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Abstract 

We try to connect the theory of infinite dimensional dynamical systems and nonlinear dynamical methods. The 
sine-Gordon equation is used to illustrate our method of discussing the dynamical behaviour of infinite dimensional systems. 
The results agree with those of Bishop and Flesch [SIAM J. Math. Anal. 21 (1990) 15111. 

1. Introduction 

One of the most important and interesting subjects 

in the field of nonlinear science is the dynamical 
analysis of space-time systems. The study of this 
subject is developing along two directions. On the 
one hand, the theory, established by Temam and his 
co-workers, of the existence of unique global com- 
pact attractors and inertial manifolds in dissipative 
PDEs is an important step in one direction (see Refs. 
[2,3]). On the other hand, pattern dynamics was 
remarkably developed based on nonlinear dynamical 
methods (see Ref. 141). In Ref. [51, we suggested to 
connect these two subjects and that a new method of 
discussing the dynamical behaviour of infinite di- 
mensional systems could be developed. We hope that 
this method is not only reliable in theory but also 
applicable and computable in practice. 

In this Letter, the sine-Gordon equation is used to 

illustrate a new method suggested by the authors. 
Firstly, a new concept is put forward, namely the 
generalized asymptotic inertial manifold (GAIM), 
and it is proven prove that all solutions of the 
equation enter a sufficiently thin layer of this mani- 
fold after a long time, therefore the dynamical be- 
haviour on the GAIM correctly reflects that of the 
sine-Gordon equation. Then we derive explicitly the 
form on the GAIM. Lastly, we study the dynamics of 
the explicit ODE in detail, and compare our results 
with those obtained by numerical simulation in Ref. 
[l]. We find that they are identical in both qualitative 
and quantitative aspects, so we conclude the method 
proposed is reliable and useful for discussing the 
dynamical behaviour of infinite dimensional systems. 

2. GAIM 

’ Atso at the Wuxi Light Industry Institute. 

We consider the one dimensional sine-Gordon 
equation with periodic boundary conditions, 
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u,, + au, - A u + sin u = rf( t) ) 

4-L/2, L/2]=& tER+ 

u( -L/2, t) = u( L/2, t), 

ux( -L/2, t) = uJL/2, t), 

u(--x, t) =u(x, t), 

u(x, 0) =u&), u,(x,O) =u1(x), (24 

where (Y > 0 and r> 0 are constants, and f(t) is a 
sufficiently smooth function. The maximum norms 
of f(t) with its derivatives of any order are smaller 
than one. In Ref. [2], it was proved that (2.1) has a 
unique compact attractor with finite Hausdorff di- 
mension and finite fractal dimension in the subspace 

u(x, t) dx=O 

of X,=Hi,,(0)X L*(Q) when f(t>=O. The at- 
tractor only consists of non-zero modes, therefore the 
dynamics on the attractor does not correctly reflect 
the dynamics of (2.1) on the whole space X,. 

The eigenvalues and the eigenvectors of A = - A 

are 

Aj=(2rj/L), j=O, 1,2 ,..., 

Aw = hjw. 

A complete orthogonal basis consists of all the 
eigenvectors. Let 

m(t) = &u(x, t) dx 

for u E X,. Then (2.1) can be written as 

d2m 
;;;r+ug+i/osin udx=rf(t), 

m(0) = ;/-/e(x) dx=m(u,), 

dm(0) 1 
- = - 

/ dt Ln 
ul(x) dx=m(u,) 

and 

2 

;+ol;+Ao+g(u+m)=O, 

u( x, 0) = ug( x> - m( uo>, 
u,(x, 0) = h(x) - m(u,), 

(2.2) 

(2.3) 

where u(x, t) = dx, t) - m(t), and 

1 
g(u+m) =sin u- - 

/ 
sin u dx. 

Lo 

For any fixed IV, P is a projection operator from X, 
to span{w,, w?, . . . wN}. Q = I - P, where I is the 
identity operator. Let A = A,, A = AN+ ,, S = 

A,/&+ 13 P = Pu, q = Qu. (2.3) can be divided into 
two parts, 

2 

2 

$+cxz+Aq+Qg(o+m)=O, 

where u=p+q. 

(2.4) 

For constructing the GAIM of (2.11, the following 
assumption is needed, 

Aq+Qg(p+m) =O. (2.5) 

The solution of (2.5) is 

qO=@,,(p+m) = -A-‘Qg(p+m). (2.6) 

Go defines a smooth function in X,. In other words, 
A’= {p + m, q,,} gives a smooth manifold in X,. 

The main result is 

Theorem. For sufficiently large t, all the solutions 
of (2.1) eventually enter a thin layer around & with 
width S 3/2. 

Remark. The GAIM differs from the asymptotic 
inertial manifold. It is an unbounded manifold in X,, 
and includes the zero mode with eigenvalue A, = 0, 
therefore the ODE on J correctly reflects the dy- 
namical behaviour of (2.1) in the whole space X,. 

The proof of this theorem will be published else- 
where (see Ref. [6]). 

3. ODE on the GAIM 

According to (2.21, (2.4) and (2.61, the ODE on 
the GAIM of (2.1) must satisfy the relations 
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d2m dm 1 

-+%+I dt2 
!,jnsin(m+p+q,,) dx=:Tf(t), 

(3Sa) 

$+o~+Ap+Pg(m+p+q,,)=O, (3.lb) 

A% + Qdm +P) = 0. (3Sc) 

For a fixed sufficiently large N, m +p is taken as 

c(t) f f b(t) cos(27r~,‘L). (3.2) 
tl=l 

Let us substitute (3.2) into (3.1~). Then an expres- 
sion for q. can be obtained. Fu~he~ore, by substi- 
tution into (3.la), (3.lb) the equations for c and b 
can be derived. By a tedious calculation, the ODE on 
GAIM is eventually obtained, 

3cbf 3cb; 
---+ +- 

2 
. . . 

