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A new expression of hardening coefficients for fcc-crystal
and calibration of the material constants*
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Abstract In order to describe the effect of latent hardening on the macro-plastic behavior of
foccrystal, a new expression for hardening coefficient is proposed in which there are 12 material constants,
each having clear physical meaning. And a method of material constant calibration is suggested and used to
determine the material constants of copper and aluminum crystal. The simulated load-elongation curves along
various crystallographic orientations are comparable with the experimental ones.
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The rigorous geometric and kinematic descriptions of crystal plastic deformation were
formulated by Hill" in 1966 and Hill and Rice” in 1972. Since then the study on the
theoretical framework of the crystal constitutive relation has made much headway. Whether
the crystal plasticity theory has practical applications largely depends upon the
establishment of an appropriate expression of the crystal hardening law. Following the pi-
oneering work of Taylor and Elam, Asaro proposed a hyperbolic hardening function with
4 material constants and used it to analyze the formation of shear bands in crystal?;
Bassani reexamined the activating condition of the secondary slip systems and argued that
the main effect of latent hardening is not to heighten the systems’ critical resolved stress
but to increase their tangent shear moduli when they are activated. However, there are still
considerable discrepancies between the theoretical predictions and the experimental results.
Thus this effect needs to be more accurately formulated. Moreover, as the functional rela-
tion between experimental curves of crystal and its materials is very complex and implicit,
how to determine the material constants poses another outstanding question. This paper
attempts to establish a new hardening expression of fcc-crystal and presents a method for
calibration of material constants.

Here we first quote a few important formulae of crystal plasticity directly from ref. [3].
Let the normal vector of the ath slip system be »® and the vector in the sliding
direction be m®, either of which is initially a unit vector and remains unchanged during
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plastic deformation. The symmetrical and unsymmetrical orientation tensors are defined as

P7= L (m"@n + n"@m) and W= L (m@n —n*Qm®). (1)

== :
With 7 and t' denoting the sliding shear rate and resolved shear stress rate.
respectively, the macro plastic strain rate will be

N
DP=) P (2)
a=1
Letting
BY=W®s T—=T+« W?, 3)
where T is Kirchhoff stress, the elastic strain rate and resolved shear stress rate will be
_ \
DC:Ce:(T“!"Z }.[h‘lB{a‘f:) (4)
B=1
and
\ 3 N Y _ N 3
(o) = (P +B"’:C‘):(T + ) yPB? )= A"":(’I‘+ R ) (5)
fi=1 ; f=1 !
where
Alx] :P[CIJ + BII}?(‘-.‘ {6]

N

T is the Jaumann rate of T and C*. the elastic compliance tensor. In eq. (5), Y. #”B® is
p=1

caused by the geometrical nonlinearity of finite deformation. Under small deformation,
neglecting it does not bring about significant errors.

1 Latent hardening effect on sliding back-stress and tangent modulus

With the development of plastic deformation, critical resolved shear stress of a slip system
will be updated, no matter whether the slip system is activated or not. Meanwhile, tan-
gent moduli of activated slip systems will also be affected by the activation history of slip
systems. In this paper, instantaneous critical resolved shear stress of a slip system is called
its sliding back-stress. so the above phenomena are defined as back stress latent hardening
and tangent modulus latent hardening (abbreviated as BSLH and TMLH hereinafter),
respectively.

Micro mechanisms of BSLH are complicated. Latent hardening depends on
orientations, sliding history and activated state of slip systems. When a crystal material is
treated as a homogenized continuum, macro strain rate DP will be a representative value
of the microscopic inhomogeneous sliding. As the effect of a homogeneous strain field on
a slip system in it, BSLH caused by a D should be the same; that is to say, BSLH of a
slip system depends only on D? and the orientation tensor of a slip system, P®. There is
no need to consider latent hardening effects separately for each pair of slip systems.
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A slip system cannot be activated if its shear stress is within a range, bounded by two
hyperplanes in the stress space. A kernel of the ranges corresponding to all of the slip
systems will be the macroelastic region. When proportional limits are taken as the yield
points, the evolution of subsequent yield surfaces will furnish evidence helping us infer the
evolution pattern of the latent hardening law.

