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Abstract 

An optimal theory on flow database analysis to capture the flow structures has been developed in this paper, 
which include the POD method as its special case. By means of the remainder minimization method in the 
Sobolev space, for more general optimal conditions the new theory has the potential to overcome an inherent 
limitation of the POD method, i.e., it cannot be used to the situations in which the optimal condition is other 
than the inner product global one. As an example, using the new theory, the database of a two-dimensional 
flow over a backward-facing step is analyzed in detail, with velocity and vorticity bases. 

1. Introduction 

Turbulence is one of the most difficult and unsolved problems in classical physics. The studies of 
coherent structures of turbulence are the keys to understanding the physical essence of turbulence. 
The primary question to address is: how to objectively understand and analyze coherent structures 
in order to reveal the physical character of  turbulence. From published literature (see Berkooz et al. 
(1993)  or Wu and Shi (1994)  and the references therein) it can be found that the POD method 
(proper  orthogonal decomposi t ion)  played an important role. 

The history of  the POD method (or  the Karhunen-Lo6ve procedure) can be traced back to 
Schmidt (1907)  ~ . Now there are several extensions to the POD, such as the snapshot form of  
the POD (Sirovich, 1987),  EPOD (Glezer  et al., 1989) and Kirby's extension. By applying the 
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weighted Sobolev norm, Kirby optimized the approximation of the higher derivative terms in numerical 
simulations of PDE, and reduced the size of the associated systems of ODE. The goal of Kirby's 
(1992) extension is to minimize (Wo[U - uNI 2 ~- ]4) IIux - 2 + w 2 1 U x x  - 2 +-- .> ,  which is a kind 
of global inner product optimal condition. 

It should be noted that the POD method or its extensions cannot be used for the situations in which 
the optimal conditions are other than the inner product global ones. Sometimes the most essential 
characters of the system are unable to be presented by the optimal condition of global inner product, 
and with such optimal conditions it is impossible to focus one's attention on some key region, such 
as the production of vorticity on the boundaries, or to accurately describe some important flow 
phenomena in a certain time period, such as the breakdown of vortices. 

The work presented here puts forward an optimal theory for an expansion of flow quantities 
to capture the flow structures, which can overcome the above mentioned shortcoming and is a 
part of the general optimal theory on flow database analysis and construction of low-dimensional 
dynamical systems (Wu and Shi, 1994). The new theory has the potential to extract predetermined 
flow structures, with various spatiotemporal and local-global optimal conditions. 

The paper is organized as follows. In Section 2 we outline the optimal theory on flow database 
analysis. In Section 3 we apply the theory to the standard backward facing step flow, and compare 
two different optimal conditions and sets of optimal bases. Finally, in Section 4 we arrive at some 
conclusions. 

2. The optimal theory on flow database analysis 

In order to find organized motions in a given set of realizations of a random field, Lumly (1967) 
first introduced the POD method into the studies of turbulence. The applications of this method are 
limited .to certain types of flows in which large coherent structure contain a major fraction of the 
energy. But such "structures" are quite different from the coherent structures observed in experiments. 
The basic reason is that often the coherent structures found in experiments are not the structures which 
contain most energy. Therefore it is necessary to develop a new method by which the various flow 
features, not only in the sense of quadratic mean, can be optimally extracted from flow databases. 

2.1. Theory 

The basic idea of the new theory is, using the method of optimal control theory, to find the 
optimal orthogonal bases ~:i from flow databases u(x ,  t), which are entirely depended on the optimal 
condition. For the same database, with different optimal conditions, i.e., different characters to be 
extracted, different optimal bases can be found. Next we will develop the theory in real space, but it 
can be readily extended into complex space. 

For a known flow database u(x ,  t), in which x E s2 C 7~ n, t E [0, T], and T is a fixed time, 
suppose u( x, t) satisfies 

u(x ,  t) E vvm'P(S2r), (2.1) 

where the indices m, p are related to the smoothness of the flow field u, p = 2q; m, q E A/', A/" is the 
set of all positive integers, f~r = [0, T] × J2, Wm'P(f2r) is a Sobolev space, in which the norm is 
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defined as 

(Z = II I1~<~) , (2 .2 )  
\1~1 <m 

where D ~ is the generalized derivative with index ce,/Y (Or)  is the set of all pth integrable functions 
in Or. If v = ( v l , ' " , v , )  r C/2P(Or);  then 

