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ABSTRACT

The unstable stacking criteria for an ideal copper crystal under homogeneous
shearing and for a cracked copper crystal under pure mode II loading are analysed.
For the ideal crystal under homogeneous shearing, the unstable stacking energy yus
defined by Rice in 1992 results from shear with no relaxation in the direction normal
to the slip plane. For the relaxed shear configuration, the critical condition for
unstable stacking does not correspond to the relative displacement 4 = by/2, where
b, is the Burgers vector magnitude of the Shockley partial dislocation, but to the
maximum shear stress. Based on this result, the unstable stacking energy [ is
defined for the relaxed lattice. For the cracked crystal under pure mode II loading,
the dislocation configuration corresponding to 4 = b,/2 is a stable state and no
instability occurs during the process of dislocation nucleation. The instability takes
place at approximately 4 = 3b,/4. Anunstable stacking energy 1, is defined which
corresponds to the unstable stacking state at which the dislocation emission takes
place. A molecular dynamics method is applied to study this in an atomistic model
and the results verify the analysis above.

§ 1. INTRODUCTION

In the past few years, much effort has been made to study crack tip processes so

as to establish the transition criterion from ductile to brittle fracture. Rice and Thomson
(1974) first realized that the competition of dislocation nucleation and cleavage at the
crack tip is an important factor in the transition criterion.
Recently, Schoeck (1991), Rice (1992), Rice, Beltz and Sun (1992), Beltz and Rice
(1991) and Wang (1995) reanalysed the nucleation and emission of dislocations from
a stressed crack tip based on the Peierls concept. In Rice’s work, in order to overcome
the drawbacks of the Rice~Thomson approach which makes use of an elastic solution
for a fully formed dislocation and introduces a poorly defined core cut-off, Rice
introduced the unstable stacking-fault energy 7y, as a parameter to characterize the
resistance to dislocation nucleation. He also applied it to dislocation nucleation from
a crack tip. )

The unstable stacking-fault energy can be estimated by different methods. The
Frenkel sinusoid was used by Rice (1992) and a quantum-mechanical method was
applied by Paxton, Gumbsch and Methfessel (1991). Cheung, Yip and Argon (1991)
used the embedded-atom method to calculate y,s for b.c.c. Fe and Zhou and Carlsson
993) used the Green function method to evaluate yy for an h.c.p. crystal. However,
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the estimates show differences for different methods and so there is some uﬂCfﬁi‘tamty ;
in yus.
Inthe present paper, for the configuration with no relaxatlon in the direction normg]
to the slip plane, a computatlonal cell in which all atoms undergo a pure sheg,
“displacement is used to calculate the relation between the relative displacement 4 a5
shear stress © by using a Finnis-Sinclair potential. The relation of 4 and 7 i,
approximately a sinusoidal function. For a cell in which relaxation in the directiop
.normal to the slip plane is allowed, its instability is analysed by a molecular dynamicg
- method. We find that the instability occurs at the maximum shear stress. Based on thig
concept, the unstable stacking-fault energy I'ys for the ideal relaxed crystal is defineq.
Our analysis shows that, owing to the atomic characteristics and inhomogeneous sheay
at the crack tip, the Peierls concept is not applicable. The molecular dynamics method
is also used to calculate the nucleation and emission of a partial dislocation from a crack
tip. The analysis shows that the fully formed dislocation, that is 4 = by/2, does oy
correspond to the stacking instability. (Here, b, is the magnitude of the Burgers vector
of the Shockley partial.) The instability takes place approximately at 4 = 3b,/4, which
just corresponds to the emission of a dislocation from the crack tip. Based on this
analysis, the unstable stacking energy I, for dislocation emission from a crack tip is
defined. :

§ 2. LATTICE WITH UNRELAXED HOMOGENEOUS SHEAR

By using the Peierls (1940) concept, Rice (1992) assumed that the shear stress 1
along the slip plane is a periodic function of slip displacement 4. The relation of t and
Ais assumed to have a form like that in fig. 1. The unstable stacking fault energy defined
by Rice is also illustrated in fig. 1. If the relation of 7 and 4 is taken to be a sinusoidal
function, that is

sin <2nA ) ]
T= —,
Tm b ‘ (1)
the energy per unit area of the slip plane is
Y= f td4 2
Fig. 1
T
Tm 1

IMustration of the periodic relation between shear stress and relative shear displacement and the
unstable stacking energy 7, defined by Rice. -
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d yus is the maximum value of ¥ for the sinusoidal function, that is
Yus = . , (3)

In the present paper, the relative shearing of elastic bodies assumed by Peierls is
mulated by an atomistic method, that is all atoms move through the prescribed
homogeneous shear displacement. The interatomic potential used here is the ‘N-body’
potential of the form proposed by Finnis and Sinclair (1984) and constructed by
Ackland, Tichy, Vitek and Finnis (1987). The atomic level stress a?‘” associated with
atom i is calculated by using the formula of Alber et al. (1992).