Experiments'” demonstrated that subsequent yield surfaces of polycrystalline materials
have three common characteristics: (i) evident Bauschinger effect — whole yield surfaces
move with shape deformed during prestress; (ii) little crosseffect—the size of subsequent
yieid surfaces in direction perpendicular to the prestress path remains almost unchanged;
(iii) evident vertex effect—there is always a high curvature area near a prestress point on
subsequent yield surfaces, but the opposite part gets flatter.

All of those phenomena indicate that the sliding back-stress change rate of a slip system
caused by D® depends on the angle between P® and D® in the stress-strain space and
N N
10, =APO:DP=1) §OPO:PO=]) P,3?, P,=P®: P9, )
p=1 g=1
where
P,=P®.p?¥ (8)

and 4 is a back-stress latent hardening modulus. Generally speaking, A varies with the
development of plastic deformation. The vertex effect will be weaker with an increase of
A. If A=0, a sharp vertex will appear®. Therefore, the third characteristic can be de-
scribed with an appropriate A.

An activated criterion of a slip system can thus be formulated as

{ 1@=1% and 1¥>12,,then >0 and i9=1®, o)
t9<1® or t¥<i®,, then y®=0and t¥=19,.

It can be easily verified that when slip systems are activated in accordance with egs.
(7) and (9), predicted subsequent yield surfaces will possess the above-mentioned three
characteristics.

Resolved shear stress rate of an activated slip system should be a sum of the sliding
back-stress rate and the active hardening rate, namely
N
tO=18 +19, =99+ 1 ) P5®, (10)
A=1

where h® is the active hardening modulus depending on self-active hardening and TMLH.
From eq. (10), we know that the total hardening modulus is

h=h®3,=AP,,. amn

Substituting (11) into (9) yields a set of equations-inequalities.
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| %= Y h?. when >0,

2 f=1

T (12)
| #9< ) hyy", when $7=0.

=1

Eq. (12) suits all of the shp systems with t=7, and can be written in matrix form

WUsiP, AP, AP, N O A
P, WP+ iP. P, WPy Py L #
iP, iP.  hY+IP, AP, APy 3O ot 13
. i T : R B R - )
+Py, AP, +Py WO+ ipP, - AP, L9 #
| 1
. ; : , N a1 o |
Py, P, APy, Py o WVeipd Lol Ly ]
where = s for slip systems with 7>0, and > for those with 7=0. Obviously, the

coefficient matrix is symmetric and positively definite.

2 Material constants and constitutive equation

Experiments demonstrate that BSLH is quite strong at the beginning of plastic
deformation. and tends to be saturated gradually. In this paper. the accumulative plastic
deformation 1s measured with the sum total of shidings

N
r=) 1y (14)
=1
so the evolution pattern of 4 can be described by
H ~ni -’I‘i }_' T
i=He "He ' . (15)
where /i, and 5 are material constants, representing the initial value of 2 and its decay
speed. respectively.

TMLH is assumed to follow Bassani's hardening rule™. Under single slip condition'?,
the expression of A'” is

[ H-H
K= (H,~ H,)sech’ ( S+ L (16)

— H

where material constants H,, H,, 7, and 7, stand for the initial and the saturate hardening
modulus as well as the initial and the saturate critical strength, respectively.
Under multiple slip condition, the expression of A s
H,—H, S A\
% y**‘)ws}[l '*Z.Imianh(’—)J, (fa=0) (17)
T / A=l 7

. 70

5,

he'=((H,~ H,) sechl(

where f,, is the cross-hardening coefficient between the x and the f slip system, 7, is
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another material constant reflecting the decay speed of TMLH, and y* is the accumulative
sliding of the p slip system. f,; depends on the relative orientation of each pair of the 12
slip systems and has been determined by Bassani'¥. He pointed out that there are only five
different values of f,.