[[v[[c~(aT) = ~ v f d x d t  (2.3) 
i=1 

Select a positive integer N, define a functional space /3N 

/~N ~ { ~ =  ( g l ( X ) ,  "" " ,gN(X) ) r  I X  E J'2 C T ~ n , ~  6 ~/~m,p( ~,2), ( ~ i ' g j )  = (~ij} , (2.4) 

where ( . , - )  is the inner product in the Hilbert space £2(s2), i.e., if a, b E £:(g2),  then (a, b) = 
fa a .  b dx. We make the following decomposition: 

N 
u ( x , t )  = ~-~ a i ( t )~ i (X ) + UR(X,t),  ~i E 13N, (2.5) 

i=1 

where uR is the remainder, and ai(t) satisfies 

ai(t) = (u, ~i). (2.6) 

Since the POD method is based on the concepts of global means of space and time, it is hard to 
faithfully represent the local structures of the flow. Here we want to keep sup(x,t)cm [ uR [ under 
control, hence make sure the local features of the flow will be reflected in the optimal bases. The 
Sobolev embedding theorem ensures this can be achieved, i.e., if Or is a region with cone property 
in ~",  uR C Wm'P(Or), mp > n, then there exists an embedding constant c (Or ) ,  which is only 
related to region Or, such that sUP(x.,)em [ UR(X, t) I < c(Or)llu~llw.,,<~T>. Therefore in order to put 
sup(~,t)e m [ UR(X, t) [ under control, we only need to minimize Ilu~llwo,,¢,~). For the details of the 
Sobolev space and the complete form of the Sobolev embedding theorem, the reader is referred to 
Adams (1975). 

For the purpose of minimizing the norm of the remainder UR(X, t) in the Sobolev space, we 
construct the function of optimal condition as 

U ( X , N ~m'P ( "(~T ) " J(u~) = J ( ( )  = Ilu~llw.,,,<~) = t) - -  Z a i ( t ) t ~ i ( x )  (2 .7)  
i=1 

Then the analysis of flow database is converted to the following mathematical problem: find 

¢,*(x)  = ( g ~ ( x ) , . . . ,  g ; ( x ) )  ~ ~ z3~, (2 .8 )  

such that 

J ( ( * ( x ) )  = min J ( ( ( x ) ) ,  (2.9) 
~EBN 
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where ai(t) satisfies 

ai(t) = (u, ~i), (2.10) 

and (* (x )  are called the optimal bases of the flow database in the Sobolev space wm'p(g2r). The 
above problem can be solved by using the numerical methods of optimal control theory, such as the 
method of conjugate gradients (Ye and Wang, 1986). In order to compare the new theory with the 
POD method, here we only consider the case of m = 0, p = 2; for other situations the numerical 
procedures and the results will be  published elsewhere. 

For the case of m = 0, p = 2, the optimal control condition J ( ( )  is an inner product global one, 
i.e., 

T T N 

T fixed. (2.11) 
0 0 i=1 

Corresponding to (2.8)-(2.10),  the problem becomes: find ~:*(x) C BN, such that 

T N 

J (~:*(x)) = max [ ~ a~(t) dt, (2.12) 
(Et3u J 0  i=1 

where ai(t)  satisfies 

ai(t) = (u,~i), i= l , . . . ,N.  (2.13) 

Hence, we construct the generalized optimal condition as 

T N N N 

Jg(~, , . . . ,gN)=f{--~-~a2i( t)+~Ai[(u,~i)-ai]}dt+ ~ hU((~i,~j)-SU), (2.14) 
0 i=1 i=1 i , j=l,  i<j  

where A~, Aii are Lagrangian multipliers. According to the variational method, there must be 

6J g = 0, (2.15) 

o r  

8Jg= f ( -~,2aiaai+ kiaai d t +  Aiudt, 6~i + Au~j,3~i 
0 i= 1 i= 1 - "= - 

where 

2A u, 

~i j  • '~i j ,  

A f t ,  

We choose 

= 0,  ( 2 . 1 6 )  

i=j 
i < j  
i>j .  