2 

fg,(c> b,, b,,...,b,) =U(t), (3.3a) 

d2b, db, 
-+(ux+b,+ 
dt2 

- -$ .( 3c2b, + 
3b; 3b,b; 

4+- 2 +.. 

+g,(c, b,, bar...,&) 

= 0, . ..) 

d2bN db, 

-+*dt+bN+ dt’ 

3b,b,: 
-t- 

2 I 

(3.3b) 

3c2b,f 
3b; 3b,b; 

4+- 2 

+ + 
3b,&_, . . . 

2 
+g& b,, bzr...,&) 

= 0, (3.3c) 

where g$c, b,, b,,. . ., bN) (i= 0, 1, 2,... N) are 
functions and their Taylor expansions include quintic 
and higher-order terms in the variables, and g,(b, = 
O)=O, gj(bj_,=O)=O(j=1,2 ,... N-l). 

Any solution of (3.3) is considered as a curve in 
R2N+2 with basis functions Cc, c’, b,, b’,, b,, 

b;,..., bN, bh ). R is a subspace spanned by some of 
the basis functions given above. If the initial condi- 
tions of (3.3) are located on R, the corresponding 
unique solution of (3.3) is still on R for all t, then R 
is called an invariant subspace of solution. The 
following invariant subspaces of solution for the 
system (3.3) exist, 

R, = (c, c’, 0, 0 ,..., 0, 0), 

R, = (c, c’, b,, b’,, 0, 0 I..., 0, 0), . .., 

R N+t =(c, c’, b,, b;,...,b,, b;). 

From the numerical results in Ref. [l], we find that 
the variation of the space structure with variation of 
the parameter r can be obtained by the results of the 
invariant subspaces of the solution. 

Remark. If cr and r are small, and f(t) = 
codwt), (2.1) can be written as 

u,, + ELYU, - A u i-Sin u = Er COS(wt), 

where E is a small parameter. For N = 1, m + p is 
taken as 

+0(P)], 

where w = 1 - 6. X = mX, T = rd. Substi- 
tuting this into (3.31, the first order equation coin- 
cides with the truncated model system in Ref. [l]. 
Therefore (3.3) is considered as a good model for the 
dynamical investigation of (2.1). 

4. Numerical simulation 

In Ref. [II, the following sine-Gordon equation 
was considered, 

U,,+ECYU,- Au+-sin u==E~cos(w~), 

U( -L/2, t) = u(L,/2, t), 

ax(L/2, t) = ax( -L/2, t), 
u(x, t) =a(-x, t), (4.1) 
where w = 0.87, L = 12, ECY = 0.04. As the parame- 
ter EP varies, the results obtained by the numerical 
method are as shown in Fig. 1. 

0.052 0.059 0.07 0.15 
l r 

space 

_______K_____‘1,_,,_~_~_____~_~_~~______t___--_________, 

0 IO II 0, 0 1 ; K,@K,@K, 

time periodic with frequency i chaotic 

Fig. 1. 
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In Fig. 1, K,, K, and K, respectively represent 
the zero mode with eigenvalue h, = 0, the first mode 
with eigenvalue A, = 29r/L and the second mode 
with eigenvalue A, = &r/L in phase space. In Sec- 
tion 3, the reliability of the space structure is shown 
by discussing the invariant subspaces of the solutions 
of the ODE on the GAIM. In this section, we further 
consider (3.3) by numerical simulation. Because the 
space structure in a wide range of parameters only 
consists of zero and first modes, and R, = (c, c’, b,, 
b’, , 0, 0, . . . , 0, 0) is also an invariant subspace of 
solutions of (3.3), (3.3a) and (3.3b) are taken for a 
numerical calculation, namely, let bj = bj = 0 (j = 
2, 3,. . . ) N). In the numerical calculation, all the 
values of the parameters in (3.3) are taken as in Ref. 
[l], and er is considered as a variable parameter. 
The results of the numerical simulation are summa- 
rized in Table 1. 

All the numerical results given show that the 
dynamical behaviour of (4.1) can be expressed quali- 
tatively and quantitatively by the ODE on the GAIM 
of (4.1). This confirms that the method suggested is 

Table 1 

Parameter Initial conditions (c, c’, b,, b;) Space Time 

0.03 (0.1550,0.0000, 1.4150,0.0000) Ku periodic 

0.052 (1.5498,0.0000, 1.4138,0.OOtKI) K, periodic 

0.055 (1.5486,0.0000, 1.4131,0.0000) K,@K, periodic 

0.059 (1.5200,0.0000, 1.4000,0.0000) K,@K, periodic 

0.062 (1.5200,0.0000, 1.3200,0.0000) K, periodic 

0.065 (1.2500, 0.0000, 1.3200, 0.0000) K, periodic 

0.07 (1.2500,0.0000, 1.3200,0.0000) K,@K, chaotic 

0.1 (1.1000, 0.0000, 0.9000,0.0000) K,@K, chaotic 

reasonable and useful for the investigation of infinite 
dynamical systems. 

In this Letter, our interest is focused on the 
reliablity of the method we put forward. Most of the 
results obtained have been compared with the results 
of Ref. [l], so that the reliability of the new concept 
and the method can be shown. Further results for 
(3.3) by other nonlinear methods will be published 
elsewhere. 
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