation shows that the 
boundary between GS and EIC spreads over a wide 
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Fig. 2. Failure probability of pattern dynamics, its com- 
parison to equivalent percolation ( ..... ) and percolation 
(Case 4) ( . . . . .  ), and the effect of chain size. 
V :  N = I 0 ,  L c = l . 0 ;  &: N = 2 0 ,  L c = l . 0 .  

transitional region. The differences between the con- 
cerned pattern dynamics and percolation can be clar- 
ified as follows: 

- In the pattern dynamics, the damage fraction p is 
a state variable and can vary progressively. 

- The pattern dynamics cannot be determined by 
damage fraction itself. It is sensitively dependent on 
the initial configuration of damage; that is to say, it is 
pattern-specific. 

In addition, the effect of chain size on the pattern 
dynamics (see Fig. 2) has been examined. Moreover, 
the thermodynamical limits in Eqs. (20) and (21), 
PL = 0 and Pu = 2/3 when Lc = 1.0, provide the two 
bounds for the transitional region. The results indi- 
cate that the characteristics of failure probability qb is 
rarely affected by the sizes of the chain. This behav- 
ior at pattern dynamics resembles material failure in 
nature that may be attributed to a certain complex evo- 
lution induced catastrophe (EIC). The occurrence of 
failure should thus be described by a probability dis- 
tribution function. Especially, the noticeable sample- 
specific phenomenon in material failure probably cor- 
responds to the pattern-specific behavior of the pattern 
dynamics. 

3.2. Stochastic jump 

Consider how stochastic jump could affect the dam- 
age evolution governed by the above-mentioned pat- 
tern dynamics. In fact, the stochastic jump can make 
a pattern jump from one trajectory to another, from 
one basin to another, and especially from GS to EIC 



194 M.F Xia e/al./Theoretical and Applied Fracture Mechanics 24 (1996) 189-196 

mode. Concerning material failure, the jump could in- 
duce mode conversion from GS to EIC that play an 
essential role in the damage evolution. Such a conver- 
sion can never happen in the chain system governed 
by the pattern dynamics discussed in the last section. 

A simple selection rule of  pattern jump can be in- 
troduced as follows: 

An : -HI . {24) 

(n-l) 

Vn 

In} 

Transient 

GS 

E|C 

Fixed 

I ...... GS [ EIC ] 
This implies that the irreversibility, i.e. a jump from 
a broken site to an intact site is impermissible and in 
each jump the increment of  broken sites is limited by a 
unit. There are several types of  stochastic jumps: t¥om 
GS to GS, from GS to EIC, and from EIC to EIC. 
Obviously, the jump from EIC to GS is impossible. 
Let p,, be the number of  possible jumps  from the states 
in group (n - 1 ) to the states in group n, and let # ,  be 
the number of  jumps  from GS to EIC among u~ jumps. 
Then, another two probabil i ty distribution functions 
of  failure can be defined as 

q ' ( p )  = q',, = tx , , /u .  (25) 

and 

r / ( p )  = r/,, =/z,,//x, (26) 

where 

N 

/~ = ~ #,7 - 

t / : l  

(27) 

The functions • (p )  and r / ( p )  describe the probabili ty 
of  mode conversion from GS to EIC. 

Clearly, there are two cases corresponding to slow 
jump and fast jump discussed earlier. 

Slow j u m p  (Case 2). Slow jump refers to the case 
where the rate of  stochastic jump is lower than that of  
the pattern dynamics.  In this case, the mode conver- 
sion from GS to EIC is dominated by the jumps from 
GS fixed states to EIC states, and the jumps from GS 
transient states are negligible (see Fig. 3a).  The num- 
ber of  fixed states in group ( n -  1) is y, , -J , , , - i  and a 
state in group (n - 1 ) has (N - n + 1 ) ways of  jump: 

p,, = ( N  - n + 1)y , ,_ j , ,_ l  , (28) 

which involves the jumps  from GS to EIC (#n)  and 
Worn GS to GS (u,, - # n ) .  

(nl) l GS I EIC 

Vn ~ 
(n) ] GS EIC ] 

Fig. 3. Schematic of stochastic jumps. (a) Slow jump; (b) Fast 
jump. 

Table 4, gives the results for the case of  N = 10 
and Lc = 1.0. The function q~(p) and "q(p) have 
non-zero values in the region PL < P<_Pu. q~(P)  is a 
monotonical function from 0 at p = PL to I at p = Pu 
and then cutoff (also see Fig. 4) .  "q(p) is a unimodal 
function and its peak is at p = PM = 0.5. In terms of  
the probabili ty function r / ( p ) ,  we can calculate the 
mean value ff and the relative standard deviation 6 as 

= Z p r l ( p )  = 0.49747 (29) P P 
and 

6 =  l ( Z ( p  - - f i ) 2 r l ( p )  ) l /2 = 0 . 1 8 6 9 2 ,  (30)  
P P 

respectively. 
The simulation shows that the jumps  from GS to 

EIC occur in a rather broad region, which is the transi- 
tional region (Fig.  2).  For the probabil i ty  distribution 
r / ( p ) ,  its peak position PM and the mean value p are 
close to Pc defined in Eq. (23) .  This may indicate that 
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Table 4 

Probability distribution functions qtn and 7/n, slow jump case, N = 10 and Lc = 1.0 

195 

n 0 1 2 3 4 5 6 7 8 9 10 

vn - 10 90 280 406 292 100 28 0 0 0 
~,~ - 0 0 14 125 185 86 28 0 0 0 

q ~  - 0 0 0.05 0.3079 0.6560 0.86 1 

~n - 0 0 0.0320 0.2853 0.4224 0.1964 0.0639 0 0 0 

the conversion to EIC mode could be attributed to a 
percolation transition of the equivalent damage region 
merely in the sense of averaging or highest probabil- 
ity because it has quite a large relative width 6. So, 
EIC is inherently different from the usual percolation. 