(2.17) 

A = 2ai; (2.18) 
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then, from (2.16), we get 

N T 

Z ~ij ~j ~- f /~i u dt = O, i= 1 , . . . ,  g.  
3=1 0 

Using (2.18) in (2.19), then 

N T 

~ij ~j + 2 / aiu dt = O. 
j= 1 0 

Putting the above results together, we have 

N T 

~hij ej + 2 f aiu dt = O, ai = (U, ~i)' 
.j= 1 0 

(2.19) 

(2.20) 

(~:i, ~:j) =~ij. (2.21) 

Applying the orthogonal property of ~ i '  the terms of Aij in (2.21) can be found to be 

T 

Aij= - 2  1 aiaj dt. (2.22) 
0 

Using (2.22) in the first equation of (2.21), finally, we arrive at 

T T 

N'~-~(fO o i = l , . . . , N .  (2.23) 

As one of the referees pointed out, "If (2.13) is substituted into (2.11) and the variation taken, 
then the usual integral equation (Sirovich, 1987) results". Therefore for the case of m = 0, p = 2, we 
recover the POD method; i.e., it reduces to simply another Karhunen-Lorve derivation. Hence, under 
the optimal condition of global inner product the new theory and the POD method are completely 
equivalent. But it must be pointed out with emphasis that for the general situation, where m 4: 
0, p # 2, the new theory can deal with much wider problems than the POD can, and hence needs 
further explorations in the future. 

2.2. Numerical procedures 

Instead of the method of conjugate gradients, here the method of direct iteration is used to solve 
(2.23). Since 

u = URo = al~l + uR,, Ul¢, : URi_  t - -  a i ~ i  = a i + l ~ i + l  --]- URi+ , • (2.24) 

The following iteration algorithm is used to find ~:i one by one, associated with (2.24) . 

(0J)/I//J /'1" a~'+l)(t) = ( , l  URI" a}k)URi dt dx a~ k) u,, dt dx (2.25) 
\ h 12 0 
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Fig. 1. Standard step flow 

T T 

'i= (/aiu. dt)(Ja~dt) -I, (2.26) 
0 0 

where k is the cyclic index. In the iteration process the following convergent condition is used: 

a(k) _ a~k+l) 
a~) < e, (2.27) 

where e is a predetermined small parameter, typically 10 -8. This iteration algorithm is not sensitive 
to the initial guess of a~ °). After the optimal bases have been obtained, they are reordered in the 
descending sequence according to the amounts of energy contained in them. 

3. An example. A two-dimensional backward-facing step flow 

In this section, we first numerically solve a two-dimensional backward-facing step flow to get the 
databases, then apply the new theory developed in Section 2 to examine them. 

3.1. Physical model, numerical method and the results of  simulations 

3.1.1. Physical model 
The standard backward facing step flow (Gresho et al., 1990) in two-dimensional incompressible 

viscous flow field was chosen to be the physical model, as in Fig. 1. 
The control equations of two-dimensional incompressible flow are the non-dimensional Navier- 

Stokes equations and the continuative equation 

~9---~ + u . Vu  = - V p  + V2u, V . u = 0 .  (3.1) 

The boundary conditions are as follows, at the inlet boundary x = 0, 0 < y < 0.5, the velocity is 

u = 24y(0.5 - y) ,  v = 0. (3.2) 

The upper and lower boundaries and the one at x = 0 , - 0 . 5  <__ y < 0 are solid walls, where the 
non-slip boundary conditions are applied, i.e., 
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u = 0, v = 0. (3.3) 

The right boundary is continuative outflow boundary. Other geometrical parameters are indicated in 
Fig. 1. The Reynolds number is defined as 

Re = u~,,,uH/~, (3.4) 

where u,,,,g = 1.0, H is the distance between the upper and the lower boundaries, v is the kinematic 
viscosity of fluid. For the given velocity distribution, it is ease to find that Umax = 1.5. 

3.1.2. Numerical method 
It is necessary to point out that since the main task of this paper is to develop a method to extract 

optimal orthogonal bases from known databases, then the differences between the data and the true 
solutions of the problem will not influence the process. Therefore, the principle of choosing the 
numerical method is to select a mature and reliable algorithm. The finite difference method based 
on MAC (Marker-and-Cell)  algorithm is chosen to numerically solve the two-dimensional Navier- 
Stokes equations. In the simulation, we use sufficiently refined grids to accurately simulate the flow 
field. The effective grids in x direction are 200 with Ax = 0.05, and the effective grids in y direction 
are 40 with Ay  = 0.025; the time step is 0.005. With the above parameters, stability of computation 
is ensured. 