When the 12 material constants in the evolution equations of h®, A and g are known,
the stress-strain responses of crystal can be predicted by a constitutive equation. Since
the metal crystal under large deformation is usually quite soft, an incremental constitutive
equation with the compliance tensor is more suitable for numerical analysis. Substituting
(5) into (12) yields

N . N
> hgyP= A‘“’:( T+Y. }':”’B“”) when 79>0,
=1 B=1

S R . (18)
> hg 7P A9 T+) 7PB? | when $©=0.
p=1 p=1
Using notation
Ky=hs—A®: BP=h,— B®: C*:B®~P®:B? (19)
yields a formal result
N -~
i‘“’=( Y x;A@): T. (20)
g=1
Substituting (20) into (2) and (4) yields a formal incremental constitutive equation
N N .
D=D°+D°=(C°+Z Y x,;'A@J@A@):T. (1)
a=1f=1 .

It is noteworthy that though P® in (1) and B?® in (3) are symmetrical 2-order tensors,
P:B® is not always equal to B®:P®. Generally speaking, x, in (19) is not symmetrical
about « and B. Moreover, (18) is a set of equations-inequalitites. It may not be easy to
find y® directly from (18). Since (13) includes a symmetric and positive definite coefficient
matrix and has one and only one solution, the solution can be obtained with the standard
simplex algorithm of the linear programming theory” or by an iteration method. The
strain-stress responses of crystal can be obtained with |

N N N
D=D"+DP=C* ('i‘ +) 5;@3@) +§l JOPO=C T+, 9 4% (22)

a=1 a=1
3 Material constant calibration

The macro-mechanical behavior of crystal is usually measured in uniaxial tensile tests In
several crystallographic orientations and the results are ‘nominal stress-elongation curves, as
shown in fig. 4. The 12 material constants are related to the stress-strain responses of
crystal by complex and implicit functions. It is impossible to measure them separately in
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conventional material tests. However, a good constitutive equation with appropriate materi-
al constants should well guarantee the theoretical predictions to be consistent with the experi-
ments. Hence, the mathematical programming algorithms can be used for material con-
stant calibration by taking the material constants as the decision variables and the devia-
tions of theoretical predictions from experimental data as the objective function.

In uniaxial tensile tests, the stress-strain responses of crystal are sensitive to the
crystallographic orientations. A number of specimens in different crystallographic
orientations are required for a reliable calibration. With y, and y* (i=1. 2, 3,--, N)
denoting respectively the predicted and the measured data at the i sample point, an objec-
tive function can be defined as

v
F(x)= ﬂ;Z L= V) (23)
where x; (j=1. 2, 3,--, N) represent the material constants.

The simplex method™ seems inefficient for the calibration, while the steepest descent
method and the variable metric methods, such as DEP and BEGS, can enable us to speed
up the calibration. So we have to evaluate the gradient:

EF N '.1- .‘
F Yy 04)
{)x i=1 ,,
and
("}EF . aYi Neis ’\ira -
=)| — +(v,— — . 2
aX;0x, ;[ f}x_;. 84X, 0=y 0x,0x, (23)
) 2 Av AEJ
In egs. (24) and (295) —g—;‘: and @—i%;r— can be replaced by ?‘}-’" and ij
respectively, Calculation of ﬂ—’— 1s rather tedious and the accuracy can hardly be
"

guaranteed. If the guessed value of x, is a good approximation, y, can be regarded as a linear

-

function of x. In this case, R =0, so eq. (25) becomes
0X;0%,
o'F S :
= e 2
éx,0x, Ty 0x; 0x, (26)

A combined algorithm of the modified Gauss-Newton method and the steepest descent
method has proved very effective with the updated formula

J oy EW] old) _ EEF + ') g _af_ -
= {0 ﬂ|: aw, " ] {ﬁx‘ . (27

where p is a coefficient selected in the search process to make F(x;) minimized in direction
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2 =1 .
oF +vd;, oF , and v is a constant to be chosen. A larger v will make the
0x,;0%, ox;

search direction closer to the steepest descent direction. When v=0, the search direction is
the same as predicted by the modified Guass-Newton method.