Fas t  j u m p  ( C a s e  3). In this case, the rate of stochas- 
tic jump is higher than that of pattern dynamics, hence 
the jumps from all states, both transient and fixed 
states, are important. The number of possible jumps 
from the states in group (n - 1 ) to the states in group 
n is given by 

vn = ( N - n + 1 ) O n -  1 = n f ~ .  , (31) 

which includes all jumps of GS to GS, GS to EIC and 
EIC to EIC (Fig. 3b). It is easy to deduce that the 
number of jumps from GS states in group (n - 1) to 
EIC states in group n is 

0.8 

0.6 

0.4 

0.2 

• Case 2: Slow jump 

• Case 3: Fast jump 

0 • ¢ ,, t 
0 0.2 0.4 

(32) 

& 

. . . . . .  L, , v .L . . . . . . .  

0 . 6  0.8 

P 
Fig. 4. Effect of  rate on failure probabili ty ( N  = 10, Lc = 1.0). 

&: Case 2, Slow jump;  V:  Case 3, Fast jump. 

From Eqs. (25), (26) and (32), it is found that 

~ n  = ~ n  --  @n-~  • ( 3 3 )  

and 

/'In 
r/n = --(dPn - qbn-~) (34) /Z 

From Eqs. (33) and (34), we can see that the non- 
zero region of q ' ( p )  and r / (p)  is also PL < P -< Pu, 
which is again the transitional region. As an example, 
the results of the chain of N = 10 and Lc = 1.0 are 
shown in Table 5. In the fast jump case, both q~(p) 
and ~7(P) are unimodal functions (see Fig. 4). The 
peak is at PM = 0.5, the mean value is ~ = 0.49012 and 
the relative standard deviation is 8 = 0.16851. Once 
more, P'~PM = Pc- Simulations of different chains, i.e. 
various values of N and Lc, for both fast and slow jump 
cases show similar characteristics in the probability 
distribution functions ~ (p)  and 77 (p) .  

4.  C o n c l u s i o n  

In order to obtain some insight in the effect of vari- 
ous rate processes on the interplay of disorder and fail- 
ure, an abstract and simple evolution chain model is 
investigated in this paper. The model includes some ef- 
fects of two important processes observed experimen- 
tally in failure phenomena, i.e. nucleation and coales- 
cence of damages. These are modeled by the coupling 
effect of stochastic jump and dynamical evolution. The 
latter is governed by a nonlinear and nonlocal dynam- 
ical rule, namely the load sharing rule in mechanics. 
The damage evolution can be divided into globally sta- 
ble (GS) and evolution induced catastrophic (EIC) 
mode, the latter corresponds to macroscopic failure of 
materials. The conversion from GS to EIC can be in- 
duced by a stochastic jump of pattern. The coupling 
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Table 5 
Probability distribution functions q~, and r/,~, fast jump case. N = 10 and L~. = 1.0 

n 0 1 2 3 4 5 6 7 8 9 10 

z,,7 - 10 90 360 840 1260 1260 840 360 90 10 
#,~ 0 0 24 308 474 198 28 0 0 0 
• ,, 0 0 0.0667 0.3667 0.3762 0.1571 0.0333 0 0 0 
~,~ - 0 0 0.0233 0.2985 0.4593 0.1919 0.0271 (/ 0 0 

be tween  these  two rate p rocesses  s t rongly  affects  the 

fa i lure  probabi l i ty .  

It is f ound  that  the  t rans i t iona l  region,  where  the 

GS and  EIC m o d e s  coexis t ,  p lays  an impor t an t  role 

in the d a m a g e  evolu t ion .  It  impl ies  tha t  the d a m a g e  

evo lu t ion  c a n n o t  be  d e t e r m i n e d  by a d a m a g e  f ract ion 

uniquely ,  but  is sens i t ive ly  d e p e n d e n t  on the ini t ial  

con f igu ra t ion  o f  damage .  Tha t  is to say, the sys tem 

shows  a d i s t inc t ive  pa t te rn-spec i f ic  behavior .  Then ,  the  

appea rance  o f  EIC s h o u l d  be  charac te r ized  by  prob-  

abi l i ty  d i s t r ibu t ion  func t i ons  ~ ( p ) ,  ( ( p ) ,  qs ( p )  and  

r / ( p ) ,  r a ther  than  a def in i te  t h re sho ld  o f  d a m a g e  frac- 

t ion.  The  charac te r i s t i c s  o f  these  fa i lure  p robab i l i t y  

func t ions  are d i s t inc t ive ly  d i f fe rent  owing  to the rate 

effect.  A l t h o u g h  the  ob t a ined  resul t s  are based  on  an 

abs t rac t  and  qu i te  s imp le  mode l ,  they m ay  p r ov i de  a 

f r a m e w o r k  for  a deeper  u n d e r s t a n d i n g  o f  fa i lure  phe-  

n o m e n a  in real mater ia l s .  
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