3.1.3. The results of  simulations 
Here, we simulate the flow with Re = 700. The most significant character of this flow is that there 

are two large vortices near the upper and lower parts of the field, respectively, and some smaller 
vortices around them. The numerical results show that at the starting stage a vortex is produced 
from the rear part of the step, and moved with the flow down to the exit; at the same time, there 
is an opposite vortex generated near the upper boundary. It is known from the benchmark solution 
derived by Gartling (1990) that when the flow reach the stable stage, for Re = 800, the position of 
reattachment point is approximately at x = 12 step heights. For Re = 700, we found that the position 
of stable reattachment point is at x = 11.2 step heights. Hence, when using refined grids the algorithm 
is feasible and the simulation results are reliable. 

3.2. Extraction of  the optimal bases from the flow databases 

The obtained velocity fields u(x ,  t) and the vorticity fields ~o(x, t) = V x u are studied using 
the numerical procedures described in Subsection 2.2. When dealing with the velocity fields, we 
take velocity u as the system variable to extract the structures which contain most kinetic energy. 
Correspondingly, the optimal condition is 

T N 

J ( be~ " " ,  gU ) = max f ~ a~ (t) dt, ( 3.5 ) 
' (~ , . . . ,~ :~)  C~N 0 g i=0 

where ai(t) = (u, ~:i); the optimal bases ~i for these cases are called the optimal velocity bases. 
When examining the vorticity fields oJ, the purpose is to find the structures which capture most 

of enstrophy En = faoJ.  oJdx; then the vorticity oJ is taken to be the system variable. The form of 
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Fig. 2. Time histories of the kinetic energy or the enstrophy contained in the first five modes (a). Time history of the 
kinetic eneigy contained in velocity mode 1, 2. (b). Time history of the kinetic energy contained in velocity mode 3, 4, 
5. (c). Time history of the enstrophy contained in velocity mode 1, 2. (d). Time history of the enstrophy contained in 
velocity mode 3, 4, 5. 

the optimal condition is the same as (3.5), but now ai( t )  are defined as ai( t )  = (~o, ~i).  Hence the 
optimal bases ~:i for the vorticity fields are called the optimal vorticity bases. 

3.3. The optimal bases and their characteristics 

The time histories of the optimal bases, from the starting stage to the quasi-steady stage, have been 
studied. It is shown that the new theory can be applied to very different flow situations, from the 
strong unsteady case to the quasi-steady one. In each case, using the optimal velocity bases and the 
optimal vorticity bases, the effects of kinetic energy and enstrophy in the extraction of characters of 
flow field have been discussed. 
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Fig.  3. E q u a l  vorticity counters o f  the  first ve loc i t y  mode  for t = 1 ~ 110 ( a )  (.Omax = 0 . 7 4 9 8 , W m i ,  = 

- - 0 . 4 0 5 8 , A ~ o  = 0 . 0 3 8 5 , t  = 1 ~ 10 ( b )  OJmax = 0.3784,~Omin = - - 0 . 4 6 5 0 ,  Ao~ = 0 . 0 2 8 1 , t  = 11 ~ 20  (C) w,,~× = 

0.2233,oJmin = - 0 . 3 6 1 9 ,  Ao~ = 0 . 0 1 9 5 , t  = 21 ~ 30  ( d )  O3max --  0.1785,~Omi. = - - 0 . 3 1 4 8 , A ~ o  = 0 . 0 1 6 5 , t  = 31 ~ 4 0  ( e )  

w,,,a× = 0 . 1 6 8 3 , W m i ,  = - - 0 . 2 1 5 7 ,  Ao~ = 0 . 0 1 2 8 , t  = 41 ~ 50  ( f )  wma~ = 0 .1449 ,0Jmi ,  = - - 0 . 1 3 9 1 , A o J  = 0 . 0 0 9 5 ,  t = 51 ~ 60  

( g )  tOmax = 0 . 1 3 7 2 ,  O~min = - - 0 . 1 0 2 9 ,  A~o = 0 . 0 0 8 0 ,  t = 61 ~ 70  ( h )  ~Omax = 0 . 1 3 8 9 ,  O~min = - - 0 . 0 9 1 0 ,  Ato = 0 . 0 0 7 7 , t  = 

71 ~ 80  ( i )  O)max = 0 . 1 4 0 8 ,  ~Omin = - 0 . 0 8 7 3 , A w  = 0 . 0 0 7 6 ,  t = 81 ~ 90  ( j )  OJmax = 0.1375,OJmin = - 0 . 0 9 1 4 , & ~ 0  = 0 . 0 0 7 6 ,  t 