4 Numerical example

Figure 1 shows an FCC-crystal with 12 slip systems. Under uniaxial tests, the tensile
direction corresponds to a point in the stereographic projection as illustrated in fig. 2,
where ‘100°, ‘010°, ‘001’ represent the x-, y-, z-directions in fig. 1. The direction

cosines of ‘111’ and ‘Ol1’ are ( ‘{:3 , ‘?3 , ‘? ) and (O, JQ ﬁ), respectively..

272
There are 24 triangles in fig. 2. Because of the geometrical symmetry, we can focus our

attention on the typical cases in which a tensile direction corresponds to a point in the
shaded triangle™®.

z, [001] 2
3 y
4 2
5 -
1 \(9)
— (ﬁ)
[010] - 8 x
y 6/7 /
qh)]
(12)
[100]
X
Fig. 1

The solid lines in fig. 3 are the nominal stress-elongation curves of Al-crystal simulated
with material constants 7,/7,=2.13, H,/t,=21.9, H,/7,=2.90, y,=0.005, H_/t,=1.61, n=0.073,
a,=5.67, a,=6.31, a,=0.065, a,=13.03, a;=3.63. They are in good agreement with experi-
ments of ref. [9]. The calibration starts from a group of guessed material constants with
poor predictions corresponding to the short-dashed lines in fig. 3. The long-dashed lines in
fig. 3 show an intermediate result after a few iterations. The material constants listed
above are the optimum values obtained at last. In the present numerical investigation,

quick convergence takes place when eq. (27) is used with v=0.1—1.0.

\
For copper-crystal, the calibrated material constants are 7,/7,=2.31, H,/1,=36.2,

H /t,=3.36, y,=0.0017, H /7,=0.76, n=0.08, a,=2.38, a,=2.89, a,=0.38, a,=23.7, a,=1.14.
Fig. 4 shows that the experimental curves in ref. [10] are also well simulated.



Ysz SCIENCE IN CHINA (Series A) Vol. 3X

f T T i / ' '|
| e
40 F / 7
/ -
/ -
Yo
s .
- s
z e
b v 7 /
;: e -~ - - ‘,.--'
5 4 /'_ S
Fia. 2 7 o kb /-P/ * }{ -
T T §. / S
z .
) 40 P
- 1z 12
‘_, 13%
= 00! 012 o
20 ]
E .
2 Fxtension ratio
z
Fig. 3
0 - —L . . T
( 0.05 0.1 0.15 0.2 These comparisons indicated that the as-
Strain sumptions adopted in the present work are
Fig 4 acceptable.

5 C(onclusions and discussions

I. A new expression of the crystal hardening coefficients 1s proposed with 12 material
constants, each of which has clear physical meaning. Material constants can be determined
accurately and efficiently with conventional experimental data by the suggested calibration
method based on the nonlinear programming theory. The simulated load-clongation curves
of the FCC crystal in tension along various crystallographic orientations are in good agree-
ment with the experiments.

2. The hardening coefficient matrix derived from the new expression is symmetrical and
positively definite, so the correct activated state and the shding rates can be obtained with
an algorithm of the mathematical programming theory.

3. There are many factors influencing the properties of crystal. whose mechanical be-
havior depends on the pureness, test temperature. deformation rate, etc. The new expres-
sion and the material constant calibration method proposed in this paper need to be further

§ oy,
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verified before they are used more extensively. The experimental data in the examples are
quoted from refs. [9] and [10]. In polycrystalline aggregates, impurities, defects and crystal
boundaries will affect the crystal grains seriously, so the material constants may not remain
the same as those in the single-crystal state, and the expression of crystal hardening
coefficients should be modified as well before being extended to more general cases.
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