. The {110}, {111} and {112} crystallographic planes bound the parallelepiped with
a periodic boundary condition used along the {112) and (110) directions. The cases of
() shearing along the (112) direction, which corresponds to the displacement direction
of a partial dislocation, and (b) shearing along the {110) direction, which corresponds
to the displacement direction of a perfect dislocation, are considered. The calculated
relations of the relative displacement A against the shear stress © for cases (a) and (b)
are shown in figs. 2(a) and (b) respectively. The relation of case (a) shows an

Fig. 2
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;The relative shear displacement against shear stress under the unrelaxed shear: (a) shear,
{112){111}; (b) shear, {110){111}.
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approximately sinusoidal function, but that of case (b) is different. The occurrence o
lattice instability under the unrelaxed shearing, which just corresponds to the formatlgn
of a dislocation, takes place at A= b/2, where b is the magnitude of 4(110), for the
perfect dislocation and at A4 = by/2 for the partial dislocation. The maximum shear sreg
roughly corresponds to the theoretical shear strength of copper. The unstable stacking
fault energy 7 defined by Rice is 0-381Jm 2 for case (a) and 0-409Jm ™ for case
(b). The value for (@) is a little larger than that obtained by Rice (1992) using the Frepkg|
relation.

§ 3. LATTICE WITH RELAXED HOMOGENEOUS SHEAR
" In the preceding analysis, all the atoms were constrained by prescribing the shear
displacement. Now we consider instability of a lattice when relaxation of atorns in the
direction normal to the slip plane is allowed.

In the same model as above, the discrete border atoms were displaced by the
homogeneous shearing displacement and the inner region atoms relax by Newton’s law
using the leapfrog algorithm. Blocks with either 12 or 15 {111} planes were used. The
top five and bottom five planes were rigidly displaced by the homogeneous shear
displacement; so the free atoms were only in either two or five {111} planes, asindicated
by the full circles in figs. 3 (¢) and () respectively. For shearing along the (112}, atom
motion parallel to the (110) direction is prohibited.

The curves of the relative shear displacement A against shear stress t for the
different pairs of planes shown in figs. 3 (@) and (b) are givenin figs. 4 (a) and (). From
fig. 4 (a) it can be seen that the pair of planes 2 shown in fig. 3 (a) is displaced by a
partial Burgers vector, but at the same time unloading takes place at the pairs 1 and 3.

Fig. 3
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The simulated atom configurations under the relaxed shear with (a) two relaxed planes znd (b
five relaxed planes.
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Fig. 4
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' The relative shear displacement against shear stress for the different pairs of atom planes under
the relaxed shear for (a) two relaxed planes and (b) five relaxed planes.

From fig. 4 (b) it can be seen that the pairs 3 and 4 shown in fig. 3 (b) are displaced by
~ apartial Burgers vector, while unloading takes place at the pairs 1 and 2 and pairs 5
- and 6. For cases with more {111} planes, a similar phenomenon is observed.
From this analysis, an instability takes place at the maximum shear stress 7. Based
 on this critical condition, a new unstable stacking-fault energy for the relaxed lattice
 under homogeneous shearing is defined:

Arﬂ
I, - f cdd. @)

0

where A, is the relative shear displacement corresponding to the maximum shear stress.

§ 4. INSTABILITY OF THE LATTICE AT A CRACK TIP
The results of the homogeneous shearing were applied locally to the states of
~inhomogeneous shear by Rice (1992). At a crack tip, the stress is very inhomogeneous;
50 it is essential to treat the effect of this on instability of the lattice at the tip. Owing
to the nonlinear and many-body nature, a rigorous mathematical analysis for lattice
instability is not possible; so now we consider the lmpllcatlon of the method used in

the present paper
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Fig. 5
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(a) The atomic configuration for the formation of a partial dislocation; () the critical unstable
state of this partial dislocation; and (c¢) the atomic configuration for the movement by
a partial Burgers vector from the crack tip.