= 91 ~ t 0 0  ( k )  ~om~ = 0.1283,oJmin = - 0 . 0 9 4 1 , A ~ o  = 0 . 0 0 7 4 ,  t = 101 ~ 110 

3 . 3 . 1 .  T h e  o p t i m a l  v e l o c i t y  b a s e s  

Since in both x and y directions the flows are quite inhomogeneous, we expand both directions 
with the optimal bases. As with the POD method, we only need to decompose the fluctuation parts 
of the flow field. The time histories of energy distributions e(%) of first five bases are shown in Fig. 
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Fig.  4. E q u a l  vor t i c i ty  c o u n t e r s  o f  the second ve loc i ty  m o d e  for  t = 1 , ~ 1 1 0  ( a )  OJm~x = ( ) .2234,  ~Omin = - - 0 . 5 2 8 8 , A ~ o  = 

0 . 0 2 5 1 , t  = 1 ~ 10 ( b )  ¢Omax = 0.0176,¢Omin = - -O .0214 ,  A w  = O.O013 , t  = 11 ~ 20  (C) Wm~× = 0.0416,~Omin = - - 0 . 0 2 9 9 , A w  

= 0 . 0 0 2 4 ,  t = 21 ~ 30  ( d )  Wmax = O.O070, OJmin = - 0 . O 1 0 8 , & w  = 0 . 0 0 0 6 ,  t = 31 ~ 4 0  ( e )  ¢Omax = 0.0088,COmin = 

- - 0 . 0 0 7 0 , A e o  = 0 . 0 0 0 5 , t  = 41 ~ 50  ( f )  ~Om~x = 0 . 0 0 3 2 ,  Wmi. = - - 0 . 0 0 2 8 ,  Ato = 0 . 0 0 0 2 , t  = 51 ~ 60  ( g )  w . . . .  = 

O.O031,Wmin = - -0 .O029 ,  A w  = O.0002 ,  t = 61 ~ 70  ( h )  Wmax = O.0047,  Wmi, = - -0 .O046 ,  A w  = 0 . O 0 0 3 , t  = 71 ~ 80  ( i )  

~Omax = 0 . 0 0 1 4 ,  Wmin = - - 0 . 0 0 1 0 ,  Aoj = 0 . 0 0 0 1 , t  = 81 ~ 90  ( j )  OJ~ax = 0 . 0 0 2 9 ,  w~i ,  = - - 0 . 0 0 3 7 , ~ w  = O.0002 ,  t = 91 ~ 100 

( k )  OJmax ~ 0 .0015 ,Wmin  = - O . 0 0 1 9 ,  AoJ = 0 . 0 0 0 1 , t  = 101 ~ 110 

2. For the starting stage, with the first mode 83.0225% of the total energy has been comprised, and 
the first four modes collectively contain more than 99.7% of the energy of the motion. Thus even in 
strong unsteady flows, with just a few modes the new method can still capture most energy of the 
motion. From Fig. 2, it is obvious that as the flow approaches the steady state, the energy transfers to 
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Fig .  5.  E q u a l  vor t i c i ty  c o u n t e r s  o f  the  third v e l o c i t y  m o d e  for  t =1 ~ 1 1 0  ( a )  O~max = 0 . 0 9 8 7 ,  O)min = - - 0 . 1 8 3 2 ,  A O) = 0 . 0 0 9 4 ,  

t = 1 ~ 10  ( b )  ~Omax = 0 . 1 3 1 9 ,  O)min = - 0 . 1 2 3 3 , A ~ O  = 0 . 0 0 8 5 ,  t = 11 ~ 2 0  ( c )  O)max = 0 .0691 ,o ) rn in  = - 0 . 0 4 7 4 ,  A~o 

= 0 . 0 0 3 9 ,  t = 21 ~ 3 0  ( d )  O ) m a x  = 0 . 0 3 3 3 , O ) m i n  = - - 0 . 0 2 7 4 ,  A~o = 0 . 0 0 2 0 ,  t = 31 ~ 4 0  ( e )  O ) m a x  = 0 . 0 2 1 8 , O ) m i n  = 

- 0 . 0 1 6 1 , A o )  = 0 . 0 0 1 3 ,  t = 41  N 5 0  ( f )  O ) m a x  = 0 . 0 2 1 2 ,  O)min = - - 0 . 0 1 6 1 , A o )  = 0 . 0 0 1 2 ,  t = 51 ~ 6 0  ( g )  O)m~x = 

0 . 0 1 7 6 ,  OJmin = - 0 . 0 1 5 5 ,  Ao)  = 0 . 0 0 1 1 , t  = 61 ~ 7 0  ( h )  O~max ---- 0 . 0 1 2 7 ,  O)min = - 0 . 0 1 3 3 , A o 9  = 0 . 0 0 0 9 ,  t = 71 ~ 8 0  ( i )  

o) . . . .  = 0 . 0 0 9 5 ,  O)min = - - 0 . 0 1 1 8 , A t o  = 0 . 0 0 0 7 ,  t = 81 ~ 9 0  ( j )  O J m a x  = 0 . 0 1 0 5 ,  O)min = - 0 . 0 0 6 1 , A o )  = 0 . 0 0 0 6 ,  t = 91 ~ 100  

( k )  O ) m a x  = 0 . 0 0 6 8 , O ) m i n  = - - 0 . 0 0 9 5 ,  A w  = 0 . 0 0 0 5 , t  = 101 ~ 1 1 0  

the first basis and the energy contained in the higher modes decreases very rapidly. It is interesting 
to see from Fig. 2a that the energy curves of the first two bases are wavy as flow develops, which is 
caused by the hydrodynamics instability waves contained in these modes, and between the first and 
the second basis there is a clear complementary relationship. But, as in Fig. 2b, the energy curves of 
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Fig. 6. E q u a l  vorticity counters of the fourth velocity mode for t = 1 ~ 1 1 0  ( a )  O)max = 0 . 2 5 0 3 , O J m i n  = - - 0 . 1 5 8 1 , A ~ o  = 

0 . 0 1 3 6 ,  t = 1 ~ 10  ( b )  O)max = 0 . 0 3 6 1 ,  (.Omin ---- - - 0 . 0 4 9 1 ,  A~O = 0 . 0 0 2 8 ,  t = 11 ~ 2 0  ( C )  ~Omax = 0 . 0 2 0 7 ,  OAmin ---- - - 0 . 0 1 6 8 ,  mo)  

= 0 . 0 0 1 3 , t  = 21 ~ 3 0  ( d )  OJmax = 0.0073,~Omin = - - 0 . 0 0 6 7 , A ~ o  = 0 . 0 0 0 5 , t  = 31 ~ 4 0  ( e )  ~Omax = 0.0045,oJmin = 

- 0 . 0 0 5 6 , A o J  = 0 . 0 0 0 3 , t  = 41  ~ 5 0  ( f )  O)max = 0.0042,09rain = - - 0 . 0 0 4 3 , A ~ o  = 0 . 0 0 0 3 , t  = 51 ~ 6 0  ( g )  ~Om~x = 

0 . 0 0 4 8 , O ) m i n  = - - 0 . 0 0 2 8 , A t o  = 0 . 0 0 0 3 , t  = 61 ~ 7 0  ( h )  ~Omax = 0 .0045, ( .Omin = - - 0 . 0 0 3 7 , A o j  = 0 . 0 0 0 3 , t  = 71 ~ 8 0  ( i )  

Ogrnax = 0 .0030,~min  = - - 0 . 0 0 4 9 ,  A~o = 0 . 0 0 0 3 ,  t = 81 ~ 9 0  ( j )  OJmax = 0.0037,Omin = - - 0 . 0 0 2 4 ,  Aa~ = 0 . 0 0 0 2 ,  t = 91 ~ 1 0 0  

( k )  O~max = 0.0037,O~min = - - 0 . 0 0 2 9 ,  A~o = 0 . 0 0 0 2 ,  t = 101 ~ 1 1 0  

the vorticity bases vary with time smoothly and monotonically. The mechanism of this phenomenon 
needs further investigation. 