4.1. Analysis

A dislocation is a metastable configuration in a crystal and a virtual force 1‘{1!,!3‘; be
applied to the dislocation to make it move. Under the mode II loading, an incipient
partial dislocation gradually grows into a fully formed dislocation, that is 4 = by/2.
If one wants to make the dislocation move further, a force must be applied; so the
unstable configuration does not correspond to dislocation formation, that is 4 = by/2,
but to dislocation emission from the crack tip. Figure 5(a) shows a fully formed
dislocation in a s.c. crystal, which is a metastable state, fig. 5(b) corresponds o the
critical unstable state and fig. 5(c) represents the movement of the dislocation by a
partial Burgers vector. Hence the instability corresponds to the emission of a dislocation
from a crack tip. '

For the crack tip processes, 74 defined by Rice corresponds to the energy rﬁquired
for the formation of a dislocation, not to the instability of dislocation emission. A solid
state parameter [I,, the unstable stacking energy for d1s10cat1on emission from the’
crack tip, can be defined:
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Ays

I = Td4, _ (5
0

where Aus is the relative shear displacement at which the nucleated dislocation at the
rack tip becomes unstable. Thus the critical condition for the emission of a dislocation

S N

. J =1, (6)
where J is the J integral.

4.2. Verification
~ We consider the state of an initial rectangular lattice with a slit under pure mode
[ loading. The molecular dynamics method is employed to simulate the crack tip
rOCESSES.
A parallelepiped block in the same orientation as before, but with a slit, was used.
The crack front is along (110) and the crack grows along (112) direction, so that the
islocation nucleated from crack tip is a Shockley partial. In order to ensure the
raction-free condition on the crack planes, the atom interaction across the crack planes
must be prohibited. To do this, the model is divided into cells, each with a size a little
"larger than the cut-off distance of the potential. Atoms in a cell adjacent to the crack
plane are not allowed to interact with the atoms in cells across the crack plane.
The ‘fixed-boundary’ method is used, that is the position of border atoms is prescribed
; y the pure mode II K displacement field. Although this method is less accurate than
“the “flexible-boundary’ method, since we only investigate the dislocation nucleation
~ process far from the border, the difference between the two methods is therefore small
deCelis, Argon and Yip 1983). Relaxed atomic configurations were examined for
ncreasing applied displacement.
The atomic configuration corresponding to K = 0-26 MPam'” is shown in fig. 6.
An emitted partial dislocation can be clearly observed. The variation in the relative shear
 displacement against the shear stress for the pair of atoms at the crack tip is shown in
_fig. 7. It can be seen that the instability does not occur at 4 = by/2. To make the
islocation move away from the crack tip, a shear stress must be applied and the
instability occurs approximately at 4 = 3b,/4. It can also be seen that the formation of
dislocation requires a large shear stress and energy. If a dislocation has been fully
- formed, it requires a relatively small shear stress and energy to drive it away from the
rack tip. From fig. 7, it can be seen that Il is actually equal to yus defined by Rice
lus the energy for driving the dislocation to the unstable state of emission Yus,
hat is ‘

Iy = Yus + Yaus- @)

onipared with Yus, Yaus 18 relatively small and 7y, is the main part of IT.

Our results also show that critical stress intensity factor for the dislocation
ucleation K% is 0-21 MPam'” in our model of copper. The yys directly obtained from
the crack tip is equal to 0-221J m ™2, which is in good agreement with 0-22Jm™?2
‘obtained by Rice (1992). The calculated Il is 0-267J m 2. The stress intensity factor
or dislocation emission from the crack tip is K§ = 0-22 MPam'?, which is very close
o K}, implying that, once a dislocation has been formed, it will be emitted from the
crack tip very easily. '
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§ 5. CONCLUSIONS
For an ideal copper crystal under homogeneous shearing, the unstable stacking-fault

0.25

0:00

8.0
4.0
-4.0
-8.0

(%)
=
Q2

g

[S= S

3B
S
VRS

Q

at

585

Q
= g

=

o L

=

g g

g

e

o
S22
=
=
= o

d o

&3

<

o=
2
ma

"

5 3

[Z

S

9

8 =
ha

@« g
% .2
Rl

S

&0 5
273

3 =

o=

[0}
md
"
a =
Ry
LSS

= oo

BiRe)
£3

oy

v 3
2 2
=2

[

it

[
=
=

(1992) is for the unrelaxed configuration. The relations

between the relative shear displacement and shear stress for both the partial and the

energy 7,s defined by Rice

acements of the unrelaxed lattice and y,, have been obtained.
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the energy required for the formation of a dislocation. Instability takes place after the
rmation of the dislocation at approximately 4 = 3bp/4, which just corresponds to
¢ emission of the dislocation. A new unstable stacking-fault energy Il is defined
Jhich corresponds to this unstable state. The results of a molecular dynamics study
enfy this analysis. However, the extra energy yaus is much smaller than y,s and Il
proximately equal to yys. Since both IT, and y,s are much smaller than the energy
equired for cleavage, the qualitative model of Rice for the ductile-to-brittle transition
s unaffected by the present results.
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