The time histories of the spatial structures of vorticity of the first four velocity modes are shown 
in Fig. 3~-,6 (in the figures AoJ are the differences between equal vorticity contours ) From Fig. 3, it 
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Fig. 7. Vorticity field of  the step flow at t =10. ¢Omax = 0.6040,  tOmi n = - 0 . 5 9 1 2 ,  Am = 0.0398 
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F i g .  8.  Approx. vorticity fields of  the step flow with velocity modes at t = 1 0 .  ( a )  First approx., O)max = 0 . 6 4 2 8 , w m ~ ,  = 

- - 0 . 7 4 4 7 , A o ~  = 0 . 0 4 6 3  ( b )  Fifth approx., ( ,Omax  = 0 . 6 0 1 7 ,  g O m i n  = - 0 . 5 8 6 6 ,  A to  = 0 . 0 3 9 6  

is clear that the first mode has captured the main character of the flow, i.e., the vortex slipped from 
the tip of the back corner of the step and moved to the exit. At the strong unsteady starting stage, 
the spatial structure of the first basis evolves rapidly, but at the quasi-steady stage, the structure has 
only little change as time pass by. The other modes represent some less significant features of the 
flow, and the energy contained in those modes also reduces subsequently. But it is surprised to see 
that the maximum vorticity in each mode is not reduced with the order; for example, the maximum 
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Fig. 9. Vorticity field of the step flow at t = l l 0 .  (Omax = 0 . 6 3 6 0 ,  Wmin = - - 0 . 5 9 8 3 , A o J  = 0 .0411  
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F i g .  10 .  A p p r o x .  v o r t i c i t y  f i e l d s  o f  t h e  s t e p  f l o w  w i t h  v e l o c i t y  m o d e s  at  t = 1 1 0 .  ( a )  F i r s t  a p p r o x . ,  (Omax --  0 . 6 3 7 7 , ( O m i n  = 

- - 0 . 6 0 0 3 ,  A~O = 0 . 0 4 1 3  ( b )  T h i r d  a p p r o x . ,  ~Om~x = 0 . 6 3 6 2 ,  (Omin = - - 0 . 5 9 8 1 , A o J  = 0 . 0 4 1 1  

vorticity in the fourth mode (Fig. 6a) is larger than that of the third one (Fig. 5a) From these figures, 
the higher modes are found to correspond to some smaller and weaker vortices in the flow, which 
dissipate quickly as the flow approaches the steady state. At the same time section, in the spatial 
structures there is a kind of cancellation relation among modes. For the optimal vorticity bases, they 
also have similar features. 

Compared with the real vorticity field of the flow at t = 10 (Fig. 7),  the approximated vorticity 
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F i g .  11. Equal vorticity counters of the first four vorticity modes for t = I ~ 1 0  ( a )  First mode, Wmax = 0 .7645 ,OJm~,  

= - - 0 . 4 1 4 2 , A ~ o  = 0 . 0 3 9 3  ( b )  Second mode, Wmax = 0 .2563 ,Ogmin  = - - 0 . 5 4 4 3 , A w  = 0 . 0 2 6 7  (C)  Third mode, w ..... = 

0 . 2 4 9 8 ,  Ogmin = - - 0 . 1 3 6 5 ,  A m  = 0 . 0 1 2 9  ( d )  Fourth mode, O ) m a x  = 0 . 0 8 4 3 ,  O~mi, = - - 0 . 0 9 9 9 ,  A m  = 0 . 0 0 6 1  

fields based on the first mode and the first five modes are shown in Figs. 8a and 8b, respectively. It is 
clear that using the optimal modes, we have not only almost completely captured the global structures 
of the flow field, but also accurately represent its local features. For t = 110, Fig. 9 and Fig. 10 show 
the real vorticity field and the first and the first three modes' approximations, respectively. At this 
time only very few modes are needed to accurately approach the real flow field. 

3.3.2. The optimal vorticity bases 
The late fluid mechanics professor Lu Si-jia(1984) pointed out:"The essence of fluid motion is 

vortices." Thus if we correctly understand the mechanisms of vortex motions, then we will to a great 
extent hold the key to flow. Next, we take vorticity as the variable of systems, the "energy" here will 
be the enstrophy of the vorticity field. Again only the time-varying parts will be taken into account. 

The analysis of  the optimal vorticity bases of the strong unsteady flow field at the starting stage 
has shown that the first mode can hold 75% total enstrophy of the flow, and with the first four 
modes more than 99.68% total enstrophy can be captured. This result shows that the convergence rate 
of the optimal vorticity modes is also very fast, but compared with the optimal velocity bases, the 
distribution of enstrophy has a tendency to the higher modes, which is in agreement with the work 
of Sirovich (1991) It should be realized that this is not always the case. 

At t = 100 ~ 110, it is found that for quasi-steady flow, with just the first mode we capture 99.51% 
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Fig. 12. Equal vorticity counters of the first three vorticity modes for t =100N l l0 (a) First mode, (Omax = 0.1283, O)m~n 
= --0.0881,A(o = 0.0072 (b) Second mode, tOmax = 0 . 0 0 9 7 ,  tOmin = -0.0064, Am = 0.0006 (c) Third mode, O~max = 
0 . 0 0 1 2 ,  tOmin ---- - - 0 . 0 0 1 8 ,  A t o  ----- 0 . 0 0 0 l  

o f  the  to ta l  ens t rophy .  This  t ime  the  d i s t r ibu t ion  o f  e n s t r o p h y  does  no t  a p p r o a c h  the  h i g h e r  m o d e s ,  

but is c o n c e n t r a t e d  in the  l o w e r  m o d e s ;  this  is j u s t  o p p o s i t e  to the  s t rong  u n s t e a d y  s i tua t ion .  

F igs .  11 and  12 are  the  vor t i c i ty  f ield o f  the  first fou r  and  the  first three  m o d e s ,  for  t = 1 ~ 10 and  

t = 100 ~ 1 10, r e spec t ive ly .  The i r  charac te rs  are  a l m o s t  the  s ame  as that  o f  the  ve loc i t y  bases .  Th is  

shows  that  the  vor t i ces  t ake  the  fo rms  o f  h igh ly  co r re l a t ed  f luid energy.  F ig .  13 is the  a p p r o x i m a t e d  

vor t i c i ty  f ie ld b a s e d  on the  first m o d e  and the  first five m o d e s  for  t = 10, and  the a p p r o x i m a t e d  
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F i g .  13.  A p p r o x .  v o r t i c i t y  f i e l d s  o f  t h e  s t e p  f t o w  w i t h  v o r t i c i t y  m o d e s  a t  t = 1 0 .  ( a )  F i r s t  a p p r o x . ,  O)max = 0 . 5 7 9 8 , ¢ 0 , , ~ n  = 

- 0 . 7 2 6 1 , A t o  = 0 . 0 4 3 5  ( b )  F i f t h  a p p r o x . ,  Wmax = 0 . 5 3 4 8 , ¢ O m i n  = - - 0 . 5 9 4 4 ,  AoJ = 0 . 0 3 7 6  

vorticity fields based on the first mode and the first three modes are represented in Fig. 14, from 
which it can be seen that with the optimal vorticity modes, the real flow field can be approached 
with sufficient accuracy. As with the velocity bases, using the optimal vorticity bases to represent the 
flow field can also achieve very high precision. For example, at t = 110, with the first three vorticity 
modes the errors of the maximum and minimum vorticity of the approximated vorticity field to the 
real field are 0.002% and 0.0004%, respectively. Therefore we believe that for steady or quasi-steady 
flow fields, the optimal vorticity bases will be more advantageous than the velocity ones. 

It should be keep in mind that the simulations are restricted to two-dimensional ones, where the 
vortex lines cannot be stretched and the energy cannot be transferred in the third direction; therefore 
the vorticity and velocity modes are closely tied together, and have a similar evolution tendency. 

4. Concluding remarks 

Under the global inner product optimal condition, the new theory is completely equivalent to the 
POD. Furthermore, with the help of the Sobolev embedding theorem the new theory has the potential 
to extract the local structures with specific emphases, when certain reasonable optimal conditions are 
adopted. 

The time histories of velocity and vorticity show that as the flow approaches the steady state, 
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Fig. 14. Approx.  vorticity fields o f  the step flow with vorticity modes  at t =110. (a)  First approx.,  Wmax : 0.6377,wm~,1 = 
- 0 . 6 0 0 3 , A w  = 0.0412 (b)  Third approx.,  6Omax ---- 0.6360, Wmin = - 0 . 5 9 8 3 , A w  = 0.0411 

the kinetic energy or enstrophy tends toward the leading modes, and the higher modes(i.e., small 
structures of the flow) decay very fast; therefore they are negligible in the simulation. 

For different flows different optimal conditions should be used to extract the typical features. For 
low Reynolds number quasi-steady vortex flows, taking vorticity and enstrophy as the variable and 
the optimal condition respectively can efficiently capture the primarily structures of the flows. But 
this cannot be extended to fully developed turbulent flows. 

We also learn from the simulation that a large fraction of the fluctuation enstrophy is carried by the 
first few modes; hence, in two-dimensional vortical flows, the flow structures carrying most enstrophy 
of the flow can represent the main features of the flow. 
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